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Abstract: The design and operation of a custom-built LIDAR-compatible, four-channel Raman
spectrometer integrated to a 532 nm pulsed laser is presented. The multichannel design allowed
for simultaneous collection of Raman photons at two spectral regions identified as highly sensitive
to changes in water temperature. For each of these spectral bands, the signals having polarization
parallel to (‖) and perpendicular to (⊥), the excitation polarization were collected. Four independent
temperature markers were calculated from the Raman signals: two-colour(‖), two-colour(⊥),
depolarization(A) and depolarization(B). A total of sixteen datasets were analysed for one ultrapure
(Milli-Q) and three samples of natural water. Temperature accuracies of ±0.4 ◦C–±0.8 ◦C were
achieved using the two-colour(‖) marker. When multiple linear regression models were constructed
(linear combination) utilizing all simultaneously acquired temperature markers, improved accuracies
of ±0.3 ◦C–±0.7 ◦C were achieved.
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1. Introduction

Water temperature is an important parameter in aquatic environments, directly influencing the
water column structure and allowing for the investigation of physical and biological processes such as
ocean currents, heat exchange, pycnocline depths, geostrophic flow, detection of upwelling systems,
and primary productivity. Researchers rely on both traditional in situ sampling methods and remote
sensing techniques to gain water temperature information.

Traditional methods, such as thermometers and temperature probes deployed from ships and
vessels, allow for acquisition of depth-resolved highly accurate data; operational logistics, however,
are complex, with information collected at a limited number of sampling stations and not compatible
with meso and macroscale processes at oceanic and coastal zones [1]. Efforts to overcome these issues
resulted in development of new technologies to remotely monitor the oceans, for instance, satellite
sensors and LIDAR (Light Detection and Ranging) methods.

Remote sensing methods retrieve data from an object without direct interaction by using sensors
to detect electromagnetic, acoustic or electrical signals [2,3]. Infrared satellite sensors, such as the
Advanced Very High Resolution Radiometer (AVHRR), retrieve signals spontaneously emitted by the
oceans and are currently the main contributors for water temperature monitoring programs, providing
a synoptic view of the oceans at larger scales than in situ measurements [4]. However, infrared radiation
undergoes pronounced absorption in water and only signals emitted by the first micrometers of water
column are retrieved by the sensors, rendering the collection of subsurface information ineffective.
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Besides depth limitations, data acquisition is restricted to areas without cloud coverage and requires
validation with in situ data for increased accuracies. Recent AVHRR accuracy estimations indicates
errors of up to ±2.0 ◦C in temperature predictions at the coast and ±1.0 ◦C for oceanic zones [5].

Limitations of both in situ and satellite methods expose a technological gap to be filled by a
remote sensing technique able to provide depth-resolved temperature data at scales not covered by
either of the abovementioned, such as LIDAR methods. LIDAR methods in oceanography include
active and passive remote sensing techniques where signals in the visible or near-infrared range
emitted by a target are retrieved by a sensor and interpreted to derive depth-resolved information.
Active LIDAR equipment requires monochromatic short-pulsed light as an excitation source, which is
transmitted down the water column interacting with molecules and other optically active constituents.
By considering the arrival time of returning excitation photons and/or photons at different frequencies,
it is possible to assess depth-resolved environmental information such as bathymetry, fluorescence
from optical constituents, and, ultimately, water temperature. In this regard, optical methods retrieving
backscattered light such as Raman or Brillouin spectroscopy have the potential to be coupled to
LIDAR technologies and ultimately provide real-time reliable data of subsurface water temperature
for regional and global studies [6–11]. Our focus in this paper is on applying Raman methods, as they
are most amiable to the development of a compact and affordable instrument.

Raman spectroscopy (RS) is a technique based on the inelastic scattering of an incident photon
by a molecule, resulting in photons being scattered with a shift in frequency relative to the excitation
source [12]. In the liquid state, water molecules exhibit Raman active modes associated with
translational, librational, bending, and stretching forces [13,14]. These Raman active modes present
temperature-dependent behavior, the origin of which is somewhat contentious. The OH stretching
band is the most prominent feature in the water Raman spectrum, extending from 2900 to 3900 cm−1 and
exhibiting an isosbestic point at which signal intensities are insensitive to changes in temperature [13,15].
Researchers have proposed various techniques for using the temperature dependence of Raman spectra
to predict water temperature [8,16–19]. Our approach has been guided by our longstanding goal of
developing a compact and affordable instrument. Further, we seek to exploit both the frequency and
polarization dependence of Raman spectra.

Polarized RS reveals different shapes and intensities for Raman signals according to their
state of polarization relative to that of the excitation laser. The unpolarized and polarized Raman
spectra presented in Figure 1 were measured using a dispersive commercial Raman spectrometer
(Enwave EZRaman-I, integrated with a 532 nm CW laser), with polarizing filters inserted as required.
“Unpolarized” refers to all Raman photons, regardless of their state of polarization (Figure 1a);
“parallel-polarized” refers to photons scattered having the same state of polarization as the excitation
sources (Figure 1b); and “perpendicularly-polarized” implies Raman photons being scattered with
polarization state orthogonal to that of the excitation light (Figure 1c). Parallel-polarized components
exhibit higher signal intensities than perpendicularly polarized signals, in conformity with the
tetrahedral geometry of water molecules [20] (Figure 1b,c).

Regardless of the polarization state, the isosbestic point marks an inversion of Raman signal
behavior: for shifts below (above) the isosbestic point, higher intensities are associated with
lower (higher) temperatures. Following the first studies correlating the temperature-dependent
behavior of water Raman signal around the OH-stretching band, temperature markers were
proposed for unpolarized and polarized water Raman spectra, known respectively as two-colour and
depolarization ratios.
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Figure 1. Temperature-dependent Raman spectra from ultrapure (reverse osmosis) water.
(a) unpolarized spectra; (b) parallel-polarized spectra; (c) perpendicularly-polarized spectra. Isosbestic
points are indicated by a dashed line.

Two-colour temperature markers, also referred as “two-colour ratios”, have been most widely
used in Raman temperature prediction studies [9–11,21]. In most studies, full, unpolarized water
Raman spectra are decomposed in two or more Gaussian curves and a ratio is taken of the areas
under these Gaussians or some other feature such as their spectral widths. More recently, a different
approach for the two-colour method was reported in References [11,22] which did not require spectral
decomposition. Raman signals were integrated within channels on both sides of the isosbestic point and
temperature markers were calculated based on the ratio of integrated signal intensities for each channel.
By using two-colour markers calculated from channel integrations, accuracies as high as ±0.1 ◦C were
achieved for ultrapure water (Reverse-Osmosis) and ±0.2 ◦C for natural water samples [23] measured
in laboratory.

Depolarized temperature markers have been calculated as ratios between the perpendicularly-
polarized and parallel-polarized Raman signal intensities within a band of wavelengths. In water, these
ratios exhibit a linear temperature-dependent behavior and can be used for temperature predictions.
In [19], polarized Raman components were acquired from a saline solution (NaCl 40%) and used
for estimating depolarization markers, achieving theoretical accuracies of ±0.5 ◦C for temperature
predictions. Later, the same temperature prediction accuracies of±0.5 ◦C were achieved when collecting
Raman spectra from water excited by a 470 nm laser [24]. Many Raman spectrometers, including the
one used to acquire Figure 1, do not allow for simultaneous acquisition of orthogonally-polarized
spectral components. Accordingly, the use of depolarization markers has not been investigated in
recent years.

Raman spectroscopy has proven to be an effective technique for determining water temperature
in the laboratory with high accuracies of up to ±0.1 ◦C and ±0.5 ◦C using two-colour or depolarization
markers, respectively [11,24]. The reports in [23,25,26] propose the possibility of measuring subsurface
water temperature using Raman spectroscopy in combination with LIDAR methods, collecting
time-resolved Raman signals in channels selected by optical filters. This is the ultimate goal of our
research project. Our arrangement is LIDAR-compatible in that it uses a short pulse (< 2 ns) excitation
laser and fast photomultipliers, and is compatible with underwater, surface, and possibly airborne
platforms. However, the work presented here is at an early stage.
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In this work, we report a custom-built multichannel Raman spectrometer incorporating a short-
pulsed excitation source, optical filters, and fast detector, and we study small volumes of ultrapure
(Milli-Q) and natural waters which were collected from Sydney Harbor. Prior to implementing
LIDAR methods in large volumes, we need to evaluate and optimize the optical design of the
multichannel spectrometer and methods for analyzing the collected signal. Our multichannel
spectrometer enabled simultaneous collection of parallel and perpendicularly-polarized Raman signals,
enabling the investigation of both two-colour and depolarization temperature markers. Root Mean
Squared Temperature Error (RMSTE) values were estimated for temperature predictions performed
by both types of markers and the sensitivity of each marker (% change per ◦C) was also evaluated.
Lastly, we propose a new, innovative, linear combination method which uses both two-colour and
depolarization markers for enhanced temperature predictions.

2. Materials and Methods

2.1. Spectrometer Design

The excitation source for the multichannel Raman spectrometer was a 532 nm Nd:YAG, passively
Q-switched, pulsed laser (Innolight µFlare) having 25 µJ per pulse, 0.9 ns pulse duration full width at
half maximum (FWHM), and pulse repetition rate of 4.5 kHz. The water samples used in the study
were ultrapure (Milli-Q) and three natural water samples collected from Sydney Harbour at different
times. These were analyzed within a few hours of collection.

Our experimental setup is shown in Figure 2. A water sample was placed inside a temperature-
controlled cuvette holder (QPod2e, accurate to ±0.15 ◦C) and its temperature was varied from 18 ◦C
to 40 ◦C (stepping every 2 ◦C). The oscilloscope was triggered by inserting a glass window in the
laser path, before it was coupled into the spectrometer, deflecting ~4% of the incident beam towards a
photodiode connected to the oscilloscope. Excitation photons (532 nm) were reflected by a Dichroic
Mirror (DM, reflectivity R~94% at 532 nm, transmission T~98% between 620 and 670 nm) and focused
into the water sample by a converging lens (f = 70.0 mm). Red-shifted Raman photons scattered by
the sample passed through a Long Pass filter (LP, R~99.9% at 532 nm and T~98% at 620-670 nm) in
order to reject most Rayleigh-scattered photons. The Stokes photons were split into two directions,
by a non-polarizing beam splitting cube (BSC), one beam then passing through BP640

low (Semrock
LD01-640/8-25, central wavelength: 640 nm, band-pass: 12.9 nm at FWHM), and the other through
BP660

high (Semrock FF01-660/13-25 nm, central wavelength: 660 nm, and band-pass: 20.2 nm at FWHM).
The choice of these filters was constrained by commercial availability and total spectral widths at
FWHM were 315 cm−1 and 463 cm−1 for low and high shift channels, respectively. Their spectral pass
bands are shown superimposed on the polarized Raman spectra in Figure 3. These filters had high
rejection (OD > 5) outside their pass bands.

Each beam was then divided into two polarized components by a polarization beam splitting cube
(PBSC), prior to detection by a fast Photomultiplier (Hamamatsu H10721-20, rise time ~1 ns) coupled to
a converging lens (f = 25.0 mm) to focus the backscattered Raman photons into the detectors aperture.
The PMT gain values were set around 700 V for all channels, well below the maximum gain allowed
by our PMTs (900 V). Raman signal intensities were simultaneously registered by a multichannel
oscilloscope (Tektronix DPO4104B), each being an average of 512 pulses. Signal-to-noise (SNR) ratios
were calculated for each channel according to Equation (1).

SNR =

∫
Signal(FWHM)∫
Noise(FWHM)

(1)

where
∫

Signal(FWHM) represents the integrated Raman signal pulse over the full width of half

maximum (FWHM); and
∫

Noise(FWHM) refers to the integration of the noise signals over the FWHM.
For each water sample, three independent acquisitions were performed for each temperature, hence
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three sets of two-colour and depolarization markers could be calculated for each temperature. Aiming
to increase robustness, the markers calculated from the independent datasets were averaged, giving
origin to a new (fourth) dataset for each temperature marker hereafter referred as the “average
markers dataset.

Table 1 shows a list with information regarding all spectral channels collected by this setup and
correspondent nomenclatures adopted in this study.
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Table 1. Nomenclature adopted for each spectral channel.

Channel Number Polarization State Band Pass Filter Nomenclature Typical SNR Values

1 Parallel BP660
high Ihigh

‖
1.9× 104

2 Perpendicular BP660
high Ihigh

⊥
1.6× 104

3 Perpendicular BP640
low Ilow

⊥
2.3× 104

4 Parallel BP640
low

Ilow
‖

7.7× 104
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2.2. Temperature Markers

Each pulse registered by the oscilloscope was integrated over a range of 2.0 ns (10 data points), as
indicated in Figure 4, using the Trapezoidal rule. Integrated signals for each channel were used to
calculate four temperature markers as expressed by Equations (2)–(5).

Two− colour(‖) =
Ihigh
‖

Ilow
‖

(2)

Two− colour(⊥) =
Ihigh
⊥

Ilow
⊥

(3)

Depolarisation(A) =
Ihigh
⊥

Ilow
‖

(4)

Depolarisation(B) =
Ilow
⊥

Ihigh
‖

(5)
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2.3. Predicting Temperatures

Linear regression models were constructed from the relationships between temperature markers
and reference temperature, and their coefficients (gradient, intercept) were obtained for each marker
analysis. These coefficients were rearranged in order to calculate a new set of temperatures dependent
on the markers, hereafter called “predicted temperatures” (Equation (6)).

Tpredicted = (gradient × marker) + intercept (6)

where Tpredicted represents the predicted temperature estimated by a two-colour or depolarization
ratio (marker). Plotting these predicted temperatures against the measured reference temperatures
enabled RMSTE values to be calculated; these RMSTE values provided our measure of temperature
prediction accuracy.

2.4. Marker Sensitivity to Temperature

Marker sensitivities were also estimated for an ultrapure water sample, representing the percentage
change in the marker values per ◦C. For natural water samples variations in the markers values may



Sensors 2019, 19, 2933 7 of 12

be associated with the presence of fluorescence from other optically active components in water, as
reported in Reference [23], hence not representing the markers sensitivity to temperature only.

As described in Reference [11], the use of mean-scaled temperature markers is appropriate
for sensitivity calculations, and accordingly each temperature marker was divided by the mean of
all markers within a set of temperature measurements (Equation (7)). Sensitivity information was
extracted from the slope calculated for the linear model correlating mean-scaled markers and their
respective temperatures. The use of mean-scaled markers also enables comparison between different
types of markers calculated for a given water sample, determining which markers are associated with
higher sensitivities.

Mean-scaled marker sensitivity =
d(marker)

dT
1

mean(marker)
(7)

2.5. Linear Combination Method (LC)

Multiple linear regression (or linear combination) is a multivariate analysis method used for
modelling linear relationships between two or more independent variables (in this study, temperature
markers) and a set of dependent measurements (reference temperatures). Our spectrometer design
enabled simultaneous collection of signals at all channels, allowing for combining temperature markers
into one model to enhance the accuracy of temperature predictions Equation (8).

Tpredicted = β0 + β1 × two− colour(‖) + β2 × two− colour(⊥) + β3 × depol(A) + β4 × depol(B) + ε (8)

where β0 is an independent term, β1–β4 are calibration terms generated by the model and correlated
with each marker, and ε are the residual errors.

3. Results and Discussion

3.1. Milli-Q (ultrapure) Water Analysis

Temperature markers calculated from Raman signals scattered by a Milli-Q (ultrapure) water
samples were analysed in order to determine sensitivities, percentage errors in the markers associated
with SNRs and the accuracy with which temperature could predicted (RMSTEs). Due to the absence
of other signals overlapping with the Raman peak, these values should indicate the maximum
performances that could be achieved by our RS in laboratory experiments. A summary with the main
results found for ultrapure water analysis is shown in Table 2.

Table 2. RMSTEs, sensitivities, and the absolute percentage errors in each marker for a Milli-Q water
sample. Data in brackets is based on the analysis of 4 datasets; data without brackets is based on the
“average markers” dataset. Refer to Section 2.1. for details.

Temperature Marker RMSTE (±◦C) Sensitivity
(%/◦C)

Absolute Percentage
Error in Marker (%)

Two-colour (‖) 0.4
[0.4–0.7] 0.59 0.00093

Two-colour (⊥) 1.5
[1.5–1.7] 0.61 0.0035

Depolarization (A) 0.8
[0.8–1.0] 0.68 0.0021

Depolarization (B) 1.8
[1.4–2.1] 0.52 0.0023
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The response of each marker to changes in temperature was investigated by comparing their
mean-scaled temperature markers (Figure 5), and the sensitivities were extracted from the slope of the
linear relationships between mean-scaled markers and their respective temperatures (Table 2).
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Figure 5. Mean-scaled temperature markers for Milli-Q water.

Similar sensitivities were found for all temperature markers calculated from the ultrapure water
sample, varying from 0.52%/◦C (depolarization(B)) to 0.68%/◦C (depolarization(A)). R2 values were
found to be poor for two-colour(⊥)) and depolarization(B) when compared with other temperature
markers and it can be seen in Table 2 that these were also the markers that had higher percentage
errors. The sensitivities are somewhat lower than the values around 1%/◦C for two-colour markers
calculated from full unpolarized Raman spectra reported by the authors of [8,9,21]. We attribute this
to our use of spectral channels and the inevitable trade-off between sensitivity and signal intensity.
These trade-offs were explored in [11], where the authors simulated the impact of channel widths on
two-colour markers sensitivities calculated from unpolarized Raman signals. Analysis of an ultrapure
water sample (Reverse-Osmosis) showed a systematic decrease in the marker sensitivities when
increasing the spectral channels widths for Raman signal acquisition. In that simulation, sensitivities
of 0.52%/◦C were reported for channels of 300 cm−1 width, and an optimal channel width of 200 cm−1

was suggested.
Accuracies found for Milli-Q water analysis varied from ±0.4 ◦C to ±2.1 ◦C, as shown in Table 2.

RMSTEs were more aligned with the percentage errors calculated for each marker, derived from
channels SNRs, than with the markers’ sensitivities. The best RMSTEs of ±0.4 ◦C were found for
two-colour(‖) analysis, and are comparable to the values of±0.4 ◦C reported in other LIDAR-compatible
RS reports [11,22].

3.2. Natural Water Analysis

RMSTEs, sensitivities, and percentage errors calculated for all temperature markers retrieved
from natural water samples are shown in Table 3. The data is compiled from 12 datasets, as detailed
in Section 2.1. We first start by considering the markers sensitivities in natural waters. All markers
exhibited sensitivities lower than the ones found for Milli-Q waters, which can be explained by the
presence of other optically active constituents in natural waters. Issues regarding fluorescence from
chlorophyll-a and Dissolved Organic Matter overlapping with the Raman peak when excitation is at
532 nm and temperature predictions have already been addressed in [23,27]. Unwanted fluorescence
signals contribute to the overall signal counts leading to higher SNR (and therefore lower percentage
errors in the temperature markers), which can be seen in nearly all-natural water samples under
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analysis (Table 3) when compared with the Milli-Q water results (Table 2). Thus, the percentage errors
determined for natural waters need to be interpreted cautiously, and the values in Table 2 may be
more meaningful.

Table 3. RMSTEs, sensitivities, and the absolute percentage errors in each marker for natural water
sample analysed by two-colour markers. Data in brackets is based on the analysis of 4 datasets; data
without brackets is based on the “average markers” dataset. Refer to Section 2.1. for details.

Temperature Markers

Two-Colour(‖) Two-Colour(⊥) Depolarization(A) Depolarization(B)

Natural 1

RMSTE (±◦C)
(Range)

0.4
(0.4–0.6)

2.6
(2.3–2.6)

1.6
(1.6–1.7)

2.1
(2.1–2.5)

Sensitivity (%/◦C) 0.50 0.30 0.48 0.30
Marker percentage error (%) 0.00098 0.0026 0.0019 0.0017

Natural 2

RMSTE (±◦C)
(Range)

0.7
(0.5–0.7)

1.3
(1.0–1.3)

1.4
(0.8–3.4)

1.1
(1.1–2.2)

Sensitivity (%/◦C) 0.57 0.57 0.59 0.56
Marker percentage error (%) 0.00089 0.00276 0.00179 0.00187

Natural 3

RMSTE (±◦C)
(Range)

0.8
(0.8–0.9)

0.9
(0.9–1.7)

6.5
(5.6–8.1)

2.6
(2.5–2.7)

Sensitivity (%/◦C) 0.53 0.49 0.25 0.78
Marker percentage error (%) 0.00084 0.0024 0.0017 0.0016

Higher accuracies (i.e., lower RMSTEs) were found when using two-colour(‖) markers for
all-natural water samples, with RMSTEs ranging from ±0.4 ◦C to ±0.9 ◦C. This is consistent with the
findings for Milli-Q water. The RMSTE values are also similar, and we note that the sensitivities found
for natural water samples are within 15% of the Milli-Q water values. The accuracies obtained using
the two-colour(⊥) marker were more variable, with RMSTEs ranging from ±0.9 ◦C to ±2.6 ◦C. There
was more variation in the marker sensitivity between samples, with the values differing from the
Milli-Q results by as much as 50%. The higher RMSTEs were associated with lower sensitivity, which
suggests this marker is less immune to the presence of fluorescing constituents.

This was the first time, to our knowledge, that two-colour markers were calculated from polarized
Raman signals selected by optical filters. The accuracies achieved using the two-colour(‖) markers
(±0.4 ◦C –±0.9 ◦C) are broadly consistent with the accuracies reported in Reference [23], where RMSTEs
within the range of ±0.3 ◦C–±1.0 ◦C were predicted for natural water samples based on the full
unpolarized Raman spectra collected by a commercial RS, integrating Raman signals in channels of
200 cm−1 width. Strategies were presented in Reference [23] which corrected for fluorescence, and
reduced the RMSTEs to ±0.2 ◦C–±0.5 ◦C. We anticipate the “correction by temperature marker values”
method presented in Reference [23] could be implemented in the multichannel RS described here.
We hope to achieve better accuracies with our LIDAR-compatible, multichannel RS with the use of
custom-built Band Pass filters with smaller bandwidths.

Next, we consider the use of depolarization temperature markers. The RMSTEs varied widely
from ±0.8 ◦C to ±8.1 ◦C (Table 3), and it was not possible to infer which of the depolarization markers
had the better performance. For each marker, the smaller RMSTEs were associated with higher
sensitivity. There is limited literature with which to compare our RMSTEs based on depolarization
markers. As explained in Reference [24], depolarization markers are traditionally calculated from
signals at different state of polarizations but within the same spectral band (unlike the present study),
exhibiting the advantage of not being impacted by fluorescence signals and differential attenuation
when propagating in water. The authors of Reference [24] determined water temperature from
polarized Raman spectra acquired by using a 470 nm dye laser as excitation, achieving accuracies
of up to ±0.5 ◦C. Based on our observations, the depolarization markers predict temperatures less
accurately than the two-colour ratios. It is possible, however, that in the future field studies the
benefits outlined by Leonard [24] might become significant and a better selection of filters excluding
the temperature-insensitive points for the depolarized Raman band identified by the authors of [28].
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3.3. Enhancing the Accuracy of Temperature Predictions Using Linear Combination Methods

While the two-colour(‖)markers clearly enabled the most accurate prediction of temperature for all
the water samples investigated here, it is equally clear that the other markers also exhibit temperature
dependence, albeit to a lesser degree. Accordingly, we now apply the linear combination method
described in Section 2.1 to our four water samples. RMSTE values of temperature predictions for
natural and Milli-Q water samples after LC are shown in Table 4.

Table 4. RMSTE improvement after linear combination (LC) methods.

Sample
Best RMSTE for single marker

[Range for all markers]
(±◦C)

Best RMSTE after LC
[Range]

(±◦C)

Improvement due to LC
(%)

Milli-Q water sample 0.4
[0.4–2.1]

0.3
[0.3–0.5] 25

Natural sample 1 0.4
[0.4–2.6]

0.3
[0.3–0.5] 25

Natural sample 2 0.5
[0.5–3.4]

0.4
[0.3–0.5] 20

Natural sample 3 0.8
[0.8–8.1]

0.5
[0.5–0.7] 38

RMSTEs after the LC method exhibited average improvements of 30% relative to the best RMSTE
obtained using a single marker, with final accuracies after LC equal or better than±0.5 ◦C for all samples.
The effectiveness of the LC method is largely due to the nature of the multiple linear regression, where
lower weightings (β values) are associated with markers that are less useful. Allied with simultaneous
signal collection by our spectrometer, LC, was effective in extracting temperature-related information
from all markers and maximizing the accuracies of temperature predictions for all water samples.

4. Conclusions

In this paper we presented a custom-built multichannel Raman spectrometer, operating with a
532 nm pulsed laser and commercial optical filters collecting polarized signals on spectral regions of
interest for temperature predictions in natural waters. The design is LIDAR-compatible, employing (1)
a pulsed laser source of ≤ 2 ns full-width at half maximum, desirable to achieve a depth resolution
better than 0.5 m; (2) collection of Raman signals from optical channels through the use of Band Pass
filters; (3) fast, sensitive detection by photomultipliers.

This was the first time that polarized Raman signals collected from different spectral channels were
simultaneously selected by optical filters and used effectively for temperature prediction, achieving
accuracies as high as ±0.4 ◦C with minimal processing. The innovative 4-channel design of our
equipment enabled 4 temperature-dependent markers to be utilized. It also allowed for the use of
linear combination methods, which significantly enhanced the accuracy of temperature predictions.
Temperature accuracies were closely associated with the sensitivities of each marker, and the percentage
error within each marker derived from signal-to-noise ratios at the channels of Raman signal collection.

The fact that our setup is compatible with LIDAR technologies and allows for LC methods to be
used represents a major advance for using Raman spectroscopy as a reliable technique able to determine
natural water temperature with accuracies higher than current remote sensing tools. In the next stages
of our project, we will apply this methodology to a large number of water samples (> 30), so that the
accuracies of temperature predictions can be analysed using Gaussian statistics (e.g., ANOVA method).
The relatively small number of samples and Raman signals collected in this work did not permit the
use of such statistics. Future work includes evaluating LIDAR capability by probing large volumes of
water in a suitable cell or in situ. This will enable us to answer key questions related to the ultimate
usefulness of our methods, as well as providing information to guide future LIDAR calculations.
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