login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014987
a(n) = (1 - (-6)^n)/7.
16
1, -5, 31, -185, 1111, -6665, 39991, -239945, 1439671, -8638025, 51828151, -310968905, 1865813431, -11194880585, 67169283511, -403015701065, 2418094206391, -14508565238345, 87051391430071, -522308348580425, 3133850091482551
OFFSET
1,2
COMMENTS
q-integers for q=-6.
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-5, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^n*charpoly(A,2). - Milan Janjic, Jan 27 2010
FORMULA
a(n) = a(n-1) + q^(n-1) = (q^n - 1) / (q - 1).
G.f.: x/((1+6*x)*(1-x)).
a(n) = -5*a(n-1) + 6*a(n-2). - Vincenzo Librandi Oct 22 2012
E.g.f.: (exp(x) - exp(-6*x))/7. - G. C. Greubel, Ma7 26 2018
MAPLE
a:=n->sum ((-6)^j, j=0..n): seq(a(n), n=0..25); # Zerinvary Lajos, Dec 16 2008
MATHEMATICA
LinearRecurrence[{-5, 6}, {1, -5}, 30] (* Vincenzo Librandi Oct 22 2012 *)
PROG
(Sage) [gaussian_binomial(n, 1, -6) for n in range(1, 22)] # Zerinvary Lajos, May 28 2009
(Magma) I:=[1, -5]; [n le 2 select I[n] else -5*Self(n-1)+6*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 22 2012
(PARI) a(n)=(1-(-6)^n)/7 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Absolute values are in A015540.
Sequence in context: A057426 A329014 A015540 * A365741 A343496 A108079
KEYWORD
sign,easy
EXTENSIONS
Better name from Ralf Stephan, Jul 14 2013
STATUS
approved