This site is supported by donations to The OEIS Foundation.

Index to OEIS: Section Ga

From OeisWiki
Jump to: navigation, search

Index to OEIS: Section Ga


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


G.C.D.: see entries under GCD
g.c.d.: see entries under GCD
G.F.: see generating functions
g.f.: see generating functions
Gaelic: A001368
Gaelic: see also Index entries for sequences related to number of letters in n
Galego: see also Index entries for sequences related to number of letters in n

games , sequences related to :
games, born on day n: A047995, A037142, A065401, A065402, A065407
games, Grundy's game: see Grundy's game
games: see also checkers
games: see also chess
games: see also Mancala
games: see also Towers of Hanoi
games: see also under individual names
gamma (Euler-Mascheroni constant), sequences related to :
gamma (Euler-Mascheroni constant): A002852* (continued fraction for), A001620* (decimal expansion of)
gamma function, sequences related to :
gamma function: A005446, A005147, A001164, A005146, A005447, A001163, A068467, A202623
gamma function at 1/k: A002161 (2), A073005 (3), A068466 (4), A175380 (5), A175379 (6), A220086 (7), A203142 (8), A256190 (9), A256191 (10), A256192 (11), A203140 (12), A203139 (16), A371881 (20), A203138 (24), A371983 (30), A203137 (48)
gamma function at t/k, t>1: A019704(3/2), A073006 (2/3), A202623 (4/3), A203129 (5/3), A068465 (3/4), A068467 (5/4), A203130 (7/4), A246745 (2/5), A340721 (3/5), A340722 (4/5), A203145 (5/6), A203126 (7/6), A220605 (2/7), A220608 (3/7), A220609 (4/7), A220606 (5/7), A220607 (6/7), A203143 (3/8) A203144 (5/8) A203146 (7/8) A203125 (9/8) A203127 (11/8) A203128 (13/8) A203132 (15/8), A340723 (3/10), A340724 (7/10), A340725 (9/10), A203080 (17/16)
gamma function: see also factorials

gaps: A002386, A005250, A002540, A000101, A000230, A000232, A001549, A001632
gaps: see also primes, gaps between
gates:: A005610, A005611, A005609, A005608
Gauss-Kuzmin-Wirsing constant: A038517

Gaussian binomial (or q-binomial) coefficients, sequences related to :
Gaussian or q-binomial coefficients [n,k]_q (= q-integers (q^n-1)/(q-1) for k=1; [n,k]_q = 1 (A000012) for k=0):
q = 2 : A000225, A006095, A006096, A006097, A006110 (k=5), A022189, A022190, A022191, A022192, A022193, A022194, A022195 (k=12); A006098 [2n,n], A006099 [n,n/2], A006116 (sum)
q = 3 : A003462. A006100, A006101, A006102, A022196 (k=5), A022197, A022198, A022199, A022200, A022201, A022202, A022203 (k=12); A006103 [2n,n], A006104 [n,n/2], A006117 (sum).
q = 4 : A002450, A006105, A006106, A006107, A022204 (k=5), A022205, A022206, A022207, A022208, A022209, A022210, A022211 (k=12); A006108 [2n,n], A006109 [n,n/2].
q = 5 : A003463, A006111, A006112, A006113, A022212 (k=5), A022213, A022214, A022215, A022216, A022217, A022218, A022219 (k=12); A006114 [2n,n], A006115 [n,n/2] A006119 (sum).
q = 6 : A003464, A022220, A022221, A022222, A022223 (k=5), A022224, A022225, A022226, A022227, A022228, A022229, A022230 (k=12). A006120 (sum).
q = 7 : A023000, A022231, A022232, A022233, A022234 (k=5), A022235, A022236, A022237, A022238, A022239, A022240, A022241 (k=12). A006121 (sum).
q = 8 : A002452, A022242, A022243, A022244, A022245 (k=5), A022246, A022247, A022248, A022249, A022250, A022251, A022252 (k=12). A006122 (sum).
q = 9 : A002452, A022253, A022254, A022255, A022256 (k=5).
For q = 10,...,25, k = 1: (n,1)_q = (q^(n+1)-1)/(q-1), see partial sums of powers
q = -2: A077925 (k=1), A015249, A015266, A015287, A015305, A015323, A015338, A015356, A015371, A015386, A015405, A015423 (k=12).
q = -3: A014983 (k=1), A015251, A015268, A015288, A015306, A015324, A015340, A015357, A015375, A015388, A015407, A015424 (k=12).
q = -4: A014985 (k=1), A015253, A015271, A015289, A015308, A015326, A015341, A015359, A015376, A015390, A015408, A015425 (k=12).
q = -5: A014986 (k=1), A015255, A015272, A015291, A015309, A015327, A015344, A015360, A015377, A015391, A015409, A015427 (k=12).
q = -6: A014987 (k=1), A015257, A015273, A015292, A015310, A015328, A015345, A015361, A015378, A015392, A015410, A015429 (k=12).
q = -7: A014989 (k=1), A015258, A015275, A015293, A015312, A015330, A015346, A015363, A015379, A015393, A015411, A015430 (k=12).
q = -8: A014990 (k=1), A015259, A015276, A015294, A015313, A015331, A015347, A015364, A015380, A015395, A015413, A015431 (k=12).
q = -9: A014991 (k=1), A015260, A015277, A015295, A015315, A015332, A015349, A015365, A015381, A015397, A015414, A015432 (k=12).
q =-10: A014992 (k=1), A015261, A015278, A015298, A015316, A015333, A015350, A015367, A015382, A015398, A015417, A015433 (k=12).
q =-11: A014993 (k=1), A015262, A015279, A015300, A015317, A015334, A015353, A015368, A015383, A015499, A015418, A015434 (k=12).
q =-12: A014994 (k=1), A015264, A015281, A015302, A015319, A015336, A015354, A015369, A015384, A015401, A015421, A015436 (k=12).
q =-13: A015000 (k=1), A015265, A015286, A015303, A015321, A015337, A015355, A015370, A015385, A015402, A015422, A015438 (k=12).
Gaussian binomial coefficients, Maple code for : A006516 (Maple code only)
Gaussian binomial coefficients, tables of :
q = 2, ..., 24: A022166 (q=2), A022167 (q=3), A022168, A022169, A022170, A022171, A022172, A022173, A022174 (q=10), A022175, A022176, A022177, A022178, A022179, A022180, A022181, A022182, A022183, A022184 (q=20), A022185, A022186, A022187, A022188.
q = -2, ..., -15: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15).
Gaussian binomial coefficients: (1): A006116 (q=2), A006117, A006118, A006119, A006120, A006121, A006122, A006099, A006098, A006104, A006103, A006109, A006108, A006115
Gaussian binomial coefficients: (2): A006114, A006095, A006100, A006096, A006105, A006097, A006111, A006101, A006110, A006106, A006102, A006112, A006107, A006113
Gaussian integers and primes , sequences related to :
Gaussian integers and primes (1): A002145, A006495, A006496, A027206, A036693, A036694, A036695, A036696, A036697, A036698, A036699, A036700
Gaussian integers and primes (2): A036701, A036702, A036703, A036704, A036705, A036706, A036707, A036708, A036709, A036710, A036711, A036712
Gaussian integers and primes (3): A036713, A036714, A036715, A036716, A045326, A055025, A055026, A055027, A055028, A055029, A055683, A057352
Gaussian integers and primes (4): A057368, A057429, A058767, A058770, A058771, A058772, A058775, A058777, A058778, A058779, A058782, A062327
Gaussian integers and primes (5): A062711, A073253, A078458, A078908, A078909, A078910, A078911
Gaussian primes: A055025, A055026, A055027, A055028, A055029
Gaussian primes: see also entries under Gaussian integers
GCD , sequences related to :
GCD(x,y): A003989*, A050873*, A072030*; A018805 (pairs with gcd = d)
GCD, greedy sequence: see EKG sequence
GCD: A007464, A006579
GCD, gcd: The preferred spelling in the OEIS is GCD, but gcd is also acceptable (and required in Maple and PARI lines).

[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]