Sirtuins in Alzheimer’s Disease: SIRT2-Related GenoPhenotypes and Implications for PharmacoEpiGenetics
Abstract
:1. Introduction
2. Sirtuins
2.1. SIRT1
2.2. SIRT2
2.3. SIRT3
2.4. SIRT4
2.5. SIRT5
2.6. SIRT6
2.7. SIRT7
3. Sirtuins in Alzheimer’s Disease
3.1. SIRT1
3.2. SIRT2
3.3. SIRT3
3.4. SIRT6
4. APOE-Related Phenotypes
5. SIRT2-APOE Interactions
6. SIRT2-Related GenoPhenotypes
6.1. Age and Sex
6.2. Lipid Metabolism and BMI
6.3. Blood Pressure and Cardiovascular Function (EKG)
6.4. Biochemical and Metabolic Parameters
6.5. Hematological Parameters
6.6. Cognition
7. Pharmacogenetics and Pharmacoepigenetics
7.1. APOE- and TOMM40-Related Therapeutic Response to Multifactorial Treatments
7.2. APOE- and SIRT2-Related Response to Treatment
7.3. APOE-SIRT2 Bigenic Genotype-Related Cognitive Response to Treatment
7.4. CYP2D6-Related Therapeutic Response to Multifactorial Treatments
7.5. CYP2D6-SIRT2 Interaction in Therapeutics
8. Pharmacoepigenetics of Sirtuin Modulators and Epigenetic Drugs
8.1. Epigenetic Drugs
8.2. Sirtuin Modulators
8.2.1. Folic Acid
8.2.2. Resveratrol
8.2.3. Pterostilbene
8.2.4. Curcumin
8.2.5. Nicotinamide Riboside
8.2.6. Oleuropein Aglycone
8.2.7. Honokiol
8.2.8. Flavonoids
8.2.9. Rebamipide
8.2.10. Tripeptides
8.2.11. Ampelopsin (Dihydromyricetin)
8.2.12. Cystatin C
8.2.13. Cilostazol
8.2.14. Osmotin
8.2.15. Fuzhisan
8.2.16. Salidroside
8.2.17. CDP-Choline
8.2.18. Hydrogen-Rich Water
8.2.19. Linagliptin
8.2.20. Melatonin
8.2.21. s-Linolenoyl Glutathione
8.2.22. Taurine
8.2.23. Rhein Lysinate
8.2.24. Sulfobenzoic Acid Derivative AK1
8.2.25. Phytic Acid
8.2.26. Gamma Secretase Inhibitors
8.2.27. Donepezil
8.2.28. Sirtuin Inhibitors
9. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Cacabelos, R.; Teijido, O.; Carril, J.C. Can cloud-based tools accelerate Alzheimer’s disease drug discovery? Expert Opin. Drug Discov. 2016, 11, 215–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cacabelos, R.; Cacabelos, P.; Torrellas, C.; Tellado, I.; Carril, J.C. Pharmacogenomics of Alzheimer’s disease: Novel therapeutic strategies for drug development. Methods Mol. Biol. 2014, 1175, 323–556. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R.; Goldgaber, D.; Vostrov, A.; Matsuki, H.; Torrellas, C.; Corzo, D.; Carril, J.C.; Roses, A.D. APOE-TOMM40 in the pharmacogenomics of dementia. J. Pharmacogenomics Pharmacoproteomics 2014, 5, 135. [Google Scholar] [CrossRef]
- Cacabelos, R.; Torrellas, C.; Carrera, I. Opportunities in Pharmacogenomics for the treatment of Alzheimer’s disease. Future Neurol. 2015, 10, 229–252. [Google Scholar] [CrossRef]
- Cacabelos, R.; Torrellas, C.; Carrera, I.; Cacabelos, P.; Corzo, L.; Fernández-Novoa, L.; Tellado, I.; Carril, J.C.; Aliev, G. Novel therapeutic strategies for dementia. CNS Neurol. Disord. Drug Targets 2016, 15, 141–241. [Google Scholar] [CrossRef]
- Cacabelos, R.; Torrellas, C.; Teijido, O.; Carril, J.C. Pharmacogenetic considerations in the treatment of Alzheimer’s disease. Pharmacogenomics 2016, 17, 1041–1074. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R.; Carril, J.C.; Cacabelos, P.; Fernández-Novoa, L.; Meyyazhagan, A. Pharmacogenetics of neurodegenerative disorders. Internal Med. Rev. 2017, 3, 1–40. [Google Scholar] [CrossRef]
- Lidzbarsky, G.; Gutman, D.; Shekhidem, H.A.; Sharvit, L.; Atzmonet, G. Genomic instabilities, cellular senescence, and aging: In vitro, in vivo and aging-like human syndromes. Front. Med. (Lausanne) 2018, 5, 104. [Google Scholar] [CrossRef] [PubMed]
- Berson, A.; Nativio, R.; Berger, S.L.; Bonini, N.M. Epigenetic regulation in neurodegenerative diseases. Trends Neurosci. 2018, 41, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R.; Torrellas, C. Epigenetic drug discovery for Alzheimer’s disease. Expert Opin. Drug Discov. 2014, 9, 1059–1086. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R. Epigenomic networking in drug development: From pathogenic mechanisms to pharmacogenomics. Drug Dev. Res. 2014, 75, 348–365. [Google Scholar] [CrossRef]
- Cacabelos, R.; Torrellas, C.; López-Muñoz, F. Epigenomics of Alzheimer’s disease. J. Exp. Clin. Med. 2014, 6, 75–82. [Google Scholar] [CrossRef]
- Mastroeni, D.; Grover, A.; Delvaux, E.; Whiteside, C.; Coleman, P.D.; Rogers, J. Epigenetic mechanisms in Alzheimer’s disease. Neurobiol. Aging 2011, 32, 1161–1180. [Google Scholar] [CrossRef]
- Cacabelos, R.; Carril, J.C.; Teijido, O. Pharmacogenomics and epigenomics of age-related neurodegenerative disorders: Strategies for drug development. In Anti-aging Drugs: From Basic Research to Clinical Practice; Vaiserman, A.M., Ed.; RSC Publishing: Cambridge, UK, 2017; pp. 75–141. ISBN 978-1-78262-435-6. [Google Scholar]
- Cacabelos, R.; Tellado, I.; Cacabelos, P. The Epigenetic Machinery in the Life Cycle and Pharmacoepigenetics. In Pharmacoepigenetics; Cacabelos, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Kumar, P.; Dezso, Z.; MacKenzie, C.; Oestreicher, J.; Agoulnik, S.; Byrne, M.; Bernier, F.; Yanagimachi, M.; Aoshima, K.; Oda, Y. Circulating miRNA biomarkers for Alzheimer’s disease. PLoS ONE 2013, 8, e69807. [Google Scholar] [CrossRef]
- Leidinger, P.; Backes, C.; Deutscher, S.; Schmitt, K.; Mueller, S.C.; Frese, K.; Haas, J.; Ruprecht, K.; Paul, F.; Stähler, C.; et al. A blood-based 12-miRNA signature of Alzheimer disease patients. Genome Biol. 2013, 14, R78. [Google Scholar] [CrossRef]
- Cacabelos, R.; Teijido, O.; Carril, J.C.; Sanmartín, A.; Cacabelos, P. Pharmacoepigenetic processors: Epigenetic drugs, drug resistance, toxicoepigenetics and nutriepigenetics. In Pharmacoepigenetics; Cacabelos, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Cacabelos, R.; Cacabelos, P.; Torrellas, C. Personalized medicine of Alzheimer’s disease. In Handbook of Pharmacogenomics and Stratified Medicine, 1st ed.; Padmanabhan, S., Ed.; Academic Press: London, UK, 2014; pp. 563–615. ISBN 9780123868831. [Google Scholar]
- Utani, K.; Aladjem, M.I. Extra view: Sirt1 acts as a gatekeeper of replication initiation to preserve genomic stability. Nucleus 2018, 26, 1–21. [Google Scholar] [CrossRef]
- Lin, S.; Xing, H.; Zang, T.; Ruan, X.; Wo, L.; He, M. Sirtuins in mitochondrial stress: Indispensable helpers behind the scenes. Ageing Res. Rev. 2018, 44, 22–32. [Google Scholar] [CrossRef]
- Fang, J.; Ianni, A.; Smolka, C.; Vakhrusheva, O.; Nolte, H.; Krüger, M.; Wietelmann, A.; Simonet, N.G.; Adrian-Segarra, J.M.; Vaquero, A.; et al. Sirt7 promotes adipogenesis in the mouse by inhibiting autocatalytic activation of Sirt1. Proc. Natl. Acad. Sci. USA 2017, 114, E8352–E8361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelmohsen, K.; Pullmann, R., Jr.; Lal, A.; Kim, H.H.; Galban, S.; Yang, X.; Blethrow, J.D.; Walker, M.; Shubert, J.; Gillespie, D.A.; et al. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol. Cell 2007, 25, 543–557. [Google Scholar] [CrossRef]
- Murayama, A.; Ohmori, K.; Fujimura, A.; Minami, H.; Yasuzawa-Tanaka, K.; Kuroda, T.; Oie, S.; Daitoku, H.; Okuwaki, M.; Nagata, K.; et al. Epigenetic control of rDNA loci in response to intracellular energy status. Cell 2008, 133, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Imai, S.; Armstrong, C.M.; Kaeberlein, M.; Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000, 403, 795–800. [Google Scholar] [CrossRef]
- Vaquero, A.; Scher, M.; Lee, D.; Erdjument-Bromage, H.; Tempst, P.; Reinberg, D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol. Cell 2004, 16, 93–105. [Google Scholar] [CrossRef]
- Aguilar-Arnal, L.; Ranjit, S.; Stringari, C.; Orozco-Solis, R.; Gratton, E.; Sassone-Corsi, P. Spatial dynamics of SIRT1 and the subnuclear distribution of NADH species. Proc. Natl. Acad. Sci. USA 2016, 113, 12715–12720. [Google Scholar] [CrossRef] [Green Version]
- Bellet, M.M.; Masri, S.; Astarita, G.; Sassone-Corsi, P.; Della Fazia, M.; Servillo, G. Histone deacetylase SIRT1 controls proliferation, circadian rhythm, and lipid metabolism during liver regeneration in mice. J. Biol. Chem. 2016, 291, 23318–23329. [Google Scholar] [CrossRef]
- Lamming, D.W.; Latorre-Esteves, M.; Medvedik, O.; Wong, S.N.; Tsang, F.A.; Wang, C.; Lin, S.J.; Sinclair, D.A. HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 2005, 309, 1861–1864. [Google Scholar] [CrossRef]
- Dang, W.; Steffen, K.K.; Perry, R.; Dorsey, J.A.; Johnson, F.B.; Shilatifard, A.; Kaeberlein, M.; Kennedy, B.K.; Berger, S.L. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 2009, 459, 802–807. [Google Scholar] [CrossRef] [Green Version]
- Rodgers, J.T.; Lerin, C.; Haas, W.; Gygi, S.P.; Spiegelman, B.M.; Puigserver, P. Nutrient control of glucose homeostasis through a complex of PGC-1-alpha and SIRT1. Nature 2005, 434, 113–118. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, J.; Fu, J.; Du, L.; Jeong, H.; West, T.; Xiang, L.; Peng, Q.; Hou, Z.; Cai, H.; et al. Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat. Med. 2012, 18, 153–158. [Google Scholar] [CrossRef]
- Zhou, X.; Fan, L.X.; Li, K.; Ramchandran, R.; Calvet, J.P.; Li, X. SIRT2 regulates ciliogenesis and contributes to abnormal centrosome amplification caused by loss of polycystin-1. Hum. Mol. Genet. 2014, 23, 644–1655. [Google Scholar] [CrossRef]
- Lombard, D.B.; Alt, F.W.; Cheng, H.L.; Bunkenborg, J.; Streeper, R.S.; Mostoslavsky, R.; Kim, J.; Yancopoulos, G.; Valenzuela, D.; Murphy, A.; et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 2007, 27, 8807–8814. [Google Scholar] [CrossRef]
- Onyango, P.; Celic, I.; McCaffery, J.M.; Boeke, J.D.; Feinberg, A.P. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc. Nat. Acad. Sci. USA 2002, 99, 13653–13658. [Google Scholar] [CrossRef]
- Scher, M.B.; Vaquero, A.; Reinberg, D. SirT3 is a nuclear NAD(+)-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev. 2007, 21, 920–928. [Google Scholar] [CrossRef]
- Kincaid, B.; Bossy-Wetzel, E. Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Front. Aging Neurosci. 2013, 5, 48. [Google Scholar] [CrossRef]
- Hirschey, M.D.; Shimazu, T.; Goetzman, E.; Jing, E.; Schwer, B.; Lombard, D.B.; Grueter, C.A.; Harris, C.; Biddinger, S.; Ilkayeva, O.R.; et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010, 464, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Nadtochiy, S.M.; Wang, Y.T.; Zhang, J.; Nehrke, K.; Schafer, X.; Welle, K.; Ghaemmaghami, S.; Munger, J.; Brookes, P.S. Potential mechanisms linking SIRT activity and hypoxic 2-hydroxyglutarate generation: No role for direct enzyme (de)acetylation. Biochem. J. 2017, 474, 2829–2839. [Google Scholar] [CrossRef]
- Haigis, M.C.; Mostoslavsky, R.; Haigis, K.M.; Fahie, K.; Christodoulou, D.C.; Murphy, A.J.; Valenzuela, D.M.; Yancopoulos, G.D.; Karow, M.; Blander, G.; et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006, 126, 941–954. [Google Scholar] [CrossRef]
- Mathias, R.A.; Greco, T.M.; Oberstein, A.; Budayeva, H.G.; Chakrabarti, R.; Rowland, E.A.; Kang, Y.; Shenk, T.; Cristea, I.M. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 2014, 159, 1615–1625. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Zhou, Y.; Su, X.; Yu, J.J.; Khan, S.; Jiang, H.; Kim, J.; Woo, J.; Kim, J.H.; Choi, B.H.; et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 2011, 334, 806–809. [Google Scholar] [CrossRef]
- Yang, L.; Ma, X.; He, Y.; Yuan, C.; Chen, Q.; Li, G.; Chen, X. Sirtuin 5: A review of structure, known inhibitors and clues for developing new inhibitors. Sci. China Life Sci. 2017, 60, 249–256. [Google Scholar] [CrossRef]
- Mostoslavsky, R.; Chua, K.F.; Lombard, D.B.; Pang, W.W.; Fischer, M.R.; Gellon, L.; Liu, P.; Mostoslavsky, G.; Franco, S.; Murphy, M.M.; et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 2006, 124, 315–329. [Google Scholar] [CrossRef]
- Michishita, E.; McCord, R.A.; Berber, E.; Kioi, M.; Padilla-Nash, H.; Damian, M.; Cheung, P.; Kusomoto, R.; Kawahara, T.L.A.; Barrett, J.C.; et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 2008, 452, 492–496. [Google Scholar] [CrossRef] [Green Version]
- Kanfi, Y.; Naiman, S.; Amir, G.; Peshti, V.; Zinman, G.; Nahum, L.; Bar-Joseph, Z.; Cohen, H.Y. The sirtuin SIRT6 regulates lifespan in male mice. Nature 2012, 483, 218–221. [Google Scholar] [CrossRef]
- Santos-Barriopedro, I.; Bosch-Presegué, L.; Marazuela-Duque, A.; de la Torre, C.; Colomer, C.; Vazquez, B.N.; Fuhrmann, T.; Martínez-Pastor, B.; Lu, W.; Braun, T.; et al. SIRT6-dependent cysteine monoubiquitination in the PRE-SET domain of Suv39h1 regulates the NF-κB pathway. Nat. Commun. 2018, 9, 101. [Google Scholar] [CrossRef] [Green Version]
- Ferrer, C.M.; Alders, M.; Postma, A.V.; Park, S.; Klein, M.A.; Cetinbas, M.; Pajkrt, E.; Glas, A.; van Koningsbruggen, S.; Christoffels, V.M.; et al. An inactivating mutation in the histone deacetylase SIRT6 causes human perinatal lethality. Genes Dev. 2018, 32, 373–388. [Google Scholar] [CrossRef]
- Okun, E.; Marton, D.; Cohen, D.; Griffioen, K.; Kanfi, Y.; Illouz, T.; Madar, R.; Cohen, H.Y. Sirt6 alters adult hippocampal neurogenesis. PLoS ONE 2017, 12, e0179681. [Google Scholar] [CrossRef]
- Voelter-Mahlknecht, S.; Letzel, S.; Mahlknecht, U. Fluorescence in situ hybridization and chromosomal organization of the human Sirtuin 7 gene. Int. J. Oncol. 2006, 28, 899–908. [Google Scholar] [CrossRef]
- Ford, E.; Voit, R.; Liszt, G.; Magin, C.; Grummt, I.; Guarente, L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 2006, 20, 1075–1080. [Google Scholar] [CrossRef] [Green Version]
- Barber, M.F.M.; Michishita-Kioi, E.; Xi, Y.; Tasselli, L.; Kioi, M.; Moqtaderi, Z.; Tennen, R.I.; Paredes, S.; Young, N.L.; Chen, K.; et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 2012, 487, 114–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vakhrusheva, O.; Smolka, C.; Gajawada, P.; Kostin, S.; Boettger, T.; Kubin, T.; Braun, T.; Bober, E. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ. Res. 2008, 102, 703–710. [Google Scholar] [CrossRef]
- Deschênes, M.; Chabot, B. The emerging role of alternative splicing in senescence and aging. Aging Cell 2017, 16, 918–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzi, L.; Roriz-Cruz, M. Sirtuin 1 and Alzheimer’s disease: An up-to-date review. Neuropeptides 2018, 71, 54–60. [Google Scholar] [CrossRef]
- Braidy, N.; Jayasena, T.; Poljak, A.; Sachdev, P.S. Sirtuins in cognitive ageing and Alzheimer’s disease. Curr. Opin. Psychiatry 2012, 25, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhou, Y.; Mueller-Steiner, S.; Chen, L.F.; Kwon, H.; Yi, S.; Mucke, L.; Gan, L. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J. Biol. Chem. 2005, 280, 40364–40374. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Yang, T.; Ho, L.; Zhao, Z.; Wang, J.; Chen, L.; Zhao, W.; Thiyagarajan, M.; MacGrogan, D.; Rodgers, J.T.; et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J. Biol. Chem. 2006, 281, 21745–21754. [Google Scholar] [CrossRef]
- Lee, H.R.; Shin, H.K.; Park, S.Y.; Kim, H.Y.; Lee, W.S.; Rhim, B.Y.; Hong, K.W.; Kim, C.D. Cilostazol suppresses beta-amyloid production by activating a disintegrin and metalloproteinase 10 via the upregulation of SIRT1-coupled retinoic acid receptor-beta. J. Neurosci. Res. 2014, 92, 1581–1590. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.S.; Liu, W.; Lu, G.X. miR-200a-3p promotes b-Amyloid-induced neuronal apoptosis through down-regulation of SIRT1 in Alzheimer’s disease. J. Biosci. 2017, 42, 397–404. [Google Scholar] [CrossRef]
- Lattanzio, F.; Carboni, L.; Carretta, D.; Candeletti, S.; Romualdi, P. Treatment with the neurotoxic Aβ (25-35) peptide modulates the expression of neuroprotective factors Pin1, Sirtuin 1, and brain-derived neurotrophic factor in SH-SY5Y human neuroblastoma cells. Exp. Toxicol. Pathol. 2016, 68, 271–276. [Google Scholar] [CrossRef]
- Liu, Y.C.; Gao, X.X.; Zhang, Z.G.; Lin, Z.H.; Zou, Q.L. PPAR gamma coactivator 1 beta (PGC-1β) reduces mammalian target of rapamycin (mTOR) expression via a SIRT1-dependent mechanism in neurons. Cell. Mol. Neurobiol. 2017, 37, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Wencel, P.L.; Lukiw, W.J.; Strosznajder, J.B.; Strosznajder, R.P. Inhibition of poly(ADP-ribose) polymerase-1 enhances gene expression of selected sirtuins and APP cleaving enzymes in amyloid beta cytotoxicity. Mol. Neurobiol. 2018, 55, 4612–4623. [Google Scholar] [CrossRef]
- Furuya, T.K.; da Silva, P.N.; Payão, S.L.; Rasmussen, L.T.; de Labio, R.W.; Bertolucci, P.H.; Braga, I.L.; Chen, E.S.; Turecki, G.; Mechawar, N.; et al. SORL1 and SIRT1 mRNA expression and promoter methylation levels in aging and Alzheimer’s Disease. Neurochem. Int. 2012, 61, 973–975. [Google Scholar] [CrossRef]
- Theendakara, V.; Patent, A.; Peters Libeu, C.A.; Philpot, B.; Flores, S.; Descamps, O.; Poksay, K.S.; Zhang, Q.; Cailing, G.; Hart, M.; et al. Neuroprotective Sirtuin ratio reversed by ApoE4. Proc. Natl. Acad. Sci. USA 2013, 110, 18303–18308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theendakara, V.; Peters-Libeu, C.A.; Spilman, P.; Poksay, K.S.; Bredesen, D.E.; Rao, R.V. Direct Transcriptional Effects of Apolipoprotein, E. J. Neurosci. 2016, 36, 685–700. [Google Scholar] [CrossRef] [PubMed]
- Lattanzio, F.; Carboni, L.; Carretta, D.; Rimondini, R.; Candeletti, S.; Romualdi, P. Human apolipoprotein E4 modulates the expression of Pin1, Sirtuin 1, and Presenilin 1 in brain regions of targeted replacement apoE mice. Neuroscience 2014, 256, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Gao, Q.; Nie, M.; Gu, J.L.; Hao, W.; Wang, L.; Cao, J.M. Degeneration and energy shortage in the suprachiasmatic nucleus underlies the circadian rhythm disturbance in ApoE−/− mice: Implications for Alzheimer’s disease. Sci. Rep. 2016, 6, 36335. [Google Scholar] [CrossRef]
- Ko, S.Y.; Ko, H.A.; Chu, K.H.; Shieh, T.M.; Chi, T.C.; Chen, H.I.; Chang, W.C.; Chang, S.S. The possible mechanism of advanced glycation end products (AGEs) for Alzheimer’s disease. PLoS ONE 2015, 10, e0143345. [Google Scholar] [CrossRef]
- Cai, W.; Uribarri, J.; Zhu, L.; Chen, X.; Swamy, S.; Zhao, Z.; Grosjean, F.; Simonaro, C.; Kuchel, G.A.; Schnaider-Beeri, M.; et al. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc. Natl. Acad. Sci. USA 2014, 111, 4940–4945. [Google Scholar] [CrossRef] [Green Version]
- Lutz, M.I.; Milenkovic, I.; Regelsberger, G.; Kovacs, G.G. Distinct patterns of sirtuin expression during progression of Alzheimer’s disease. Neuromol. Med. 2014, 16, 405–414. [Google Scholar] [CrossRef]
- Mahady, L.; Nadeem, M.; Malek-Ahmadi, M.; Chen, K.; Perez, S.E.; Mufson, E.J. Frontal cortex epigenetic dysregulation during the progression of Alzheimer’s disease. J. Alzheimers Dis. 2018, 62, 115–131. [Google Scholar] [CrossRef]
- Kumar, R.; Chaterjee, P.; Sharma, P.K.; Singh, A.K.; Gupta, A.; Gill, K.; Tripathi, M.; Dey, A.B.; Dey, S. Sirtuin1: A promising serum protein marker for early detection of Alzheimer’s disease. PLoS ONE 2013, 8, e61560. [Google Scholar] [CrossRef] [PubMed]
- Carboni, L.; Lattanzio, F.; Candeletti, S.; Porcellini, E.; Raschi, E.; Licastro, F.; Romualdi, P. Peripheral leukocyte expression of the potential biomarker proteins Bdnf, Sirt1, and Psen1 is not regulated by promoter methylation in Alzheimer’s disease patients. Neurosci. Lett. 2015, 605, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, R. Blocking SIRT1 inhibits cell proliferation and promotes aging through the PI3K/AKT pathway. Life Sci. 2017, 190, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Corpas, R.; Revilla, S.; Ursulet, S.; Castro-Freire, M.; Kaliman, P.; Petegnief, V.; Giménez-Llort, L.; Sarkis, C.; Pallàs, M.; Sanfeliu, C. SIRT1 overexpression in mouse hippocampus induces cognitive enhancement through proteostatic and neurotrophic mechanisms. Mol. Neurobiol. 2017, 54, 5604–5619. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Hanson, P.S.; Morris, C.M. SIRT1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinson’s disease. BMC Neurosci. 2017, 18, 46. [Google Scholar] [CrossRef] [PubMed]
- Motyl, J.; Wencel, P.L.; Cieślik, M.; Strosznajder, R.P.; Strosznajder, J.B. Alpha-synuclein alters differently gene expression of Sirts, PARPs and other stress response proteins: Implications for neurodegenerative disorders. Mol. Neurobiol. 2018, 55, 727–740. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.K.; Moon, M.H.; Lee, Y.J.; Seol, J.W.; Park, S.Y. Autophagy induced by the class III histone deacetylase Sirt1 prevents prion peptide neurotoxicity. Neurobiol. Aging 2013, 34, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Maiese, K. Forkhead transcription factors: New considerations for Alzheimer’s disease and dementia. J. Transl. Sci. 2016, 2, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Li, H.H.; Lu, F.J.; Hung, H.C.; Liu, G.Y.; Lai, T.J.; Lin, C.L. Humic acid increases amyloid β-induced cytotoxicity by induction of ER stress in human SK-N-MC neuronal cells. Int. J. Mol. Sci. 2015, 16, 10426–10442. [Google Scholar] [CrossRef] [PubMed]
- Marwarha, G.; Raza, S.; Meiers, C.; Ghribi, O. Leptin attenuates BACE1 expression and amyloid-β genesis via the activation of SIRT1 signaling pathway. Biochim. Biophys. Acta 2014, 1842, 1587–1595. [Google Scholar] [CrossRef] [PubMed]
- Du, L.L.; Xie, J.Z.; Cheng, X.S.; Li, X.H.; Kong, F.L.; Jiang, X.; Ma, Z.W.; Wang, J.Z.; Chen, C.; Zhou, X.W. Activation of sirtuin 1 attenuates cerebral ventricular streptozotocin-induced tau hyperphosphorylation and cognitive injuries in rat hippocampi. Age (Dordr.) 2014, 36, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, J.J.; Diao, S.; Kwak, Y.D.; Liu, L.; Zhi, L.; Büeler, H.; Bhat, N.R.; Williams, R.W.; Park, E.A.; et al. Metabolic stress modulates Alzheimer’s β-secretase gene transcription via SIRT1-PPARγ-PGC-1 in neurons. Cell Metab. 2013, 17, 685–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, J.; Zheng, L.; Zhang, Q.; Li, X.; Zhang, X.; Li, Z.; Bai, X.; Zhang, Z.; Huo, W.; Zhao, X.; et al. Deacetylation of TFEB promotes fibrillar Aβ degradation by upregulating lysosomal biogenesis in microglia. Protein Cell 2016, 7, 417–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguirre-Rueda, D.; Guerra-Ojeda, S.; Aldasoro, M.; Iradi, A.; Obrador, E.; Ortega, A.; Mauricio, M.D.; Vila, J.M.; Valles, S.L. Astrocytes protect neurons from Aβ1-42 peptide-induced neurotoxicity increasing TFAM and PGC-1 and decreasing PPAR-γ and SIRT-1. Int. J. Med. Sci. 2015, 12, 48–56. [Google Scholar] [CrossRef]
- Scuderi, C.; Stecca, C.; Bronzuoli, M.R.; Rotili, D.; Valente, S.; Mai, A.; Steardo, L. Sirtuin modulators control reactive gliosis in an in vitro model of Alzheimer’s disease. Front. Pharmacol. 2014, 5, 89. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.Y.; Tang, B.L. SIRT1 as a therapeutic target for Alzheimer’s disease. Rev. Neurosci. 2016, 27, 813–825. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Hanson, P.S.; Morris, C.M. Sirtuin-2 protects neural cells from oxidative stress and is elevated in neurodegeneration. Parkinsons Dis. 2017, 2017, 2643587. [Google Scholar] [CrossRef] [PubMed]
- Polito, L.; Kehoe, P.G.; Davin, A.; Benussi, L.; Ghidoni, R.; Binetti, G.; Quadri, P.; Lucca, U.; Tettamanti, M.; Clerici, F.; et al. The SIRT2 polymorphism rs10410544 and risk of Alzheimer’s disease in two Caucasian case-control cohorts. Alzheimers Dement. 2013, 9, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Yu, J.T.; Miao, D.; Lu, R.C.; Zheng, X.P.; Tan, L. SIRT2 polymorphism rs10410544 is associated with Alzheimer’s disease in a Han Chinese population. J. Neurol. Sci. 2014, 336, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Xu, X.; Li, H.; Zhang, Y.; Han, D.; Wang, Y.; Yan, W.; Wang, X.; Zhang, J.; Liu, N.; et al. The SIRT2 polymorphism rs10410544 and risk of Alzheimer’s disease: A meta-analysis. Neuromolecular Med. 2014, 16, 448–456. [Google Scholar] [CrossRef]
- Porcelli, S.; Salfi, R.; Politis, A.; Atti, A.R.; Albani, D.; Chierchia, A.; Polito, L.; Zisaki, A.; Piperi, C.; Liappas, I.; et al. Association between Sirtuin 2 gene rs10410544 polymorphism and depression in Alzheimer’s disease in two independent European samples. J. Neural. Transm. (Vienna) 2013, 120, 1709–1715. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, R.M.; Vicente Miranda, H.; Francelle, L.; Pinho, R.; Szegö, É.M.; Martinho, R.; Munari, F.; Lázaro, D.F.; Moniot, S.; Guerreiro, P.; Fonseca-Ornelas, L.; et al. The mechanism of sirtuin 2-mediated exacerbation of alpha-synuclein toxicity in models of Parkinson disease. PLoS Biol. 2017, 15, e2000374. [Google Scholar] [CrossRef]
- Silva, D.F.; Esteves, A.R.; Oliveira, C.R.; Cardoso, S.M. Mitochondrial metabolism power SIRT2-dependent deficient traffic causing Alzheimer’s-disease related pathology. Mol. Neurobiol. 2017, 54, 4021–4040. [Google Scholar] [CrossRef] [PubMed]
- Biella, G.; Fusco, F.; Nardo, E.; Bernocchi, O.; Colombo, A.; Lichtenthaler, S.F.; Forloni, G.; Albani, D. Sirtuin 2 inhibition improves cognitive performance and acts on amyloid-β protein precursor processing in two Alzheimer’s disease mouse models. J. Alzheimers Dis. 2016, 53, 1193–1207. [Google Scholar] [CrossRef]
- Shukla, S.; Shankavaram, U.T.; Nguyen, P.; Stanley, B.A.; Smart, D.K. Radiation-induced alteration of the brain proteome: Understanding the role of the Sirtuin 2 deacetylase in a murine model. J. Proteome Res. 2015, 14, 4104–4117. [Google Scholar] [CrossRef]
- Outeiro, T.F.; Kontopoulos, E.; Altmann, S.M.; Kufareva, I.; Strathearn, K.E.; Amore, A.M.; Volk, C.B.; Maxwell, M.M.; Rochet, J.C.; McLean, P.J.; et al. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science 2007, 317, 516–519. [Google Scholar] [CrossRef]
- Chen, X.; Wales, P.; Quinti, L.; Zuo, F.; Moniot, S.; Herisson, F.; Rauf, N.A.; Wang, H.; Silverman, R.B.; Ayata, C.; et al. The sirtuin-2 inhibitor AK7 is neuroprotective in models of Parkinson’s disease but not amyotrophic lateral sclerosis and cerebral ischemia. PLoS ONE 2015, 10, e0116919. [Google Scholar] [CrossRef]
- Chopra, V.; Quinti, L.; Kim, J.; Vollor, L.; Narayanan, K.L.; Edgerly, C.; Cipicchio, P.M.; Lauver, M.A.; Choi, S.H.; Silverman, R.B.; et al. The sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington’s disease mouse models. Cell Reports. 2012, 2, 1492–1497. [Google Scholar] [CrossRef] [PubMed]
- Ansari, A.; Rahman, M.S.; Saha, S.K.; Saikot, F.K.; Deep, A.; Kim, K.H. Function of the SIRT3 mitochondrial deacetylase in cellular physiology, cancer, and neurodegenerative disease. Aging Cell 2017, 16, 4–16. [Google Scholar] [CrossRef]
- Weir, H.J.; Murray, T.K.; Kehoe, P.G.; Love, S.; Verdin, E.M.; O’Neill, M.J.; Lane, J.D.; Balthasar, N. CNS SIRT3 expression is altered by reactive oxygen species and in Alzheimer’s disease. PLoS ONE 2012, 7, e48225. [Google Scholar] [CrossRef] [PubMed]
- Anamika; Khanna, A.; Acharjee, P.; Acharjee, A.; Trigun, S.K. Mitochondrial SIRT3 and neurodegenerative brain disorders. J. Chem. Neuroanat. 2017, 95, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Zou, Y.; Zhang, M.; Zhao, N.; Tian, Q.; Gu, M.; Liu, W.; Shi, R.; Lü, Y.; Yu, W. Mitochondrial Sirt3 expression is decreased in APP/PS1 double transgenic mouse model of Alzheimer’s disease. Neurochem. Res. 2015, 40, 1576–1582. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, Y.; Liu, T.; Hwang, Y.; Hyeon, S.J.; Im, H.; Lee, K.; Alvarez, V.E.; McKee, A.C.; Um, S.J.; et al. SIRT3 deregulation is linked to mitochondrial dysfunction in Alzheimer’s disease. Aging Cell 2018, 17. [Google Scholar] [CrossRef] [PubMed]
- Rangarajan, P.; Karthikeyan, A.; Lu, J.; Ling, E.A.; Dheen, S.T. Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia. Neuroscience 2015, 311, 398–414. [Google Scholar] [CrossRef]
- Cieślik, M.; Czapski, G.A.; Strosznajder, J.B. The molecular mechanism of amyloid β42 peptide toxicity: The role of sphingosine kinase-1 and mitochondrial sirtuins. PLoS ONE 2015, 10, e0137193. [Google Scholar] [CrossRef]
- Han, P.; Tang, Z.; Yin, J.; Maalouf, M.; Beach, T.G.; Reiman, E.M.; Shi, J. Pituitary adenylate cyclase-activating polypeptide protects against β-amyloid toxicity. Neurobiol. Aging 2014, 35, 2064–2071. [Google Scholar] [CrossRef] [PubMed]
- Mohamad Nasir, N.F.; Zainuddin, A.; Shamsuddin, S. Emerging roles of Sirtuin 6 in Alzheimer’s disease. J. Mol. Neurosci. 2018, 64, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Kaluski, S.; Portillo, M.; Besnard, A.; Stein, D.; Einav, M.; Zhong, L.; Ueberham, U.; Arendt, T.; Mostoslavsky, R.; Sahay, A.; et al. Neuroprotective functions for the histone deacetylase SIRT6. Cell Rep. 2017, 18, 3052–3062. [Google Scholar] [CrossRef]
- Jung, E.S.; Choi, H.; Song, H.; Hwang, Y.J.; Kim, A.; Ryu, H.; Mook-Jung, I. p53-dependent SIRT6 expression protects Aβ42-induced DNA damage. Sci. Rep. 2016, 6, 25628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cacabelos, R. Pharmacogenomics of central nervous system (CNS) drugs. Drug Dev. Res. 2012, 73, 461–476. [Google Scholar] [CrossRef]
- Cacabelos, R.; Fernandez-Novoa, L.; Lombardi, V.; Kubota, Y.; Takeda, M. Molecular genetics of Alzheimer’s disease and aging. Methods Find. Exp. Clin. Pharmacol. 2005, 27, 1–573. [Google Scholar] [PubMed]
- Cacabelos, R.; Takeda, M. Pharmacogenomics, nutrigenomics and future therapeutics in Alzheimer’s disease. Drugs Future 2006, 31, 5–146. [Google Scholar] [CrossRef]
- Cacabelos, R. The application of functional genomics to Alzheimer’s disease. Pharmacogenomics 2003, 4, 597–621. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R. Pharmacogenomics in Alzheimer’s disease. Methods Mol. Biol. 2008, 448, 213–357. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R.; Martínez-Bouza, R. Genomics and pharmacogenomics of dementia. CNS Neurosci. Ther. 2011, 17, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R.; Fernández-Novoa, L.; Martínez-Bouza, R.; McKay, A.; Carril, J.C.; Lombardi, V.; Corzo, L.; Carrera, I.; Tellado, I.; Nebril, L.; et al. Future trends in the pharmacogenomics of brain disorders and dementia: Influence of APOE and CYP2D6 variants. Pharmaceuticals 2010, 3, 3040–3100. [Google Scholar] [CrossRef]
- Cacabelos, R. Pharmacogenomics and therapeutic strategies for dementia. Expert Rev. Mol. Diagn. 2009, 9, 567–611. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R. Molecular pathology and pharmacogenomics in Alzheimer’s disease: Polygenic-related effects of multifactorial treatments on cognition, anxiety, and depression. Meth. Find. Exp. Clin. Pharmacol. 2007, 29, 1–91. [Google Scholar]
- Roses, A.D. Pharmacogenetics and drug development: The path to safer and more effective drugs. Nat. Rev. Genet. 2004, 5, 645–656. [Google Scholar] [CrossRef]
- Roses, A.D. Pharmacogenetics in drug discovery and development: A translational perspective. Nat. Rev. Drug Discov. 2008, 7, 807–817. [Google Scholar] [CrossRef]
- Sabbagh, M.N.; Malek-Ahmadi, M.; Dugger, B.N.; Lee, K.; Sue, L.I.; Serrano, G.; Walker, D.G.; Davis, K.; Jacobson, S.A.; Beach, T.G. The influence of Apolipoprotein E genotype on regional pathology in Alzheimer’s disease. BMC Neurol. 2013, 13, 44. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Cutter, G.R.; Schneider, L.S. Effect of APOE genotype status on targeted clinical trials outcomes and efficiency in dementia and mild cognitive impairment resulting from Alzheimer’s disease. Alzheimers Dement. 2013, 10, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R. The path to personalized medicine in mental disorders. In The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes; Ritsner, M.S., Ed.; Springer: Dordrecht, The Netherlands, 2011; Volume 4, pp. 3–63. ISBN 978-1-4020-9464-4. [Google Scholar]
- Cacabelos, R. Pharmacogenomics of Alzheimer’s and Parkinson’s diseases. Neurosci. Lett. 2018. [Google Scholar] [CrossRef]
- Cacabelos, R.; Carril, J.C.; Cacabelos, P.; Teijido, O.; Goldgaber, D. Pharmacogenomics of Alzheimer’s Disease: Genetic determinants of phenotypic variation and therapeutic outcome. J. Genom. Med. Pharmacogenomics 2016, 1, 151–209. [Google Scholar]
- Cacabelos, R.; Meyyazhagan, A.; Carril, J.C.; Teijido, O. Epigenomics and proteomics of brain disorders. J. Genom. Med. Pharmacogenomics 2017, 2, 267–324. [Google Scholar]
- Cacabelos, R.; Torrellas, C. Pharmacoepigenomics. In Medical Epigenetics, 1st ed.; Tollefsbol, T., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 585–617. ISBN 9780128032398. [Google Scholar]
- Tang, X.; Chen, S. Epigenetic regulation of cytochrome P450 enzymes and clinical implication. Curr. Drug. Metab. 2015, 16, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R. Epigenetics of Brain Disorders: The Paradigm of Alzheimer’s disease. J. Alzheimers Dis. Parkinsonism 2016, 6, 229. [Google Scholar] [CrossRef]
- Cacabelos, R.; Torrellas, C. Epigenetics of aging and Alzheimer’s disease: Implications for pharmacogenomics and drug response. Int. J. Mol. Sci. 2015, 16, 30483–30543. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R. Pleiotropy and promiscuity in pharmacogenomics for the treatment of Alzheimer’s disease and related risk factors. Future Neurol. 2018, 13, 71–86. [Google Scholar] [CrossRef]
- Cacabelos, R.; Fernández-Novoa, L.; Pichel, V.; Lombardi, V.; Kubota, Y.; Takeda, M. Pharmacogenomic studies with a combination therapy in Alzheimer’s disease. In Molecular Neurobiology of Alzheimer’s Disease and Related Disorders; Takeda, M., Tanaka, T., Cacabelos, R., Eds.; Karger: Basel, Switzerland, 2004; pp. 94–107. ISBN 978-3-8055-7603-1. [Google Scholar]
- Takei, N.; Miyashita, A.; Tsukie, T.; Arai, H.; Asada, T.; Imagawa, M.; Shoji, M.; Higuchi, S.; Urakami, K.; Kimura, H.; et al. Genetic association study on in and around the APOE in late-onset Alzheimer disease in Japanese. Genomics 2009, 93, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Roses, A.D. An inherited variable poly-T repeat genotype in TOMM40 in Alzheimer disease. Arch. Neurol. 2010, 67, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Roses, A.D.; Lutz, M.W.; Amrine-Madsen, H.; Saunders, A.M.; Crenshaw, D.G.; Sundseth, S.S.; Huentelman, M.J.; Welsh-Bohmer, K.A.; Reiman, E.M. A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer’s disease. Pharmacogenomics J. 2010, 10, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Roses, A.D.; Saunders, A.M.; Lutz, M.W.; Zhang, N.; Hariri, A.R.; Asin, K.E.; Crenshaw, D.G.; Budur, K.; Burns, D.K.; Brannan, S.K. New applications of disease genetics and pharmacogenetics to drug development. Curr. Opin. Pharmacol. 2014, 14, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Roses, A.D.; Lutz, M.W.; Crenshaw, D.G.; Grossman, I.; Saunders, A.M.; Gottschalk, W.K. TOMM40 and APOE: Requirements for replication studies of association with age of disease onset and enrichment of a clinical trial. Alzheimers Dement. 2013, 9, 132–136. [Google Scholar] [CrossRef] [Green Version]
- Lutz, M.W.; Crenshaw, D.G.; Saunders, A.M.; Roses, A.D. Genetic variation at a single locus and age of onset for Alzheimer’s disease. Alzheimers Dement. 2010, 6, 125–131. [Google Scholar] [CrossRef]
- Ma, X.Y.; Yu, J.T.; Wang, W.; Wang, H.F.; Liu, Q.Y.; Zhang, W.; Tan, L. Association of TOMM40 polymorphisms with late-onset Alzheimer’s disease in a Northern Han Chinese population. Neuromolecular Med. 2013, 15, 279–287. [Google Scholar] [CrossRef]
- Davies, G.; Harris, S.E.; Reynolds, C.A.; Payton, A.; Knight, H.M.; Liewald, D.C.; Lopez, L.M.; Luciano, M.; Gow, A.J.; Corley, J.; et al. A genome-wide association study implicates the APOE locus in nonpathological cognitive ageing. Mol. Psychiatry 2014, 19, 76–87. [Google Scholar] [CrossRef]
- Hayden, K.M.; McEvoy, J.M.; Linnertz, C.; Attix, D.; Kuchibhatla, M.; Saunders, A.M.; Lutz, M.W.; Welsh-Bohmer, K.A.; Roses, A.D.; Chiba-Falek, O. A homopolymer polymorphism in the TOMM40 gene contributes to cognitive performance in aging. Alzheimers Dement. 2012, 8, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Linnertz, C.; Anderson, L.; Gottschalk, W.; Crenshaw, D.; Lutz, M.W.; Allen, J.; Saith, S.; Mihovilovic, M.; Burke, J.R.; Welsh-Bohmer, K.A.; et al. The cis-regulatory effect of an Alzheimer’s disease-associated poly-T locus on expression of TOMM40 and apolipoprotein E genes. Alzheimers Dement. 2014, 10, 541–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyall, D.M.; Harris, S.E.; Bastin, M.E.; Muñoz Maniega, S.; Murray, C.; Lutz, M.W.; Saunders, A.M.; Roses, A.D.; Valdés Hernández, M.C.; Royle, N.A.; Starr, J.M.; et al. Alzheimer’s disease susceptibility genes APOE and TOMM40, and brain white matter integrity in the Lothian Birth Cohort 1936. Neurobiol. Aging 2014, 35, 1513.e25-33. [Google Scholar] [CrossRef]
- Johnson, S.C.; La Rue, A.; Hermann, B.P.; Xu, G.; Koscik, R.L.; Jonaitis, E.M.; Bendlin, B.B.; Hogan, K.J.; Roses, A.D.; Saunders, A.M.; et al. The effect of TOMM40 poly-T length on gray matter volume and cognition in middle-aged persons with APOE ε3/ε3 genotype. Alzheimers Dement. 2011, 7, 456–465. [Google Scholar] [CrossRef]
- Elias-Sonnenschein, L.S.; Helisalmi, S.; Natunen, T.; Hall, A.; Paajanen, T.; Herukka, S.K.; Laitinen, M.; Remes, A.M.; Koivisto, A.M.; Mattila, K.M.; et al. Genetic loci associated with Alzheimer’s disease and cerebrospinal fluid biomarkers in a Finnish case-control cohort. PLoS ONE 2013, 8, e59676. [Google Scholar] [CrossRef]
- Kim, S.; Swaminathan, S.; Shen, L.; Risacher, S.L.; Nho, K.; Foroud, T.; Shaw, L.M.; Trojanowski, J.Q.; Potkin, S.G.; Huentelman, M.J.; et al. Alzheimer’s Disease Neuroimaging Initiative. Genome-wide association study of CSF biomarkers Abeta1-42, t-tau, and p-tau181p in the ADNI cohort. Neurology 2011, 76, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Bruno, D.; Pomara, N.; Nierenberg, J.; Ritchie, J.C.; Lutz, M.W.; Zetterberg, H.; Blennow, K. Levels of cerebrospinal fluid neurofilament light protein in healthy elderly vary as a function of TOMM40 variants. Exp. Gerontol. 2012, 47, 347–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cacabelos, R.; Martínez, R.; Fernández-Novoa, L.; Carril, J.C.; Lombardi, V.; Carrera, I.; Corzo, L.; Tellado, I.; Leszek, J.; McKay, A.; et al. Genomics of dementia: APOE- and CYP2D6-related pharmacogenetics. Intern. J. Alzheimer Dis. 2012, 2012, 518901. [Google Scholar] [CrossRef]
- Greschik, H.; Schüle, R.; Günther, T. Selective targeting of epigenetic reader domains. Expert Opin. Drug Discov. 2017, 12, 449–463. [Google Scholar] [CrossRef] [PubMed]
- Fahrner, J.A.; Bjornsson, H.T. Mendelian disorders of the epigenetic machinery: Tipping the balance of chromatin states. Annu. Rev. Genomics Hum. Genet. 2014, 15, 269–293. [Google Scholar] [CrossRef] [PubMed]
- Habano, W.; Kawamura, K.; Iizuka, N.; Terashima, J.; Sugai, T.; Ozawa, S. Analysis of DNA methylation landscape reveals the roles of DNA methylation in the regulation of drug metabolizing enzymes. Clin. Epigenetics 2015, 7, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, S.K.; Yang, H.C. Interethnic DNA methylation difference and its implications in pharmacoepigenetics. Epigenomics 2017, 9, 1437–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, I.S.; Kim, D. Polymorphic metabolism by functional alterations of human cytochrome P450 enzymes. Arch. Pharm. Res. 2011, 34, 1799–1816. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, F.; Cheng, L.; Luo, T.; Xu, J.; Wang, H. Expression profiles of SIRT1 and APP genes in human neuroblastoma SK-N-SH cells treated with two epigenetic agents. Neurosci. Bull. 2016, 32, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, D.A.; Guarente, L. Small-molecule allosteric activators of sirtuins. Annu. Rev. Pharmacol. Toxicol. 2014, 54, 363–380. [Google Scholar] [CrossRef] [PubMed]
- Bonda, D.J.; Lee, H.G.; Camins, A.; Pallàs, M.; Casadesus, G.; Smith, M.A.; Zhu, X. The sirtuin pathway in ageing and Alzheimer disease: Mechanistic and therapeutic considerations. Lancet Neurol. 2011, 10, 275–279. [Google Scholar] [CrossRef]
- Albani, D.; Polito, L.; Forloni, G. Sirtuins as novel targets for Alzheimer’s disease and other neurodegenerative disorders: Experimental and genetic evidence. J. Alzheimers Dis. 2010, 19, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.H.; Chiu, C.H.; Kuo, W.W.; Ju, D.T.; Shen, C.Y.; Chen, R.J.; Lin, C.C.; Viswanadha, V.P.; Liu, J.S.; Huang, R.S.; et al. The preventive effects of edible folic acid on cardiomyocyte apoptosis and survival in early onset triple-transgenic Alzheimer’s disease model mice. Environ. Toxicol. 2018, 33, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Braidy, N.; Jugder, B.E.; Poljak, A.; Jayasena, T.; Mansour, H.; Nabavi, S.M.; Sachdev, P.; Grant, R. Resveratrol as a potential therapeutic candidate for the treatment and management of Alzheimer’s disease. Curr. Top. Med. Chem. 2016, 16, 1951–1960. [Google Scholar] [CrossRef]
- Li, Y.R.; Li, S.; Lin, C.C. Effect of resveratrol and pterostilbene on aging and longevity. Biofactors 2018, 44, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Sawda, C.; Moussa, C.; Turner, R.S. Resveratrol for Alzheimer’s disease. Ann. N.Y. Acad. Sci. 2017, 1403, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Sathya, M.; Moorthi, P.; Premkumar, P.; Kandasamy, M.; Jayachandran, K.S.; Anusuyadevi, M. Resveratrol intervenes cholesterol- and isoprenoid-mediated amyloidogenic processing of AβPP in familial Alzheimer’s disease. J. Alzheimers Dis. 2017, 60, S3–S23. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, Y.; Li, J.; Zhang, C. Resveratrol ameliorates spatial learning memory impairment induced by Aβ1-42 in rats. Neuroscience 2017, 344, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Mi, M.T. Resveratrol attenuates Aβ25-35 caused neurotoxicity by inducing autophagy through the TyrRS-PARP1-SIRT1 signaling pathway. Neurochem. Res. 2016, 41, 2367–2379. [Google Scholar] [CrossRef]
- Feng, X.; Liang, N.; Zhu, D.; Gao, Q.; Peng, L.; Dong, H.; Yue, Q.; Liu, H.; Bao, L.; Zhang, J.; et al. Resveratrol inhibits β-amyloid-induced neuronal apoptosis through regulation of SIRT1-ROCK1 signaling pathway. PLoS ONE 2013, 8, e59888. [Google Scholar] [CrossRef]
- Calliari, A.; Bobba, N.; Escande, C.; Chini, E.N. Resveratrol delays Wallerian degeneration in a NAD(+) and DBC1 dependent manner. Exp. Neurol. 2014, 251, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Rimando, A.; Pallas, M.; Camins, A.; Porquet, D.; Reeves, J.; Shukitt-Hale, B.; Smith, M.A.; Joseph, J.A.; Casadesus, G. Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer’s disease. Neurobiol. Aging 2012, 33, 2062–2071. [Google Scholar] [CrossRef]
- Sun, Q.; Jia, N.; Wang, W.; Jin, H.; Xu, J.; Hu, H. Activation of SIRT1 by curcumin blocks the neurotoxicity of amyloid-β25-35 in rat cortical neurons. Biochem. Biophys. Res. Commun. 2014, 448, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Doggui, S.; Belkacemi, A.; Paka, G.D.; Perrotte, M.; Pi, R.; Ramassamy, C. Curcumin protects neuronal-like cells against acrolein by restoring Akt and redox signaling pathways. Mol. Nutr. Food Res. 2013, 57, 1660–1670. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Lautrup, S.; Cordonnier, S.; Wang, Y.; Croteau, D.L.; Zavala, E.; Zhang, Y.; Moritoh, K.; O’Connell, J.F.; Baptiste, B.A.; et al. NAD+ supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc. Natl. Acad. Sci. USA 2018, 115, E1876–E1885. [Google Scholar] [CrossRef] [PubMed]
- Cordero, J.G.; García-Escudero, R.; Avila, J.; Gargini, R.; García-Escudero, V. Benefit of oleuropein aglycone for Alzheimer’s disease by promoting autophagy. Oxid. Med. Cell. Longev. 2018, 2018, 5010741. [Google Scholar] [CrossRef]
- Luccarini, I.; Pantano, D.; Nardiello, P.; Cavone, L.; Lapucci, A.; Miceli, C.; Nediani, C.; Berti, A.; Stefani, M.; Casamenti, F. The polyphenol oleuropein aglycone modulates the PARP1-SIRT1 interplay: An in vitro and in vivo study. J. Alzheimers Dis. 2016, 54, 737–750. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, S.; Govindarajulu, M.; Lynd, T.; Briggs, G.; Adamek, D.; Jones, E.; Heiner, J.; Majrashi, M.; Moore, T.; Amin, R.; et al. SIRT3 activator Honokiol attenuates β-Amyloid by modulating amyloidogenic pathway. PLoS ONE 2018, 13, e0190350. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Q.; Ruan, J.; Zhang, W.; Qian, F.; Yu, Z. Targeting NAD+ degradation: The therapeutic potential of flavonoids for Alzheimer’s disease and cognitive frailty. Pharmacol. Res. 2018, 128, 345–358. [Google Scholar] [CrossRef] [PubMed]
- Fukui, K.; Yachi, K.; Yoshida, H.; Tanji, K.; Matsumiya, T.; Hayakari, R.; Tsuruga, K.; Tanaka, H.; Imaizumi, T. Rebamipide reduces amyloid-β 1-42 (Aβ42) production and ameliorates Aβ43-lowered cell viability in cultured SH-SY5Y human neuroblastoma cells. Neurosci. Res. 2017, 124, 40–50. [Google Scholar] [CrossRef]
- Kumar, R.; Nigam, L.; Singh, A.P.; Singh, K.; Subbarao, N.; Dey, S. Design, synthesis of allosteric peptide activator for human SIRT1 and its biological evaluation in cellular model of Alzheimer’s disease. Eur. J. Med. Chem. 2017, 127, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Kou, X.; Liu, X.; Chen, X.; Li, J.; Yang, X.; Fan, J.; Yang, Y.; Chen, N. Ampelopsin attenuates brain aging of D-gal-induced rats through miR-34a-mediated SIRT1/mTOR signal pathway. Oncotarget 2016, 7, 74484–74495. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.F.; Liu, D.X.; Liang, Y.; Xing, L.L.; Zhao, W.H.; Qin, X.X.; Shang, D.S.; Li, B.; Fang, W.G.; Cao, L.; et al. Cystatin C shifts APP processing from amyloid-β production towards non-amyloidgenic pathway in brain endothelial cells. PLoS ONE 2016, 11, e0161093. [Google Scholar] [CrossRef]
- Park, S.Y.; Lee, H.R.; Lee, W.S.; Shin, H.K.; Kim, H.Y.; Hong, K.W.; Kim, C.D. Cilostazol modulates autophagic degradation of β-amyloid peptide via SIRT1-coupled LKB1/AMPKα signaling in neuronal cells. PLoS ONE 2016, 11, e0160620. [Google Scholar] [CrossRef]
- Shah, S.A.; Yoon, G.H.; Chung, S.S.; Abid, M.N.; Kim, T.H.; Lee, H.Y.; Kim, M.O. Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve Alzheimer’s disease neuropathological deficits. Mol. Psychiatry 2017, 22, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Wang, D.; Wang, X.; Feng, H.; Tang, Y.; Sun, R.; Zheng, Y.; Dong, L.; Zhao, J.; Zhang, X.; et al. Effect and mechanism of fuzhisan and donepezil on the sirtuin 1 pathway and amyloid precursor protein metabolism in PC12 cells. Mol. Med. Rep. 2016, 13, 3539–3546. [Google Scholar] [CrossRef]
- Gao, J.; Zhou, R.; You, X.; Luo, F.; He, H.; Chang, X.; Zhu, L.; Ding, X.; Yan, T. Salidroside suppresses inflammation in a D-galactose-induced rat model of Alzheimer’s disease via SIRT1/NF-κB pathway. Metab. Brain Dis. 2016, 31, 771–778. [Google Scholar] [CrossRef]
- Gareri, P.; Castagna, A.; Cotroneo, A.M.; Putignano, S.; De Sarro, G.; Bruni, A.C. The role of citicoline in cognitive impairment: Pharmacological characteristics, possible advantages, and doubts for an old drug with new perspectives. Clin. Interv. Aging 2015, 10, 1421–1429. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.L.; Huang, W.N.; Li, H.H.; Huang, C.N.; Hsieh, S.; Lai, C.; Lu, F.J. Hydrogen-rich water attenuates amyloid β-induced cytotoxicity through upregulation of Sirt1-FoxO3a by stimulation of AMP-activated protein kinase in SK-N-MC cells. Chem. Biol. Interact. 2015, 240, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Kornelius, E.; Lin, C.L.; Chang, H.H.; Li, H.H.; Huang, W.N.; Yang, Y.S.; Lu, Y.L.; Peng, C.H.; Huang, C.N. DPP-4 Inhibitor linagliptin attenuates Aβ-induced cytotoxicity through activation of AMPK in neuronal cells. CNS Neurosci. Ther. 2015, 21, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Hardeland, R.; Cardinali, D.P.; Brown, G.M.; Pandi-Perumal, S.R. Melatonin and brain inflammaging. Prog. Neurobiol. 2015, 127–128, 46–63. [Google Scholar] [CrossRef] [PubMed]
- Cascella, R.; Evangelisti, E.; Zampagni, M.; Becatti, M.; D’Adamio, G.; Goti, A.; Liguri, G.; Fiorillo, C.; Cecchi, C. S-linolenoyl glutathione intake extends life-span and stress resistance via Sir-2.1 upregulation in Caenorhabditis elegans. Free Radic. Biol. Med. 2014, 73, 127–135. [Google Scholar] [CrossRef]
- Sun, Q.; Hu, H.; Wang, W.; Jin, H.; Feng, G.; Jia, N. Taurine attenuates amyloid β 1-42-induced mitochondrial dysfunction by activating of SIRT1 in SK-N-SH cells. Biochem. Biophys. Res. Commun. 2014, 447, 485–489. [Google Scholar] [CrossRef]
- Liu, J.; Hu, G.; Xu, R.; Qiao, Y.; Wu, H.P.; Ding, X.; Duan, P.; Tu, P.; Lin, Y.J. Rhein lysinate decreases the generation of β-amyloid in the brain tissues of Alzheimer’s disease model mice by inhibiting inflammatory response and oxidative stress. J. Asian Nat. Prod. Res. 2013, 15, 756–763. [Google Scholar] [CrossRef]
- Spires-Jones, T.L.; Fox, L.M.; Rozkalne, A.; Pitstick, R.; Carlson, G.A.; Kazantsev, A.G. Inhibition of Sirtuin 2 with sulfobenzoic acid derivative AK1 is non-toxic and potentially neuroprotective in a mouse model of frontotemporal dementia. Front. Pharmacol. 2012, 3, 42. [Google Scholar] [CrossRef] [PubMed]
- Anekonda, T.S.; Wadsworth, T.L.; Sabin, R.; Frahler, K.; Harris, C.; Petriko, B.; Ralle, M.; Woltjer, R.; Quinn, J.F. Phytic acid as a potential treatment for alzheimer’s pathology: Evidence from animal and in vitro models. J. Alzheimers Dis. 2011, 23, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Schweizer, C.; Rudinskiy, N.; Taylor, D.M.; Kazantsev, A.; Luthi-Carter, R.; Fraering, P.C. Novel gamma-secretase inhibitors uncover a common nucleotide-binding site in JAK3, SIRT2, and PS1. FASEB J. 2010, 24, 2464–2474. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R.; Llovo, R.; Fraile, C.; Fernández-Novoa, L. Pharmacogenetic aspects of therapy with cholinesterase inhibitors: The role of CYP2D6 in Alzheimer’s disease pharmacogenetics. Curr. Alzheimer Res. 2007, 4, 479–500. [Google Scholar] [CrossRef]
- Zhang, T.; Tian, F.; Wang, J.; Zhou, S.; Dong, X.; Guo, K.; Jing, J.; Zhou, Y.; Chen, Y. Donepezil attenuates high glucose-accelerated senescence in human umbilical vein endothelial cells through SIRT1 activation. Cell Stress Chaperones 2015, 20, 787–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnekenburger, M.; Mathieu, V.; Lefranc, F.; Jang, J.Y.; Masi, M.; Kijjoa, A.; Evidente, A.; Kim, H.J.; Kiss, R.; Dicato, M.; Han, B.W.; Diederich, M. The fungal metabolite eurochevalierine, a sequiterpene alkaloid, displays anti-cancer properties through selective sirtuin 1/2 inhibition. Molecules 2018, 23, 333. [Google Scholar] [CrossRef]
- Bonomi, R.E.; Laws, M.; Popov, V.; Kamal, S.; Potukutchi, S.; Shavrin, A.; Lu, X.; Turkman, N.; Liu, R.S.; Mangner, T.; Gelovani, J.G. A novel substrate radiotracer for molecular imaging of SIRT2 expression and activity with positron emission tomography. Mol. Imaging Biol. 2018, 20, 594–604. [Google Scholar] [CrossRef] [PubMed]
- Vojacek, S.; Beese, K.; Alhalabi, Z.; Swyter, S.; Bodtke, A.; Schulzke, C.; Jung, M.; Sippl, W.; Link, A. Three-component aminoalkylations yielding dihydronaphthoxazine-based sirtuin inhibitors: Scaffold modification and exploration of space for polar side-chains. Arch. Pharm. (Weinheim) 2017, 350. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Ma, X.; Yuan, C.; He, Y.; Li, L.; Fang, S.; Xia, W.; He, T.; Qian, S.; Xu, Z.; Li, G.; Wang, Z. Discovery of 2-((4,6-dimethylpyrimidin-2-yl)thio)-N-phenylacetamide derivatives as new potent and selective human sirtuin 2 inhibitors. Eur. J. Med. Chem. 2017, 134, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Shigemoto, R.; Matsumoto, T.; Masuo, S.; Takaya, N. 5-Methylmellein is a novel inhibitor of fungal sirtuin and modulates fungal secondary metabolite production. J. Gen. Appl. Microbiol. 2018. [Google Scholar] [CrossRef] [PubMed]
Gene | Name | Locus | Other Names | MIM Number | Phenotype |
---|---|---|---|---|---|
SIRT1 | Sirtuin, S. cerevisiae, homolog 1 | 10q21.3 | SIR2L1 | 604479 | Alzheimer’s disease; Gastric carcinoma; Hepatocellular carcinoma; Obesity; Parkinson’s disease; Prostate cancer; Type 2 diabetes |
SIRT2 | Sirtuin, S. cerevisiae, homolog 2 | 19q13.2 | SIR2L, SIR2L2 | 604480 | Brain tumor; Gliomas; Preeclampsia and fetal growth restriction |
SIRT3 | Sirtuin, S. cerevisiae, homolog 3 | 11p15.5 | SIR2L3 | 604481 | Breast cancer; Metabolic syndrome Type 2 diabetes |
SIRT4 | Sirtuin, S. cerevisiae, homolog 4 | 12q24.23-q24.31 | SIR2L4 | 604482 | Insulinoma; Type 2 diabetes |
SIRT5 | Sirtuin, S. cerevisiae, homolog 5 | 6p23 | SIR2 | 604483 | Breast cancer; Colorectal cancer; Liver cancer; Lung cancer |
SIRT6 | Sirtuin 6 (Sir2, S. cerevisiae, homolog of, 6) | 19p13.3 | SIR2L6 | 606211 | Fatty liver disease; Lymphopenia; Lordokyphosis; Metabolic syndrome; Type 2 diabetes |
SIRT7 | Sirtuin 7 (Sir2, S. cerevisiae, homolog of, 7) | 17q25.3 | SIR2L7 | 606212 | Breast cancer; Leukemia; Lymphomas; Thyroid cancer |
Parameter (Normal Range) | SIRT2-C/C | SIRT2-C/T | SIRT2-T/T |
---|---|---|---|
N = 1086 | 377 (34.72%) | 553 (50.92%) | 157 (14.36%) |
Age (years) | 71.15 ± 9.62 (50–94) | 71.49 ± 9.51 (50–97) | 70.70 ± 8.97 (51–98) |
Females (N = 625) | N = 217 (57.56%) | N = 327 (59.13%) | N = 81 (51.92%) |
Females Age (years) | 71.55 ± 8.51 (51–73) | 71.67 ± 9.56 (50–94) | 71.50 ± 9.61 (51–98) |
Males (N = 461) | N = 160 (42.44%) | N = 226 (40.87%) | N = 75 (40.08%) |
Males Age (years) | 71.11 ± 9.43 (50–94) | 71.23 ± 9.44 (51–97) | 69.84 ± 8.21 (52–84) |
Systolic Blood Pressure (SBP) (mm Hg) (120–160) | 140.96 ± 20.72 | 140.89 ± 20.76 | 139.69 ± 19.62 |
Diastolic Blood Pressure (DBP) (mm Hg) (70–85) | 79.49 ± 11.89 | 79.52 ± 11.70 | 79.64 ± 11.62 |
Pulse (bpm) (60–100) | 67.89 ± 11.89 | 68.34 ± 12.80 | 67.71 ± 11.82 |
Weight (kg) | 70.41 ± 12.69 | 70.47 ± 13.28 | 70.57 ± 13.71 |
Height (m) | 1.58 ± 0.09 | 1.58 ± 0.09 | 1.59 ± 0.09 |
Body mass index (BMI) (kg/m2) | 28.06 ± 4.31 | 27.93 ± 4.55 | 27.99 ± 4.21 |
Glucose (Glc) (mg/dL) (70–105) | 99.88 ± 22.38 | 104.11 ± 32.99 | 100.64 ± 25.77 |
Cholesterol (Cho) (mg/dL) (140–220) | 218.68 ± 47.48 | 223.65 ± 48.26 (1) | 217.22 ± 43.34 |
HDL-Cholesterol (mg/dL) (35–75) | 52.70 ± 13.99 | 53.44 ± 14.31 | 53.45 ± 13.96 |
LDL-Cholesterol (mg/dL) (80–160) | 143.48 ± 40.02 | 147.04 ± 42.57 | 140.93 ± 41.00 |
Triglycerides (TG) (mg/dL) (50–150) | 114.08 ± 64.70 | 113.44 ± 60.07 | 114.32 ± 60.01 |
Urea (BUN) (mg/dL) (15–30) | 45.28 ± 16.61 | 43.59 ± 12.48 | 45.08 ± 13.79 |
Creatinine (Cr) (mg/dL) (0.70–1.40) | 0.97 ± 0.79 | 0.91 ± 0.25 | 0.90 ± 0.24 |
Uric Acid (UA) (mg/dL) (3.4–7.0) | 4.39 ± 1.55 | 4.37 ± 1.39 | 4.34 ± 1.54 |
Total Protein (T-Pro) (g/dL) (6.5–8.0) | 6.88 ± 0.40 | 6.90 ± 0.46 | 6.88 ± 0.40 |
Albumin (Alb) (g/dL) (3.5–5.0) | 4.27 ± 0.28 | 4.28 ± 0.30 | 4.25 ± 0.33 |
Calcium (Ca) (mg/dL) (8.1–10.4) | 9.16 ± 0.42 | 9.22 ± 0.46 (2) | 9.14 ± 0.53 |
Phosphorus (P) (mg/dL) (2.5–5.0) | 3.38 ± 0.62 | 3.38 ± 0.51 | 3.34 ± 0.54 |
Aspartate Aminotransferase (GOT/ASAT) (IU/L) (10–40) | 21.87 ± 10.32 | 22.72 ± 24.04 | 23.63 ± 14.78 (3) |
Alanine Aminotransferase (GPT/ALAT) (IU/L) (9–43) | 22.66 ± 15.09 | 23.30 ± 22.75 | 26.21 ± 25.93 (4,5) |
Gamma-glutamyl transpeptidase (GGT) (IU/L) (11–50) | 30.32 ± 46.81 | 31.01 ± 38.39 | 33.71 ± 45.68 |
Alkaline Phosphatase (ALP) (IU/L) (37–111) | 78.20 ± 28.36 | 78.90 ± 35.80 | 80.41 ± 38.38 |
Bilirubin (BIL) (mg/dL) (0.20–1.00) | 0.76 ± 0.39 | 0.74 ± 0.37 | 0.68 ± 0.30 (6) |
Creatine Phosphokinase (CPK)(IU/L) (38–174) | 88.51 ± 68.03 | 89.96 ± 78.18 | 83.98 ± 49.18 |
Lactate Dehydrogenase (LDH) (IU/L) (200–480) | 305.44 ± 70.66 | 303.53 ± 72.46 | 310.31 ± 78.81 |
Na+ (mEq/L) (135–148) | 142.32 ± 2.50 | 142.34 ± 2.62 | 141.98 ± 2.42 (7,8) |
K+ (mEq/L) (3.5–5.3) | 4.35 ± 0.38 | 4.34 ± 0.36 | 4.31 ± 0.38 |
Cl− (mEq/L) (98–107) | 104.67 ± 9.25 | 104.28 ± 2.70 | 103.72 ± 2.46 (9,10) |
Fe2+ (µg/dL) (35–160) | 84.94 ± 36.30 | 82.12 ± 32.20 | 82.38 ± 32.96 |
Ferritin (ng/mL) (11–336) | 135.43 ± 164.44 | 119.88 ± 128.51 (11) | 106.79 ± 111.09 |
Folate (ng/mL) (>3.00) | 7.19 ± 3.94 | 6.78 ± 3.69 (12) | 7.32 ± 4.23 |
Vitamin B12 (pg/mL) (170–1000) | 504.37 ± 315.05 | 501.73 ± 302.43 | 498.07 ± 296.97 |
Thyroid-stimulating Hormone (TSH) (µIU/mL) (0.20–4.50) | 1.48 ± 1.36 | 1.53 ± 3.59 | 1.41 ± 1.01 |
Thyroxine (T4) (ng/mL) (0.54–1.40) | 0.94 ± 0.23 | 0.97 ± 0.55 | 0.92 ± 0.21 |
Red Blood Cell Count (RBC) (×106/µL) (3.80–5.50) | 4.60 ± 0.47 | 4.59 ± 0.45 | 4.53 ± 0.53 |
Hematocrit (HCT) (%) (40.0–50.0) | 42.08 ± 6.01 | 41.71 ± 4.12 | 41.35 ± 4.63 |
Hemoglobin (Hb) (g/dL) (13.5–17.0) | 14.00 ± 1.37 | 13.95 ± 1.39 | 13.82 ± 1.56 |
Mean Corpuscular Volume (MCV) (fL) (80–100) | 90.99 ± 4.66 | 90.83 ± 5.14 | 91.35 ± 5.77 |
Mean Corpuscular Hemoglobin (MCH) (pg) (27.0–33.0) | 30.48 ± 1.83 | 30.41 ± 1.99 | 30.56 ± 2.13 |
Mean Corpuscular Hemoglobin Concentration (MCHC) (g/dL) (31.0–35.0) | 33.48 ± 0.80 | 33.40 ± 1.49 | 33.43 ± 0.70 |
Red Blood Cell Distribution Width (RDW) (%) (11.0–15.0) | 13.22 ± 1.30 | 13.18 ± 1.63 | 13.38 ± 1.80 |
White Blood Cell Count (WBC) (×103/µL) (4.0–11.0) | 6.41 ± 1.80 | 6.42 ± 1.75 | 6.18 ± 2.24 (13,14) |
% Neutrophils (45.0–70.0) | 61.85 ± 9.60 | 62.00 ± 9.19 | 59.95 ± 9.59 (15,16) |
% Lymphocytes (20.0–40.0) | 28.61 ± 8.38 | 28.38 ± 8.19 | 29.87 ± 8.87 (17) |
% Monocytes (3.0–10.0) | 7.10 ± 1.99 | 7.28 ± 2.20 | 7.53 ± 2.45 (18) |
% Eosinophils (1.0–5.0) | 2.65 ± 1.91 | 2.72 ± 1.85 | 3.08 ± 4.80 |
% Basophils (0.0–1.0) | 0.53 ± 0.24 | 0.52 ± 0.22 | 0.78 ± 3.05 |
Platelet Count (PTL) (×103/µL) (150–450) | 224.15 ± 68.65 | 227.62 ± 65.50 | 224.96 ± 72.74 |
Mean Platelet Volume (MPV) (fL) (6.0–10.0) | 8.38 ± 0.96 | 8.29 ± 0.98 | 8.35 ± 1.17 |
Categories | Drugs |
---|---|
Histone deacetylase (HDAC) inhibitors | |
Short-chain fatty acids | Sodium butyrate; Sodium phenyl butyrate; Valproic acid; Magnesium valproate; Pivaloyloxymethyl butyrate (AN-9, Pivanex) |
Hydroxamic acids | Suberohydroxamic acid; Suberoylanilide hydroxamic acid (SAHA, Vorinostat); Oxamflatin; Pyroxamide; Trichostatin A (TSA); m-Carboxycinnamic acid bis-hydroxamide (CBHA); Derivatives of the marine sponge Psammaplysilla purpurea: NVP-LAQ824, NVP-LBH589; LBH-589 (Panobinostat); M344; ITF2357 (Givinostat); PXD101 (Belinostat); JHJ-26481585; CHR-3996; CHR-2845; GC-1521; OSU-HDAC-42; PCI-24781; Tefinostat; Abexinostat; Tubastatin A; Resminostat; Dacinostat; Quisinostat; Ricolinostat; Roclinostat; Pracinostat; Imidazo-ketopiperazine compounds |
Cyclic peptides | Romidepsin (Depsipeptide, FR901228); Apicidin; Cyclic hydroxamic acid-containing peptides (CHAPS); Trapoxin A; Trapoxin B; Chlamydocin; HC toxin; Bacterial FK228; Plitidepsin (Aplidine) |
Benzamides | MS-275 (Entinostat); CI-994; RGFP136; RGFP966; MGCD0103 (Mocetinostat); Compound 60; Tacedinaline; Chidamide |
Ketones | Trifluoromethyl ketone |
Small molecules | Droxinostat; PTACH |
Quinoline-3-carboxamides | Tasquinimod |
Carbamates | Bufexamac (HDAC6i) |
Hybrid compounds | |
Pazopanib hybrids; Dual indoleamine 2,3-dioxygenase 1 (IDO1) and histone deacetylase (HDAC) inhibitors; Dual nicotinamide phosphoribosyltransferase (NAMPT) and histone deacetylase (HDAC) inhibitors; HDACi MS-275+NO donors; Polyamine-based HDACs-LSD1 dual binding inhibitors; Dual G9a and HDAC inhibitors; Triple inhibitors | Ortho-aminoanilide 6d and hydroxamic acid 13f; Compound 10; Thiazolocarboxamides (Compound 7f); Compound 35; Dinitrooxy compound 31; Furoxan derivative 16; Vorinostat-Tranylcypromine derivatives; Compound 14; Compound 47 |
Sirtuin modulators/inhibitors | Nicotinamide/niacinamide; Suramin; Selisistat; Inauhzin; AGK-2; AK-7; Sirtinol; Salermide; MS3; Splitomycin; Cambinol; SEN-196; Dihydrocoumarin; Tenovin-6; UVI5008; HR-73; SirReal2; 5-Methylmellein; Mellein; Eurochevalierine; 8-Bromo-1,2-dihydro-3H-naphth[1,2-e][1,3]oxazine-3-thione-N-alkylated derivatives; 2-((4,6-Dimethylpyrimidin-2-yl)thio)-N-phenylacetamide derivatives |
Sirtuin modulators/activators | Resveratrol; SRT-501; SRT-1460; SRT-1720; SRT-2104; SRT-2183; GSK-184072; Quercetin; Fisetin; Butein; Isoliquiritigenin; Piceatannol; Flutamide; Hydrogen sulfide |
Other compounds | 3-Deazaneplanocin A (DZNep); Tubacin; EVP-0334; MOCPAC; BATCP; 6-([18F]Fluoroacetamido)-1-hexanoicanilide; Quinazolin-4-one derivatives: (E)-3-(2-Ethyl-7-fluoro-4-oxo-3-phenethyl-3,4-dihydroquinazolin-6-yl)-N-hydroxyacrylamide; N-Hydroxy-3-(2-methyl-4-oxo-3-phenethyl-3,4-dihydro-quinazolin-7-yl)-acrylamide; Quinoline derivatives: SGI-1027 (N-(4-(2-amino-6-methylpyrimidin-4-ylamino)phenyl)-4-(quinolin-4-ylamino)benzamide); Carbamazepine; APHA; (S)-4-2-(5-(Dimethylamino)naphthalene-1-sulfonamido)-2-phenylacetamido)-N-hydroxybenzamide (D17); HDAC3-inhibitor RGPF966; 3′,4′-Dihydro-2′H-spiro[imidazolidine-4,1′-naphthalene]-2,5-dione 1-(3-methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1H-1,2,4-triazole-3-carboxamide; α, β-unsaturated carboxylic acid and urea-based derivatives; Schistosoma mansoni Histone Deacetylase 8 (HDAC8) Inhibitors: N-(2,5-dioxopyrrolidin-3-yl)-N-alkylhydroxamate derivatives; non-hydroxamic acid benzothiadiazine dioxide derivatives; Secondary and tertiary-N-substituted 7-aminoheptanohydroxamic acid derivatives; Polyoxometalates (PC-320); Macrocyclic nonribosomal peptide HDAC inhibitors; Cd[L-proline]2; Tetrahydroisoquinoline-based HDAC inhibitors; Dithienylethenes; Fulgimides; Isatin/o-phenylenediamine-based HDAC inhibitors; JSL-1; Benzodiazepine (BZD) derivatives; 7-Ureido-N-hydroxyheptanamide derivative (CKD5) |
2D Structure | Therapeutical Agent |
---|---|
Name:Nicotinamide, niacinamide, vitamin PP, aminicotin, nicotinic acid amide, amixicotyn, 3-pyridinecarboxamide, papulex, nicotylamide Molecular formula: C6H6N2O Molecular Weight: 122.12 g/mol IUPAC name: pyridine-3-carboxamide Category: Vitamins Mechanism: SIRT inhibitor Targets: SIRT1-7 | |
Name:Splitomicin; 1,2-Dihydro-3H-naphtho[2,1-b]pyran-3-one; 5690-03-9; 1,2-dihydro-3h-benzo[f]chromen-3-one; CHEMBL86537 Molecular formula: C13H10O2 Molecular Weight: 198.22 g/mol IUPAC name: 1,2-dihydrobenzo[f]chromen-3-one Category: Antibiotics Mechanism: SIRT inhibitor Targets: SIRT1; SIRT2 | |
Name:HR-73; 959571-93-8; SCHEMBL18134584; SCHEMBL18134584; AC1OCFZN; HR73; CHEMBL271761; 8-bromo-2-phenyl-1,2-dihydrobenzo[f]chromen-3-one Molecular formula: C19H13BrO2 Molecular Weight: 353.22 g/mol IUPAC name: 8-bromo-2-phenyl-1,2-dihydrobenzo[f]chromen-3-one Category: Antibiotics Mechanism: SIRT inhibitor Targets: SIRT1; SIRT2 | |
Name:Sirtinol; Sir Two Inhibitor Naphthol; 2-[(2-Hydroxynaphthalen-1-ylmethylene)amino]-N-(1-phenethyl)benzamide; 2-{[(2-hydroxy-1-naphthyl)methylene]amino}-N-(1-phenylethyl)benzamide Molecular formula: C26H22N2O2 Molecular Weight: 394.47 g/mol IUPAC name: 2-[[(Z)-(2-oxonaphthalen-1-ylidene)methyl]amino]-N-(1-phenylethyl)benzamide Category: Heterocyclic compounds Mechanism: SIRT inhibitor Targets: SIRT1; SIRT2 | |
Name:Suramin, Naphuride, Germanin, Naganol, Belganyl, Fourneau, Farma, Antrypol, Suramine, Naganin Molecular formula: C51H40N6O23S6 Molecular Weight: 1297.26 g/mol IUPAC name: 8-[[4-methyl-3-[[3-[[3-[[2-methyl-5-[(4,6,8-trisulfonaphthalen-1-yl)carbamoyl]phenyl]carbamoyl]phenyl]carbamoylamino]benzoyl]amino]benzoyl]amino]naphthalene-1,3,5-trisulfonic acid Category: Polyanionic compounds Mechanism: SIRT inhibitor Targets: SIRT1; SIRT2 | |
Name:Tenovin-6; 011557-82-6; CHEMBL595354; CHEBI:77729; 4-tert-Butyl-N-[[4-[5-(dimethylamino)pentanoylamino]phenyl]carbamothioyl]benzamide Molecular Formula: C25H34N4O2S Molecular Weight: 454.63 g/mol IUPAC name: 4-tert-butyl-N-[[4-[5-(dimethylamino)pentanoylamino]phenyl]carbamothioyl]benzamide Category: Small molecules Mechanism: SIRT inhibitor Targets: SIRT1; SIRT2; SIRT3 | |
Name:Salermide; (E)-N-(3-((2-hydroxynaphthalen-1-yl)methyleneamino)phenyl)-2-phenylpropanamide; SCHEMBL8103931; HMS3648G04; 1105698-15-4 Molecular Formula: C26H22N2O2 Molecular Weight: 394.47 g/mol IUPAC name: N-[3-[[(Z)-(2-oxonaphthalen-1-ylidene)methyl]amino]phenyl]-2-phenylpropanamide Category: Small molecules Mechanism: SIRT inhibitor Targets: SIRT1; SIRT2 | |
Name:Cambinol; NSC112546; NSC-112546; SIRT1/2 Inhibitor IV, Cambinol; NSC-1125476; 5-[(2-hydroxy-1-naphthyl)methyl]-2-mercapto-6-phenyl-4(3H)-Pyrimidinone Molecular Formula: C21H16N2O2S Molecular Weight: 360.43 g/mol IUPAC name: 5-[(2-hydroxynaphthalen-1-yl)methyl]-6-phenyl-2-sulfanylidene-1H-pyrimidin-4-one Category: Small molecules Mechanism: SIRT inhibitor Targets: SIRT1; SIRT2 | |
Name:Selisistat; EX527; 49843-98-3; 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide; SIRT1 Inhibitor III; EX 527; SEN0014196 Molecular Formula: C13H13ClN2O Molecular Weight: 248.71 g/mol IUPAC name: 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide Category: Small molecules Mechanism: SIRT inhibitor Targets: SIRT1 | |
Name:Inauhzin; 309271-94-1; AK175751; C25H19N5OS2; 1-phenothiazin-10-yl-2-(5H-[1,2,4]triazino[5,6-b]indol-3-ylsulfanyl)butan-1-one; AC1NUV9U Molecular Formula: C25H19N5OS2 Molecular Weight: 459.58 g/mol IUPAC name: 1-phenothiazin-10-yl-2-(5H-[1,2,4]triazino[5,6-b]indol-3-ylsulfanyl)butan-1-one Category: Small molecules Mechanism: SIRT inhibitor Targets: SIRT1 | |
Name:Dihydrocoumarin; 3,4-dihydrocoumarin; Hydrocoumarin; Chroman-2-one; Benzodihydropyrone; Melilotin; Melilotol; 1,2-benzodihydropyrone; 2-chromanone Molecular Formula: C9H8O2 Molecular Weight: 148.16 g/mol IUPAC name: 3,4-dihydrochromen-2-one Category: Small molecules Mechanism: SIRT inhibitor Targets: SIRT1 | |
Name:AGK-2; UNII-DDF0L8606A; Sirtuin 2 Inhibitor; 304896-28-4; 2-cyano-3-(5-(2,5-dichlorophenyl)furan-2-yl)-N-(quinolin-5-yl)acrylamide; CHEMBL224864 Molecular Formula: C23H13Cl2N3O2 Molecular Weight: 434.28 g/mol IUPAC name: (E)-2-cyano-3-[5-(2,5-dichlorophenyl)furan-2-yl]-N-quinolin-5-ylprop-2-enamide Category: Small molecules Mechanism: SIRT inhibitor Targets: SIRT2 | |
Name:AK-7; 420831-40-9; UNII-308B6B695N; CHEMBL3222141; 3-(azepan-1-ylsulfonyl)-N-(3-bromophenyl)benzamide; ZINC01159030 Molecular Formula: C19H21BrN2O3S Molecular Weight: 437.35 g/mol IUPAC name: 3-(azepan-1-ylsulfonyl)-N-(3-bromophenyl)benzamide Category: Small molecules Mechanism: SIRT inhibitor Targets: SIRT2 | |
Name:SirReal2; 2-(4,6-Dimethyl-pyrimidin-2-ylsulfanyl)-N-(5-naphthalen-1-ylmethyl-thiazol-2-yl)-acetamide Molecular Formula: C22H20N4OS2 Molecular Weight: 420.55 g/mol IUPAC name: 2-(4,6-dimethylpyrimidin-2-yl)sulfanyl-N-[5-(naphthalen-1-ylmethyl)-1,3-thiazol-2-yl]acetamide Category: Small molecules Mechanism: SIRT inhibitor Targets: SIRT2 | |
Name:Resveratrol, trans-resveratrol, 501-36-0, 3,4′,5-Trihydroxystilbene, 3,4′,5-Stilbenetriol, 3,5,4′-Trihydroxystilbene, Resvida, (E)-resveratrol Molecular Formula: C14H12O3 Molecular Weight: 228.24 g/mol IUPAC name: 5-[(E)-2-(4-Hydroxyphenyl)ethenyl]benzene-1,3-diol Category: Natural polyphenols Mechanism: SIRT activator Targets: SIRT1 | |
Name:Piceatannol; 10083-24-6; 3-Hydroxyresveratol; Astringinin; Piceatanol; (E)-4-(3,5-dihydroxystyryl)benzene-1,2-diol; 3,5,3′,4′-Tetrahydroxystilbene; NSC-365798 Molecular Formula: C14H12O4 Molecular Weight: 244.25 g/mol IUPAC name: 4-[(E)-2-(3,5-dihydroxyphenyl)ethenyl]benzene-1,2-diol Category: Natural polyphenols Mechanism: SIRT activator Targets: SIRT1 | |
Name:Quercetin; Sophoretin; Quercetol; Meletin; Xanthaurine; Quercitin; 3,3′,4′,5,7-Pentahydroxyflavone Molecular Formula: C15H10O7 Molecular Weight: 302.24 g/mol IUPAC name: 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one Category: Natural polyphenols Mechanism: SIRT activator Targets: SIRT1 | |
Name:Fisetin; 528-48-3; 2-(3,4-Dihydroxyphenyl)-3,7-dihydroxy-4H-chromen-4-one; 5-Desoxyquercetin; 3,3′,4′,7-Tetrahydroxyflavone; Superfustel; Cotinin; Fietin; Fustel; Fustet Molecular Formula: C15H10O6 Molecular Weight: 286.24 g/mol IUPAC name: 2-(3,4-dihydroxyphenyl)-3,7-dihydroxychromen-4-one Category: Natural polyphenols Mechanism: SIRT activator Targets: SIRT1 | |
Name:Butein; 487-52-5; 2′,3,4,4′-Tetrahydroxychalcone; 2′,4′,3,4-Tetrahydroxychalcone; 3,4,2′,4′-Tetrahydroxychalcone; EINECS 207-659-5 Molecular Formula: C15H12O5 Molecular Weight: 272.26 g/mol IUPAC name: (E)-1-(2,4-dihydroxyphenyl)-3-(3,4-dihydroxyphenyl)prop-2-en-1-one Category: Natural polyphenols Mechanism: SIRT activator Targets: SIRT1 | |
Name:Isoliquiritigenin; 961-29-5; 2′,4,4′-Trihydroxychalcone; 4,2′,4′-Trihydroxychalcone; Isoliquirtigenin; (E)-1-(2,4-dihydroxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one Molecular Formula: C15H12O4 Molecular Weight: 256.26 g/mol IUPAC name: (E)-1-(2,4-dihydroxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one Category: Natural polyphenols Mechanism: SIRT activator Targets: SIRT1 | |
Name:Flutimide; 162666-34-4; AC1O5YLM; DCL000372; DNC000657; GSK184072; (5Z)-1-hydroxy-3-isobutyl-5-(2-methylpropylidene)pyrazine-2,6-dione Molecular Formula: C12H18N2O3 Molecular Weight: 238.29 g/mol IUPAC name: (5Z)-1-hydroxy-3-(2-methylpropyl)-5-(2-methylpropylidene)pyrazine-2,6-dione Category: Heterocyclic compounds Mechanism: SIRT activator Targets: SIRT1 | |
Name:SRT-1460; 3,4,5-trimethoxy-N-(2-(3-(piperazin-1-ylmethyl)imidazo[2,1-b]thiazol-6-yl)phenyl)benzamide; 925432-73-1; CHEMBL254156; AK-57112 Molecular Formula: C26H29N5O4S Molecular Weight: 507.61 g/mol IUPAC name: 3,4,5-trimethoxy-N-[2-[3-(piperazin-1-ylmethyl)imidazo[2,1-b][1,3]thiazol-6-yl]phenyl]benzamide Category: Small molecules Mechanism: SIRT activator Targets: SIRT1 | |
Name:SRT-1720; 925434-55-5; N-(2-(3-(piperazin-1-ylmethyl)imidazo[2,1-b]thiazol-6-yl)phenyl)quinoxaline-2-carboxamide; CHEMBL257991 Molecular Formula: C25H23N7OS Molecular Weight: 469.57 g/mol IUPAC name: N-[2-[3-(piperazin-1-ylmethyl)imidazo[2,1-b][1,3]thiazol-6-yl]phenyl]quinoxaline-2-carboxamide Category: Small molecules Mechanism: SIRT activator Targets: SIRT1 | |
Name:SRT-2183; (R)-N-(2-(3-((3-hydroxypyrrolidin-1-yl)methyl)imidazo[2,1-b]thiazol-6-yl)phenyl)-2-naphthamide; CHEMBL403308; BDBM50376978; ZINC29043608 Molecular Formula: C27H24N4O2S Molecular Weight: 468.56 g/mol IUPAC name: N-[2-[3-[[(3R)-3-hydroxypyrrolidin-1-yl]methyl]imidazo[2,1-b][1,3]thiazol-6-yl]phenyl]naphthalene-2-carboxamide Category: Small molecules Mechanism: SIRT activator Targets: SIRT1 | |
Name:SRT-2104; 093403-33-8; Sirtuin modulator; SRT 2104; UNII-4521NR0J09; SRT2104 (GSK2245840); SCHEMBL964014; ZINC43202455; DTXSID00648729 Molecular Formula: C26H24N6O2S2 Molecular Weight: 516.64 g/mol IUPAC name: 4-methyl-N-[2-[3-(morpholin-4-ylmethyl)imidazo[2,1-b][1,3]thiazol-6-yl]phenyl]-2-pyridin-3-yl-1,3-thiazole-5-carboxamide Category: Small molecules Mechanism: SIRT activator Targets: SIRT1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cacabelos, R.; Carril, J.C.; Cacabelos, N.; Kazantsev, A.G.; Vostrov, A.V.; Corzo, L.; Cacabelos, P.; Goldgaber, D. Sirtuins in Alzheimer’s Disease: SIRT2-Related GenoPhenotypes and Implications for PharmacoEpiGenetics. Int. J. Mol. Sci. 2019, 20, 1249. https://doi.org/10.3390/ijms20051249
Cacabelos R, Carril JC, Cacabelos N, Kazantsev AG, Vostrov AV, Corzo L, Cacabelos P, Goldgaber D. Sirtuins in Alzheimer’s Disease: SIRT2-Related GenoPhenotypes and Implications for PharmacoEpiGenetics. International Journal of Molecular Sciences. 2019; 20(5):1249. https://doi.org/10.3390/ijms20051249
Chicago/Turabian StyleCacabelos, Ramón, Juan C. Carril, Natalia Cacabelos, Aleksey G. Kazantsev, Alex V. Vostrov, Lola Corzo, Pablo Cacabelos, and Dmitry Goldgaber. 2019. "Sirtuins in Alzheimer’s Disease: SIRT2-Related GenoPhenotypes and Implications for PharmacoEpiGenetics" International Journal of Molecular Sciences 20, no. 5: 1249. https://doi.org/10.3390/ijms20051249