This site is supported by donations to The OEIS Foundation.
Index to OEIS: Section Pri
Index to OEIS: Section Pri
- This is a section of the Index to the OEIS®.
- For further information see the main Index to OEIS page.
- Please read Index: Instructions For Updating Index to OEIS before making changes to this page.
- If you did not find what you were looking for in this Index, you can always search the database for a particular word or phrase.
- Full list of sections:
[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]
prime divisor, greatest: A006530
prime factorizations of important sequences: see factorizations of important sequences
- prime factors: at least 1: A000027 2: A002808 3: A033942 4: A033987 5: A046304,
- prime factors: at most 1: A000040 2: A037143 3: A037144 4: A166718 5: A166719
- prime factors: exactly 1: A000040 2: A001358 3: A014612 4: A014613 5: A014614
- prime factors: number of A001222 (with multiplicity), A001221 (distinct)
- prime factors: see also distinct prime factors
- prime factors: table of: A078840
- prime factors in a given set:
- (we list the set of numbers, then the set in which they have their prime factors)
- Finite subsets: (see also perfect powers
- A003586 (3-smooth: {2,3}), A051037 (5-smooth: {2,3,5}), A002473 (7-smooth: {2,3,5,7}), A051038 (11-smooth: {2,3,5,7,11}), A080197 (13-smooth: {2,3,5,7,11,13}),
- A080681 (17-smooth: {2,3,5,7,11,13,17}), A080682 (19-smooth: {2,3,5,7,11,13,17,19}), A080683 (23-smooth: {2,3,5,7,11,13,17,19,23}).
- A003591 ({2,7}), A003592 ({2,5}), A003593 (odd 5-smooth: {3,5}), A003594 ({3,7}), A003595 ({5,7}), A003596 ({2,11}), A003597 ({3,11}), A003598 ({5,11}), A003599 ({7,11}).
- congruence related: A000079 (even: powers of 2) A005408 (odd primes: A005408),
- digit related: A004022 (prime factors having only digit 1: A004022) A020449 (primes with only digit 0 & 1: A020449),
- A036302 (only digit 1 & 2: A036302), A036303 (only digit 1 & 3: A036303), A036304 (only digit 1 & 4: A036304), A036305 (only digit 1 & 5: A036305), A036306 (only digit 1 & 6: A036306),
- A036307 (only digit 1 & 7: A036307), A036308 (only digit 1 & 8: A036308), A036309 (only digit 1 & 9: A036309), A036310 (only digit 2 & 3: A036310), A036311 (only digit 2 & 5: A036311),
- A036312 (only digit 2 & 7: A036312), A036313 (only digit 2 & 9: A036313), A036314 (only digit 3 & 4: A036314), A036315 (only digit 3 & 5: A036315), A036316 (only digit 3 & 7: A036316),
- A036317 (only digit 3 & 8: A036317), A036318 (only digit 4 & 7: A036318), A036319 (only digit 4 & 9: A036319), A036320 (only digit 5 & 7: A036320), A036321 (only digit 5 & 9: A036321),
- A036322 (only digit 6 & 7: A036322), A036323 (only digit 7 & 8: A036323), A036324 (only digit 7 & 9: A036324), A036325 (only digit 8 & 9: A036325).
prime index: (index of the n-th prime): A000720
prime indices, sequences computed from:
- prime indices, sequences computed from, bijections (1): A122111, A153212, A241909, A241916, A242415
- prime indices, sequences computed from, bijections (2): A242419, A069799, A105119, A225891, A242420
- prime indices, sequences computed from, Bulgarian solitaire operation: A242424
- prime indices, sequences computed from, difference between the largest and the smallest index: A243055
- prime indices, sequences computed from, difference between the two largest indices: A242411
- prime indices, sequences computed from, max: A061395
- prime indices, sequences computed from, min: A055396
- prime indices, sequences computed from, product of indices (with multiplicity): A003963
- prime indices, sequences computed from, shift binary trees: A005940, A163511, A253563, A253565
- prime indices, sequences computed from, shift dispersion arrays: A246278 (A246279)
- prime indices, sequences computed from, shift operations: A003961, A064989, A253550
- prime indices, sequences computed from, sum of differences between all index pairs: A261079
- prime indices, sequences computed from, sum of indices (with multiplicity): A056239
- prime indices, sequences computed from, Sum sign(i) over all indices i, with multiplicity, i.e., number of prime divisors: A001222
- prime indices, sequences computed from: see also Matula-Goebel numbers
prime numbers of measurement: A002048*, A002049*
prime numbers: A000040*, A008578
prime plus twice a square: A046903
- prime powers: base: A025473, exponent: A025474
- prime powers: complement of: A024619
- prime powers: differences: A036689 (p^2-p), A127917 (p^3-p), A135177 (p^3-p^2), A138401 (p^4-p), A138402 (p^4-p^2), A138403 (p^4-p^3), A138404 (p^5-p), A138405 (p^5-p^2), A138406 (p^5-p^3), A138407 (p^5-p^4), A138408 (p^6-p), A138409 (p^6-p^2), A138410 (p^6-p^3), A138411 (p^6-p^4)
- prime powers: excluding primes: base: A025476, exponent: A025477
- prime powers: excluding primes: complement of: A085971
- prime powers: excluding primes: gaps: A053707
- prime powers: excluding primes: gaps: record: A167186, start: A167188, end: A167189
- prime powers: excluding primes: list of: A025475, previous: A167185, next: A167184
- prime powers: excluding primes: number of: A085501
- prime powers: gaps: A057820
- prime powers: gaps: record: A121492, start: A002540, end: A167236
- prime powers: list of: A000961, previous: A031218, next: A000015
- prime powers: number of: A065515
prime pyramid: A051237*, A036440
prime quadruples: A007530
- prime races: A007350, A007351, A007352, A007353, A007354, A007355, A096447, A096448, A096449, A096450, A096451, A096452, A096453, A096454, A096455, A098044
- prime races: see also races
- prime signature: A025487*
- prime signature omega=1: A000040 [1], A001248 [2], A030078 [3], A030514 [4], A050997 [5], A030516 [6], A092759 [7], A179645 [8], A179665 [9], A030629 [10], A079395 [11], A030631 [12], A138031 [13]
- prime signature omega=2: A006881 [1,1], A054753 [1,2], A065036 [1,3], A085986 [2,2], A178739 [1,4], A143610 [2,3], A178740 [1,5], A189988 [2,4], A162142 [3,3], A179666 [3,4], A179646 [2,5], A189987 [1,6], A189991 [4,4], A179671 [3,5], A189990 [2,6], A179664 [1,7]
- prime signature omega=3: A007304 [1,1,1], A085987 [1,1,2], A189975 [1,1,3], A179643 [1,2,2], A179644 [1,1,4], A163569 [1,2,3], A162143 [2,2,2], A179669 [1,2,4], A179667 [1,1,5], A179695 [2,2,3], A179688 [1,3,3], A190106 [2,3,3], A179746 [2,2,4], A179698 [1,3,4], A179691 [1,2,5], A179672 [1,1,6]
- prime signature omega=4: A046386 [1,1,1,1], A189982 [1,1,1,2], A179690 [1,1,2,2], A179670 [1,1,1,3], A189344 [1,2,2,2], A179700 [1,1,2,3], A179693 [1,1,1,4], A190377 [2,2,2,2], A190109 [1,2,2,3], A190108 [1,1,3,3], A190107 [1,1,2,4], A179704 [1,1,1,5]
- prime signature omega=5: A046387 [1,1,1,1,1], A189983 [1,1,1,1,2], A189989 [1,1,1,2,2], A189984 [1,1,1,1,3], A190379 [1,1,2,2,2], A190111 [1,1,1,2,3], A190110 [1,1,1,1,4]
- prime signature omega=6: A067885 [1,1,1,1,1,1], A189985 [1,1,1,1,1,2], A190380 [1,1,1,1,2,2], A190378 [1,1,1,1,1,3]
- prime signature omega=7: A123321 [1,1,1,1,1,1,1], A190381 [1,1,1,1,1,1,2]
- prime signature omega=8: A123322 [1,1,1,1,1,1,1,1]
- prime signature: see also (1) A000688 A005361 A008480 A008683 A008966 A025488 A035206 A035341 A036035 A036041 A038538 A046523 A046660
- prime signature: see also (2) A046951 A050320 A050322 A050323 A050324 A050325 A050326 A050327 A050328 A050329 A050330 A050331
- prime signature: see also (3) A050332 A050333 A050334 A050335 A050336 A050337 A050338 A050339 A050340 A050341 A050345 A050346
- prime signature: see also (4) A050347 A050348 A050349 A050350 A050354 A050355 A050356 A050357 A050358 A050359 A050360 A050361
- prime signature: see also (5) A050362 A050363 A050364 A050370 A050371 A050372 A050373 A050374 A050375 A050377 A050378 A050379
- prime signature: see also (6) A050380 A050382 A051282 A051466 A051707 A052213 A052214 A052304 A052305 A052306 A056099 A056153
- prime signature: see also (7) A056808 A056823 A057335 A343511
- prime signature: see also (8) exponents in factorization, sequences computed from
- prime signature: see also (9) primes, in arithmetic progressions
- prime signature: subsequences of A025487:
prime triples: A007529
prime(2^n): A033844*, A018249, A051438, A051440, A051439
prime(k^n): A033844, A038833, A119772, A055680, A058192, A058239, A119773, A119774, A006988, A058244, A058245, A058246, A119775, A119776, A119777
prime(n) == +-k (mod n): (1) A023143, A023144, A023145, A023146, A023147, A023148, A023149, A023150, A023151, A023152, A049204, A092044
prime(n) == +-k (mod n): (2) A092045, A092046, A092047, A092048, A092049, A092050, A092051, A092052
prime, largest <=n: A007917
prime, largest dividing n: A006530
prime, smallest whose product of digits is (something): A088653 A088654 A089298 A089364 A089365 A089386 A089912
prime, weakly: A050249
PRIMEGAME: A007542, A007546, A007547
PrimePi(x), number of primes <= x: A000720*
- class+: A126433, A005113, A005105 (1+), A005106 (2+), A005107 (3+), A005108 (4+), A081633 (5+), A081634 (6+), A081635 (7+) A081636 (8+), A081637 (9+), A081638 (10+), A081639 (11+), A084071 (12+), A090468 (13+), A129474 (14+), A129475 (15+)
- class-: A126805, A056637, A005109 (1-), A005110 (2-), A005111 (3-), A005112 (4-), A081424 (5-), A081425 (6-), A081426 (7-), A081427 (8-), A081428 (9-), A081429 (10-), A081430 (11-), A081640 (12-), A081641 (13-), A129248 (14-), A129249 (15-), A129250 (16-)
- primes: A000040*
- primes gaps, see primes, gaps between
- primes in Lucas U-sequences: A049883 U(1,-2), A005478 U(1,-1), A086383 U(2,-1), A000040 U(2,1), A201000 U(3,-2), A201001 U(3,-1), A000668 U(3,2), A076481 U(4,3), A201002 U(5,-2), A201005 U(5,-1)
- primes in arithmetic progressions, see primes, in arithmetic progressions
- primes involving quasi-repdigits D(R)nE: (01) A049054, A088274, A088275, A102929, A102930, A102931, A102932, A102933, A102934, A102935,
- primes involving quasi-repdigits D(R)nE: (02) A102936, A102937, A102938, A102939, A102940, A102941, A102942, A102943, A102944, A102945,
- primes involving quasi-repdigits D(R)nE: (03) A102946, A102947, A081677, A101392, A102948, A102949, A102950, A102951, A102952, A102953,
- primes involving quasi-repdigits D(R)nE: (04) A102954, A102955, A098930, A099006, A102956, A098959, A102957, A098960, A102958, A102959,
- primes involving quasi-repdigits D(R)nE: (05) A102959, A102960, A102961, A102962, A102963, A102964, A056807, A100501, A101393, A102965,
- primes involving quasi-repdigits D(R)nE: (06) A102966, A102967, A102968, A102969, A102970, A102971, A102972, A102973, A102974, A102975,
- primes involving quasi-repdigits D(R)nE: (07) A102976, A102977, A102978, A102979, A102980, A101396, A101398, A056806, A101397, A101395,
- primes involving quasi-repdigits D(R)nE: (08) A101394, A102981, A102982, A102983, A102984, A102985, A102986, A102987, A102988, A102989,
- primes involving quasi-repdigits D(R)nE: (09) A102990, A102991, A102992, A102993, A102994, A099005, A099017, A102995, A102996, A102997,
- primes involving quasi-repdigits D(R)nE: (10) A102998, A102999, A103000, A103001, A103002, A103003, A096254, A103004, A103005, A103006,
- primes involving quasi-repdigits D(R)nE: (11) A103007, A103008, A103009, A103010, A103011, A103012, A103013, A103014, A103015, A103016,
- primes involving quasi-repdigits D(R)nE: (12) A103017,A103018,A103019,A103020,A103021,A103022,A103023,A103024,A103025,A056805,
- primes involving quasi-repdigits D(R)nE: (13) A103027,A103027,A103028,A103029,A103030,A097402,A103031,A103032,A103033,A103034,
- primes involving quasi-repdigits D(R)nE: (14) A103035,A103036,A103037,A103038,A103039,A103040,A103041,A103042,A103043,A103044,
- primes involving quasi-repdigits D(R)nE: (15) A103045,A103046,A103047,A103048,A103049,A056804,A097970,A097954,A103050,A103051,
- primes involving quasi-repdigits D(R)nE: (16) A103052,A103053,A103054,A103055,A103056,A103057,A103058,A103059,A103060,A103061,
- primes involving quasi-repdigits D(R)nE: (17) A103062,A103063,A103064,A103065,A103066,A103067,A103068,A099190,A103069,A103070,
- primes involving quasi-repdigits D(R)nE: (18) A103071,A103072,A103073,A103074,A103075,A103076,A103077,A103078,A103079,A103080,
- primes involving quasi-repdigits D(R)nE: (19) A103081,A103082,A103083,A103084,A103085,A103086,A103087,A103088,A103089,A103090,
- primes involving quasi-repdigits D(R)nE: (20) A103091,A103092,A056797,A096774,A100473,A103093,A103094,A103095,A103096,A103097,
- primes involving quasi-repdigits D(R)nE: (21) A103098,A103099,A103100,A103101,A103102,A103103,A103104,A103105,A103106,A103107,
- primes involving quasi-repdigits D(R)nE: (22) A103108,A103109
- numbers which yield primes when digits/strings are inserted / prefixed / appended:
- A164329 (prime when 0 is inserted anywhere), A216169 (subset of composite terms), A215417 (subset of primes), A159236 (0 is inserted between all digits).
- A068673 (1 is prefixed, or appended), A304246 (1 is inserted anywhere), A068679 (1 is prefixed, appended or inserted), A069246 (primes among these).
- A304247 (2 is inserted anywhere).
- A304248 (3 is inserted anywhere), A068674 (3 is prefixed or appended), A158594 (3 is prefixed, appended or inserted anywhere), A215419 (primes among these).
- A068677 (7 is prefixed or appended), A069832 (7 is prefixed, appended or inserted anywhere), A215420 (primes among these).
- A069833 (9 is prefixed, appended or inserted anywhere), A215421 (primes among these).
- A158232 (13 is prefixed or appended).
- A304243 (2 is prefixed or prime(k+2) is inserted after the k-th digit), A304244 (prime(k) is inserted after the k-th digit), A304245 (2 is inserted after the first, or prime(k+1) after the k-th digit, k > 1).
- primes with digits in a given set:
- primes with only the digit '1': A004022
- primes with digits in {0,1}: A020449, {1,2}: A020450, ..., A020457 (1,9), ..., A020469 (6,7), A020470 (7,8), A020471 (7,9), A020472 (8,9).
- primes with digits in {...}: A036953 (0,1,2), A260044 (0,1,3), A260266 (0,1,4), A199325 (0,1,5) - A199329 (0,1,9), A061247 (0,1,8);
- primes with digits in {...}: A260267 (1,2,4), A260268 (1,4,5) - A260271 (1,4,9); A199340 (0,3,4) - A199349 (3,4,9). (To be completed.)
primes involving decimal expansion of n:
- A018800, A030665, A062584, A068164, A068695*, A069691, A077344, A077345, A077501, A084413, A084414, A088781, A090287, A091088, A091089, A228323, A228324, A228325, A258190, A258337, A262369, A338366, A337834, A338715, A338716
- Base 2 versions: A164022, A262365, A262366
- See also A030000, A032352, A032734, A082058
- near-repdigit primes: A164937
- near-repunit primes: A105992, A034093 (number of primes by changing one 1 to 0), A065083 (least k for which A034093(k) = n).
- -, that contain the digit X: A065074 (0), ...
- primes involving repunits, X*repunit*10+Y (i.e., of form X...XY, A-numbers are labelled (X,Y) below):
- A004023 (1,1), A056654 (1,3), A056655 (1,7), A056659 (1,9), A056660 (2,1), A056656 (2,3), A056677 (2,7), A056678 (2,9), A055520 (3,1),
- A056680 (3,7), A056681 (4,1), A056661 (4,3), A056682 (4,7), A056683 (4,9), A056684 (5,1), A056685 (5,3), A056686 (5,7), A056687 (5,9),
- A056658 (6,1), A056657 (6,7), A056688 (7,1), A056689 (7,3), A056693 (7,9), A056664 (8,1), A056694 (8,3), A056695 (8,7), A056663 (8,9),
- A056696 (9,1), A056662 (9,7).
- primes involving repunits, X*10^n+Y*repunit (i.e., of form XY...Y, A-numbers are labelled (X,Y) below):
- A004023 (1,1), A056698 (1,3), A089147 (1,7), A002957 (1,9), A056700 (2,1), A056701 (2,3), A056702 (2,7), A056703 (2,9), A056704 (3,1),
- A056705 (3,7), A056706 (4,1), A056707 (4,3), A056708 (4,7), A056712 (4,9), A056713 (5,1), A056714 (5,3), A056715 (5,7), A056716 (5,9),
- A056717 (6,1), A056718 (6,7), A056719 (7,1), A056720 (7,3), A056721 (7,9), A056722 (8,1), A056723 (8,3), A056724 (8,7), A056725 (8,9),
- A056726 (9,1), A056727 (9,7).
- primes involving repunits, X*repunit +- Y (= X*repunit*10 +- Y-X, cf. above):
- A004023 (1...1), A097683 (1..13), A097684 (1..17), A097685 (1..19), A084832 (2..21), A096506 (2..23), A099409 (2..27),
- A099410 (2..29), A055557 (3..31), A099411 (3..37), A099412 (4..41), A096845 (4..43), A099413 (4..47), A099414 (4..49),
- A099415 (5..51), A099416 (5..53), A099417 (5..57), A099418 (5..59), A098088 (6..61), A096507 (6..67), A099419 (7..71),
- A099420 (7..73), A098089 (7..79), A099421 (8..81), A099422 (8..83), A096846 (8..87), A096508 (8..89), A095714 (9..91), A089675 (9..97).
- primes involving repunits, X*repunit(2n+1) +- (Y-+X)*10^n (= X..XYX..X = near-repdigit palindromic primes):
- A331862 (1,0), A004023 (1...1), A331865 (1,2), A077779 = A107123*2+1 & A331865 (1,3), A077780 = A107124*2+1 & A331866 (1,4), A077783 = A107125*2+1 (1,5), A077787 = A107126*2+1 (1,6), A077789 = A107127*2+1 (1,7), A077791 = A107648*2+1 (1,8), A077795 = A107649*2+1 (1,9),
- A077775 = A183174*2+1 (3,1), A077784 = A183175*2+1 (3,5), A077790 = A183176*2+1 (3,7), A077792 = A183177*2+1 (3,8),
- A077777 = A183178*2+1 (7,2), A077781 = A183179*2+1 (7,4), A077785 (7,5), A077788 = 2*A183181 + 1 (7,6), A077793 = A183182*2+1 (7,8), A077796 = 2*A183183 + 1 (7,9),
- A077776 = A183184*2+1 (9,1), A077778 = A115073*2+1 (9,2), A077782 = A183185*2+1 (9,4), A077786 = A183186*2+1 (9,5), A077794 = 2*A183187(n)+1 (9,8).
- repunit primes: A004022, A004023 (indices of primes in repunits A002275).
- primes of the form binomial(k*n, n) +- 1, k=2..6: A066699, A066726, A125221, A125220, A125241, A125240, A125243, A125242, A125245, A125244
- primes p such that x^k = 2 has a solution mod p, (**) means the divergence occurs beyond the last entry shown in the OEIS.
- primes p such that x^k = 2 has a solution mod p, k=1 to 9: A000040, A038873 (or A001132), A040028, A040098, A040159, A040992, A042966, A045315(**), A049596,
- primes p such that x^k = 2 has a solution mod p, k=10 to 20: A049542, A049543, A049544, A049545, A049546, A049547, A045315, A049549, A049550, A049551
- primes p such that x^k = 2 has a solution mod p, k=20 to 29: A049552, A049553, A049554, A049555, A049556, A049557, A049558, A049596(**), A049560, A049561
- primes p such that x^k = 2 has a solution mod p, k=30 to 39: A049562, A216883, A049564, A049565, A049566, A049567, A049568, A049569, A049570, A049571
- primes p such that x^k = 2 has a solution mod p, k=40 to 49: A049572, A049573, A049574, A058853, A049576, A049577, A049578, A216885, A049580, A042966(**)
- primes p such that x^k = 2 has a solution mod p, k=50 to 59: A049582, A049583, A049584, A049585, A049550(**), A049587, A049588, A049589, A049590, A216886
- primes p such that x^k = 2 has a solution mod p, k=60 to 63 and 67: A049592, A216884 A049594, A049595, A216887
- primes such that the sum of the predecessor and successor primes is divisible by k: A112681, A112794, A112731, A112789, A112795, A112796, A112804, A112847, A112859, A113155, A113156, A113157, A113158
primes that become a different prime under some mapping
- see also: primes, sequences related to decimal representation of, digits, maps acting on (to be created).
- primes that become a different prime under some mapping (1): A180533 A180535 A180537 A180560 A180541 A180543 A180552 A180581 A180561 A180530 A180526 A180527
- primes that become a different prime under some mapping (2): A180545 A180525 A180528 A180531 A180559 A180529 A180532 A180538 A180534 A180517 A180540 A180542
- primes that become a different prime under some mapping (3): A180518 A180548 A180547 A180519 A180546 A180549 A180550 A180553 A180520 A180555 A180557 A180521
- primes that become a different prime under some mapping (4): A180558 A180522 A180523 A180524 A180536 A180539 A180544 A180554 A180551 A180556
primes whose base-b1 representation also is the base-b2 representation of a prime:
- Primes in two bases (1): A235266*, A152079, A235475, A235476, A235477, A235478, A235479, A065720, A235265, A235473, A231474
- Primes in two bases (2): A231476, A231477, A231478, A235480, A065721, A235461, A235467, A235474, A235624, A235634, A235633
- Primes in two bases (3): A235481, A065722, A235462, A235468, A235615, A235625, A235635, A235632, A235482, A065723, A235463
- Primes in two bases (4): A235469, A235616, A235626, A235636, A235631, A231481, A065724 A235464, A235470, A235617, A235627
- Primes in two bases (5): A235637, A235630, A231479, A065725, A235465, A235471, A235618, A235628, A235638, A235622, A231480
- Primes in two bases (5): A065726, A235466, A235472, A235619, A235629, A235639, A235621, A235620, A065727, A089971, A089981
- Primes in two bases (6): A090707, A090708, A090709, A090710, A235394, A235395, A091924, A113016, A235110, A103144
primes with given smallest positive primitive root
- primes with X as smallest positive primitive root: (1) A001122, A001123, A001124, A001125, A001126, A061323, A061324, A061325, A061326, A061327,
- primes with X as smallest positive primitive root: (2) A061328, A061329, A061330, A061331, A061332, A061333, A061334, A061335, A061730, A061731,
- primes with X as smallest positive primitive root: (3) A061732, A061733, A061734, A061735, A061736, A061737, A061738, A061739, A061740, A061741,
- primes with X as smallest positive primitive root: (4) A114657, A114658, A114659, A114660, A114661, A114662, A114663, A114664, A114665, A114666,
- primes with X as smallest positive primitive root: (5) A114667, A114668, A114669, A114670, A114671, A114672, A114673, A114674, A114675, A114676,
- primes with X as smallest positive primitive root: (6) A114677, A114678, A114679, A114680, A114681, A114682, A114683, A114684, A114685, A114686
- primes, <= n: A000720*
- primes, absolute: A003459*
- primes, additive: A046704
- primes, almost: see almost primes
- primes, approximations to: A050503, A050502, A050504
- primes, arithmetic progressions of, see primes, in arithmetic progressions
- primes, automorphic: A046883, A046884
- primes, balanced: (index) A096693, A096705, A096706, A096707, A096708, A096697, A096709, A096695
- primes, balanced: (order) A006562, A082077, A082078, A082079, A096697, A096698, A096699, A096700, A096701, A096702,
- primes, balanced: (order) A096703, A096704, A081415, A082080, A126554, A096692, A127557, A096696, A160920, A090403
- primes, balanced: (order) A126556, A126558, A126555, A126557, A127364, A126559, A051795, A054342, A090403, A055206
- primes, balanced: A006562, A051795, A054342
- primes, Bertrand: A006992*, A051501
- primes, Bertrand: see also Bertrand's Postulate
- Primes, by class number, A002148, A002142, A002146, A002147, A002149
- primes, by Erdos-Selfridge class n+: (0) A005113, A126433, A101253
- primes, by Erdos-Selfridge class n-: (0) A056637, A101231, A126805
- primes, by Erdos-Selfrigde class n+: (1) A005105, A005106, A005107, A005108, A081633, A081634
- primes, by Erdos-Selfrigde class n+: (2) A081635, A081636, A081637, A081638, A081639, A084071, A090468, A129474, A129475
- primes, by Erdos-Selfrigde class n-: (1) A005109, A005110, A005111, A005112, A081424, A081425
- primes, by Erdos-Selfrigde class n-: (2) A081426, A081427, A081428, A081429, A081430, A081640, A081641, A129248, A129249, A129250
- Primes, by number of digits, A003617, A006879, A006880, A003618
- primes, by order: (1) A007821, A049078, A049079, A049080, A049081, A058322, A058324, A058325, A058326, A058327, A058328, A093046
- primes, by order: (2) A000040, A006450, A038580, A049090, A049203, A049202, A057849, A057850, A057851, A057847, A058332, A093047
- Primes, by period length, A007615
- Note that for sequences A019334-A019421 and A105874-A105914, which list primes with primitive root m in the range 3 to 99 and -2 to -42, in order to include primes less than |m|, we use the essentially equivalent definition "Primes p such that the multiplicative order of m mod p is p-1".
- primes having smallest primitive root 2: A001122, 3: A001123, 5: A001124, 6: A001125, 7: A001126.
- related: A002230 (least primitive root sets a new record), A003147 (primitive root is a Fibonacci number)
- having primitive root 3: A019334, 5: A019335, 6: A019336, 7: A019337, 8: A019338, 10: A001913
- 11: A019339, 12: A019340, 13: A019341, 14: A019342, 15: A019343, 17: A019344, 18: A019345, 19: A019346, 20: A019347
- 21: A019348, 22: A019349, 23: A019350, 24: A019351, 26: A019352, A019353, A019354, A019355, 30: A019356, A019357, A019358, A019359,
- 34: A019360, 35: A019361, 37: A019362, A019363, A019364, 40: A019365, A019366, A019367, A019368, A019369, A019370, A019371,
- A019372 48: A019373, 50: A019374 A019375 A019376 A019377 A019378 A019379 A019380 A019381 A019382 A019383
- A019384 A019385 A019386 A019387 A019388 A019389 A019390 A019391 A019392 A019393 A019394 A019395
- A019396 A019397 A019398 A019399 A019400 A019401 A019402 80: A019403, 82: A019404 A019405 A019406 A019407
- A019408 A019409 A019410 A019411 A019412 A019413 A019414 A019415 A019416 A019417 A019418 A019419
- A019420 99: A019421
- having primitive root -2: A105874, -3 (and -27): A105875, -4 (and -16): A105876, -5: A105877, -6: A105878, -7: A105879, -8: A105880
- -9: A105881, -10: A007348, -11: A105883, -12: A105884, -13: A105885, -14: A105886, -15: A105887, -17: A105889, A105890, A105891,
- A105892, A105893, A105894, A105895, A105896, A105897, -26: A105898, -28: A105900, A105901, A105902, A105903, A105904, A105905,
- A105906, A105907, A105908, A105909, A105910, A105911, A105912, A105913, -42: A105914
- having primitive roots 10 and -10: A007349
- related: A029932 (primes with record values of the least positive prime primitive root (sic!))
- primes, by primitive root: see also Artin's constant
- Primes, chains of, A005603, A005602
- primes, characteristic function of: A010051
- Primes, compressed, A002036
- primes, concatenation of: A033308
- Primes, consecutive, A006549, A007700, A007513, A007529, A007530, A006489
- primes, cuban: A002407*, A002648, A002504, A001479, A001480, A002367, A002368
- primes, cuban, generalized: A007645*, A003627, A217035
- primes, cuban, see also: A159961, A113478, A221717, A221793
- primes, Cullen: A005849*, A050920*
- primes, deceptive: A000864
- For the field K = Q(sqrt(D)), the three columns give D, primes that decompose in K, and primes that are inert in K:
- D decompose inert
- -1 A002144 A002145
- -2 A033200 A003628
- -3 A002476 A003627
- -5 A139513 A003626
- -6 A157437 A191059
- -7 A045386 A003625
- -10 A155488 A296925
- -11 A296920 A191060
- -13 A296926 A296927
- -14 A191017 A191061
- -15 A191018 A191062
- -17 A296929 A296930
- -19 A191019 A191063
- -22 A191020 A191064
- -23 A191021 A191065
- -30 A191023 A191066
- -31 A191024 A191067
- -35 A191026 A191068
- -38 A191028 A191069
- -39 A191029 A191070
- -43 A191031 A184902
- -46 A191032 A191071
- -47 A191033 A191072
- -51 A191034 A191073
- -55 A191036 A191074
- -59 A191038 A191075
- -62 A191040 A191076
- -67 A191041 A191077
- -70 A191043 A191078
- -71 A191044 A191079
- -78 A191047 A191080
- -79 A191048 A191081
- -83 A191050 A191082
- -86 A191051 A191083
- -87 A191052 A191084
- -91 A191054 A191085
- -94 A191056 A191086
- -95 A191057 A191087
- -163 A296921 A296915
- 2 A001132 A003629
- 3 A097933 A003630
- 5 A045468 A003631
- 6 A097934 A038877
- 7 A296934 A003632
- 10 A097955 A038880
- 11 A296935 A296936
- 13 A296937 A038884
- 15 A097956 A038888
- 17 A296938 A038890
- 19 A297175 A297176
- 23 A297177 A038898
- 29 A191022 A038902
- 30 A097959 A038904
- 34 A191025 A038910
- 37 A191027 A038914
- 41 A191030 A038920
- 53 A191035 A038932
- 58 A191037 A038938
- 61 A191039 A038942
- 69 A191042 A038952
- 73 A191045 A038958
- 74 A191046 A038960
- 82 A191049 A038968
- 89 A191053 A038978
- 93 A191055 A038982
- 97 A191058 A038988
- Primes, decompositions into, A002375, A002126, A001031, A002372, A007414
- primes, differences between: A001223*, A007921*, A030173*, A037201
- primes, differences between: see also primes, gaps between
- primes, dihedral calculator: A038136
- primes, dihedral palindromic: A048662
- primes, dividing n: A001221*, A001222*, A006530*, A046660
- primes, dividing Fermat numbers: A023394*, A050922, A070592, A093179, A343557
- primes, dividing Fermat numbers: see also A007117, A023395, A046052, A308695, A332414, A332416, A343767, A358684
- primes, doubled: A001747, A005602, A005603
- primes, duodecimal: A006687
- primes, Euclid-Pocklington: A053341*
- primes, Euclidean: A007996
- primes, even: A001747
- primes, factorial: see factorial primes
- primes, Fermat, generalized, see primes, generalized Fermat
- primes, Fermat, generalized: A056993* A005574 A000068 A006314 A006313 A006315 A006316 A056994 A056995 A057465 A057002 A088361 A088362 A226528 A226529 A226530 A251597 A253854 A244150 A243959 A321323
- primes, Fermat: A019434*, A159611
- primes, Fermat: see also A093625, A138083, A171381
- primes, Fibonacci numbers: A001605*, A005478*
- primes, final digits of: A007652
- primes, fortunate, A005235
- primes, from Euclid's proof: A000945*, A000946*
- primes, gaps between, A001223*, A007921*, A030173*, A037201, A023200
- primes, gaps between: primes beginning gaps of sizes 2, 4, ..., 64 are given in A001359, A029710, A031924, A031926, A031928 (gap 10), A031930, A031932, A031934, A031936, A031938 (gap 20), A061779, A098974, A124594, A124595, A124596 (gap 30), A126784, A134116, A134117, A134118, A126721 (gap 40), A134120, A134121, A134122, A134123, A134124 (gap 50), A204665, A204666, A204667, A204668, A126771 (gap 60), A204669, A204670.
- primes, gaps between: primes beginning gaps of 70, 80,... 300: A204792, A126722, A204764, A050434 (gap 100), A204801, A204672 (gap 120), A204802, A204803, A126724 (gap 150), A184984, A204805, A204673 (gap 180), A204806, A204807 (gap 200), A224472 (gap 300).
- primes, gaps between: start of the first gap of 2n: A000230, 6n: A058193, 10n: A140791, 2^n: A062529, 10^n: A101232, n^2: A138198, a^b: A123995, 128: A204812, 256: A204813.
- primes, gaps between: indices of primes followed by a given gap: A029707 (gap 2), A029709 (gap 4), A116493 (gap 70), A116496 (gap 100), A116497 (gap 200), A116495 (gap 210).
- primes, gaps between: twin primes and related: A001359, A006512, A077800, A001097, A049591, A159461
- primes, gaps between, A031924 A031925 A031926 A031927 A031928 A031929 A031930 A031931 A031932 A031933 A031934 A031935 A031936 A031937 A031938 A031939
- primes, gaps between, LCM of: A080374 A080375 A080376 A083273 A083552 A083551
- primes, gaps between, records for: A000101* (upper end), A002386* (lower end), A005250* (gaps)
- primes, gaps between, see also: A124582-A124591, A005669, A002540, A000232, A001549, A001632
- primes, gaps between, see also: primes, differences between
- primes, generalized Fermat: A006686, A078902, A090874, A100266, A100267, A123646
- primes, generated by polynomials: see primes, produced by polynomials
- primes, Germain: see primes, Sophie Germain
- primes, good: A046869, A028388
- primes, half-quartan: A002646
- primes, happy: A035497
- primes, Higgs: A007459
- primes, home: A037274* (base 10), A048986* and A064795 (base 2)
- primes, home, see also A048985, A064841, A195264
- primes, Honaker: A033548
- primes, iccanobiF: A036797
- primes, in arithmetic progressions: (see also Primes in arithmetic progression)
- Consider n-term arithmetic progressions (APs) of primes, i, i+d, i+2d, ..., i+(n-1)d. We can minimize (a) the first term i, (b) the common difference d, or (c) the last term, l=i+(n-1)d. This gives rise to 12 sequences since for each problem we can list the values of i, d, l, and we can list the progressions as the rows of a triangle:
- If we take the initial value to be the n-th prime (A000040) the the sequences are: d: A088430, l: A113834, triangle: A133278
- One may also ask for n consecutive primes in arithmetic progression: this gives A006560 and many other sequences, see Consecutive primes in arithmetic progression for more information and references.
- One may also consider n consecutive numbers in arithmetic progression having the same prime signature, and ask the same questions. This gives the following sequences:
- One may also ask for n consecutive numbers with the same prime signature: this gives sequences A034173, A034174, A083785 again. See also A087307.
- See also: A031217 A033168 A033290 A033446 A033447 A033448 A033449 A033450 A033451 A035050 A035089
- A035091 A035092 A035093 A035094 A035095 A035096 A047980 A047981 A047982 A052239 A052242 A052243 A053647 A054203 A057324 A057325 A057326 A057327 A057328 A057329 A057330 A057331 A057778 A057874 A058252 A058323 A058362 A059044 A266909 A293791
- Primes in arithmetic progression, Consecutive primes in arithmetic progression.
- Higher powers: A001912, A002496, A005574, A115104, A199307, A199364, A199365, A199366, A199367, A199368, A199369
- primes, in decimal expansion of Pi: A005042
- Primes, in intervals, A007491
- Primes, in number fields, A003631, A003625, A003628, A003630, A003632, A003626
- Primes, in residue classes, A003627, A002313, A003629, A002145, A007520, A002515, A007528, A002144, A007521, A002476, A001132, A007522, A007519
- Primes, in sequences, A003032, A003033, A002072
- Primes, in ternary, A001363
- primes, in various ranges: (1) A003604 A006879 A006880 A007053 A007508 A033843 A035533 A036351 A036386 A039506 A039507
- primes, in various ranges: (2) A040014 A049035 A049040 A050251 A050258 A050986 A050987 A052130 A055206 A055552 A055683 A055728
- primes, in various ranges: (3) A055729 A055730 A055731 A055732 A055737 A055738 A057573 A057978 A058191 A058247 A058248 A060969
- primes, in various ranges: (4) A060970 A060971 A063501 A064151 A066265 A066873 A071973
- primes, in various ranges: (5) A091644 A091645 A091646 A091647 A091705 A091706 A091707 A091708 A091709 A091710
- primes, in various ranges: (6) A091634 A091635 A091636 A091637 A091638 A091639 A091640 A091641 A091642 A091643
- Primes, inert, A003631, A003625, A003628, A003630, A003632, A003626
- primes, irregular: A000928*, A061576*
- primes, isolated: A007510, A039818
- primes, isolated: see also primes, weak
- Primes, largest, A006530, A006990, A007014, A002374, A003618
- primes, left-truncatable: see truncatable primes
- primes, lonely: A023186, A023187, A023188
- primes, long period: A006883*
- primes, Lucas numbers: A001606*, A005479*
- primes, Lucasian: A002515*
- primes, Mersenne: A000668* (primes of form 2^p-1), A000043* (p values)
- primes, Mills's: A051254*
- primes, minus a constant: A000040*, A006093, A040976, A086801, A172367, A173064, A086304, A088967, A172407, A086303, A014689, A014692
- primes, multiplicative and additive: A046713
- primes, multiplicative: A046703
- primes, next: A007918
- primes, number of less than k^n: A007053, A055729, A086680, A055730, A055731, A055732, A086681, A086682, A006880, A058247, A058248, A058191
- primes, number of less than n*10^k: (1) A000720*, A038801, A028505, A038812, A038813, A038814, A038815, A038816, A038817, A038818, A038819,
- primes, number of less than n*10^k: (2) A038820, A038821, A038822, A080123, A080124, A080125, A080126, A080127, A080128, A080129, A116356
- primes, octavan: A006686
- primes, of a particular form, number that are less than or equal to 10^n: A091115 A091116 A091117 A091119-A091129 A091099 A091098 A006880 A007508
- primes, of form k*n! +- 1: (1) A002981, A002982, A051915, A076133, A076679, A076134, A076680, A099350, A076681, A099351,
- primes, of form k*n! +- 1: (2) A076682, A180627, A076683, A180628, A180625, A180629, A180626, A180630, A126896, A180631
- primes, of form ((k+1)^n-1)/k: A028491, A004061, A004062, A004063, A004023, A005808, A004064, A016054, A006032, A006033, A006034, A006035, A127995, A127996, A127997, A127998, A127999, A128000, A098438, A128002, A128003, A128004
- primes, of form n! +- 1: A002981, A002982
- primes, of form x^2 + kxy + y^2: (1) A007519 A007645 A033212 A033215 A038872 A068228 A107008 A107008 A107145 A107152 A139492 A139493
- primes, of form x^2 + kxy + y^2: (2) A139493 A139494 A139495 A139496 A139497 A139498 A139499 A139500 A139501 A139502 A139503 A139504
- primes, of form x^2 + kxy + y^2: (3) A139505 A139506 A139507 A139508 A139509 A139510 A139511 A139512
- primes, of form x^2+27y^2: A014752, A040028
- primes, of form x^2+y^2: A002313*, A002331, A002330, A002144
- primes, order of: A049076, A007097
- primes, palindromic: A002385*, A007500, A007616
- primes, palindromic: see also (1) A016041 A029971 A029972 A029973 A029974 A029975 A029976 A029977 A029978 A029979 A029980 A029981
- primes, palindromic: see also (2) A029982 A029732 A046942 A046941 A050236 A050239 A039954 A118064 A119351 A016115 A050251 A050683
- primes, palindromic, smoothly undulating, A062209 A062210 A062211 A062212 A062213 A062214 A062215 A062216 A062217 A062218 A062219 A062220
- primes, palindromic, smoothly undulating, A062221 A062222 A062223 A062224 A062225 A062226 A062227 A062228 A062229 A062230 A062231 A062232
- primes, palindromic, smoothly undulating, A077799 A059758 A032758
- primes, period of reciprocal of, see 1/p
- primes, Pierpont: A005109
- primes, primitive roots of, A001918, A002233, A002199, A002231, A001122, A007348, A003147, A001913, A001123, A007349, A001124, A001125, A001126
primes, produced by polynomials:
- related to Euler's prime producing polynomial n^2 + n + 41 = A202018(n): A002837 (n^2-n+41 is prime), A005846 (primes n^2+n+41), A007634 (n^2+n+41 is composite), A056561 (n^2+n+41 is prime), A097823 (n^2+n+41 is not squarefree).
- other polynomials: A007635 (primes n^2 + n + 17), A028823 (n^2 + n + 17 is prime), A048058 (n^2 + n + 11), A048059 (primes k^2 + k + 11), A048097 (n^2 + n + 11 is prime), A050268, A022464, A117081; A121887, A139414, A160548 (primes n^2 + n + 844427), A259645 (m^2+1, 3*m-1 and m^2+m+41 are prime), A005574 (k^2+1 is prime), A087370 (3m-1 is prime).
- primes p such that x^2 + x + p is prime for 0 <= x <= k: A001359 (k=1), A022004 (k=2), A172454 (k=3), A187057 (k=4), A144051 (k=6), A187060 (k=7), A190800 (k=8), A191456 (k=9).
- (arg) maxq min {x >= 0 | q + p*x + x^2 is composite} for given prime p: A273595 (q), A273597 (min x); for odd p: A273756 (q), A273770 (min x).
- see also: primes in arithmetic progression, A033188, A033189.
- Primes, products of, A007467, A006881, A006094, A007304
- primes, products of: A000040 (1), A001358 (2), A014612 (3), A014613 (4)
- primes, products of: For products of 1, 2, 3, 4, 5, and 6 distinct primes see A000040, A006881, A007304, A046386, A046387, and A067885, resp.
- primes, pseudo: see pseudoprimes
primes, quadratic forms, discriminant:
- primes, quadratic form, discriminant -104: A107132, A033218
- primes, quadratic form, discriminant -108: A014752
- primes, quadratic form, discriminant -112: A107133, A107134
- primes, quadratic form, discriminant -116: A033219
- primes, quadratic form, discriminant -11: A056874, A106857
- primes, quadratic form, discriminant -120: A107135, A107136, A107137, A033220
- primes, quadratic form, discriminant -124: A033221
- primes, quadratic form, discriminant -128: A105389
- primes, quadratic form, discriminant -12: A002476
- primes, quadratic form, discriminant -132: A107138, A033222
- primes, quadratic form, discriminant -136: A107139, A033223
- primes, quadratic form, discriminant -140: A107140, A033224
- primes, quadratic form, discriminant -144: A107141, A107142
- primes, quadratic form, discriminant -148: A033225
- primes, quadratic form, discriminant -152: A107143, A033226
- primes, quadratic form, discriminant -156: A033227
- primes, quadratic form, discriminant -15: A033212, A106858, A106859, A106860, A106861
- primes, quadratic form, discriminant -160: A107144, A107145
- primes, quadratic form, discriminant -164: A033228
- primes, quadratic form, discriminant -168: A107146, A107147, A107148, A033229
- primes, quadratic form, discriminant -16: A002144, A002313
- primes, quadratic form, discriminant -172: A033230
- primes, quadratic form, discriminant -176: A107149, A107150
- primes, quadratic form, discriminant -180: A107151, A107152
- primes, quadratic form, discriminant -184: A107153, A033231
- primes, quadratic form, discriminant -188: A033232
- primes, quadratic form, discriminant -192: A107154
- primes, quadratic form, discriminant -196: A107155
- primes, quadratic form, discriminant -19: A106862, A106863
- primes, quadratic form, discriminant -200: A107156, A107157
- primes, quadratic form, discriminant -204: A107158, A033233
- primes, quadratic form, discriminant -208: A107159, A107160
- primes, quadratic form, discriminant -20: A033205, A106864, A106865
- primes, quadratic form, discriminant -212: A033234
- primes, quadratic form, discriminant -216: A107161, A107162
- primes, quadratic form, discriminant -220: A033235
- primes, quadratic form, discriminant -224: A107163, A107164
- primes, quadratic form, discriminant -228: A107165, A033236
- primes, quadratic form, discriminant -232: A107166, A033237
- primes, quadratic form, discriminant -236: A033238
- primes, quadratic form, discriminant -23: A106866, A106867, A106868, A106869
- primes, quadratic form, discriminant -240: A107167, A107168, A107169
- primes, quadratic form, discriminant -244: A033239
- primes, quadratic form, discriminant -248: A107170, A033240
- primes, quadratic form, discriminant -24: A033199, A084865
- primes, quadratic form, discriminant -256: A014754
- primes, quadratic form, discriminant -260: A107171, A033241
- primes, quadratic form, discriminant -264: A107172, A107173, A107174, A033242
- primes, quadratic form, discriminant -268: A033243
- primes, quadratic form, discriminant -272: A107175, A107176
- primes, quadratic form, discriminant -276: A107177, A033244
- primes, quadratic form, discriminant -27: A002476, A106870
- primes, quadratic form, discriminant -280: A107178, A107179, A107180, A033245
- primes, quadratic form, discriminant -284: A033246
- primes, quadratic form, discriminant -288: A107181
- primes, quadratic form, discriminant -28: A033207
- primes, quadratic form, discriminant -292: A033247
- primes, quadratic form, discriminant -296: A107182, A033248
- primes, quadratic form, discriminant -300: A107183, A107184
- primes, quadratic form, discriminant -304: A107185, A107186
- primes, quadratic form, discriminant -308: A107187, A033249
- primes, quadratic form, discriminant -312: A107188, A107189, A107190, A033250
- primes, quadratic form, discriminant -316: A033251
- primes, quadratic form, discriminant -31: A033221, A106871, A106872, A106873, A106874
- primes, quadratic form, discriminant -320: A107191, A107192
- primes, quadratic form, discriminant -324: A107193
- primes, quadratic form, discriminant -328: A107194, A033252
- primes, quadratic form, discriminant -32: A007519, A007520, A106875, A106876
- primes, quadratic form, discriminant -332: A033253
- primes, quadratic form, discriminant -336: A107195, A107196, A107197, A107198
- primes, quadratic form, discriminant -340: A107199, A033254
- primes, quadratic form, discriminant -344: A107200, A033255
- primes, quadratic form, discriminant -348: A033256
- primes, quadratic form, discriminant -352: A107201, A107202
- primes, quadratic form, discriminant -356: A033257
- primes, quadratic form, discriminant -35: A106877, A106878, A106879, A106880, A106881
- primes, quadratic form, discriminant -360: A107203, A107204, A107205, A107206
- primes, quadratic form, discriminant -364: A107207, A033258
- primes, quadratic form, discriminant -368: A107208, A107209
- primes, quadratic form, discriminant -36: A040117, A068228, A106882
- primes, quadratic form, discriminant -372: A107210, A033202
- primes, quadratic form, discriminant -376: A107211, A033204
- primes, quadratic form, discriminant -380: A033206
- primes, quadratic form, discriminant -384: A107212, A107213
- primes, quadratic form, discriminant -388: A033208
- primes, quadratic form, discriminant -392: A107214, A107215
- primes, quadratic form, discriminant -396: A107216, A107217
- primes, quadratic form, discriminant -39: A033227, A106883, A106884, A106885, A106886, A106887, A106888
- primes, quadratic form, discriminant -3: A007645
- primes, quadratic form, discriminant -400: A107218, A107219
- primes, quadratic form, discriminant -40: A033201, A106889
- primes, quadratic form, discriminant -43: A106890, A106891
- primes, quadratic form, discriminant -44: A033209, A106282, A106892, A106893
- primes, quadratic form, discriminant -47: A033232, A106894, A106895, A106896, A106897, A106898, A106899, A106900
- primes, quadratic form, discriminant -48: A068229
- primes, quadratic form, discriminant -4: A002313
- primes, quadratic form, discriminant -51: A106901, A106902, A106903, A106904
- primes, quadratic form, discriminant -52: A033210, A106905, A106906
- primes, quadratic form, discriminant -55: A033235, A106907, A106908, A106909, A106910, A106911, A106912, A106913
- primes, quadratic form, discriminant -56: A033211, A106914, A106915, A106916, A106917
- primes, quadratic form, discriminant -59: A106918, A106919, A106920, A106921, A106922
- primes, quadratic form, discriminant -63: A106923, A106924, A106925, A106926, A106927, A106928, A106929, A106930
- primes, quadratic form, discriminant -64: A007521, A106931
- primes, quadratic form, discriminant -67: A106932, A106933
- primes, quadratic form, discriminant -68: A033213, A106934, A106935, A106936, A106937, A106938
- primes, quadratic form, discriminant -71: A033246, A106939, A106940, A106941, A106942, A106943, A106944, A106945, A106946, A106947, A106948
- primes, quadratic form, discriminant -72: A106949, A106950
- primes, quadratic form, discriminant -75: A033212, A106951, A106952
- primes, quadratic form, discriminant -76: A033214, A106953, A106954, A106955
- primes, quadratic form, discriminant -79: A033251, A106956, A106957, A106958, A106959, A106960, A106961, A106962
- primes, quadratic form, discriminant -7: A045373, A106856
- primes, quadratic form, discriminant -80: A047650, A106963, A106964, A106965
- primes, quadratic form, discriminant -83: A106966, A106967, A106968, A106969, A106970
- primes, quadratic form, discriminant -84: A033215, A102271, A102273, A106971, A106972, A106973, A106974
- primes, quadratic form, discriminant -87: A033256, A106975, A106976, A106977, A106978, A106979, A106980, A106981, A106982, A106983
- primes, quadratic form, discriminant -88: A033216, A106984
- primes, quadratic form, discriminant -8: A033203
- primes, quadratic form, discriminant -91: A106985, A106986, A106987, A106988, A106989
- primes, quadratic form, discriminant -92: A033217
- primes, quadratic form, discriminant -95: A033206, A106990, A106991, A106992, A106993, A106994, A106995, A106996, A106997, A106998, A106999, A107000, A107001
- primes, quadratic form, discriminant -96: A107002, A107003, A107004, A107005, A107006, A107007, A107008
- primes, quadratic form, discriminant -99: A107009, A107010, A107011, A107012, A107013
- primes, quadratic form, discriminant 1020: A139512
- primes, quadratic form, discriminant 117: A139494
- primes, quadratic form, discriminant 140: A139495
- primes, quadratic form, discriminant 165: A139496
- primes, quadratic form, discriminant 21: A139492
- primes, quadratic form, discriminant 221: A139497
- primes, quadratic form, discriminant 285: A139498
- primes, quadratic form, discriminant 357: A139499
- primes, quadratic form, discriminant 396: A139500
- primes, quadratic form, discriminant 437: A139501
- primes, quadratic form, discriminant 480: A139502
- primes, quadratic form, discriminant 525: A139503
- primes, quadratic form, discriminant 572: A139504
- primes, quadratic form, discriminant 621: A139505
- primes, quadratic form, discriminant 672: A139506
- primes, quadratic form, discriminant 725: A139507
- primes, quadratic form, discriminant 77: A139493
- primes, quadratic form, discriminant 780: A139508
- primes, quadratic form, discriminant 837: A139509
- primes, quadratic form, discriminant 896: A139510
- primes, quadratic form, discriminant 957: A139511
- Primes, quadratic partitions of, A002973, A002972
- Primes, quadratic residues of, A002223, A002224, A002225, A002226, A002228, A002227
- primes, quartan: A002645
- primes, quintan: A002649, A002650
- primes, reciprocals of, periods: see 1/p
- primes, regular: A007703*
- Primes, represented by quadratic forms, A002496, A007645, A002383, A007490, A002327, A005473, A005471, A007635, A007639, A007637, A007641, A005846
- primes, repunit: A004022*, A004023*
- primes, right-truncatable: see truncatable primes
- primes, safe: A005385*, A051900, A051901, A051902
- primes, sextan: A002647
- primes, short period: A006559*
- Primes, single, A007510
- primes, Sophie Germain: A005384
- Primes, special sequences of, A001259, A001275
- Primes, square roots of, A000006
- primes, Stern: A042978
- primes, strobogrammatic: A007597, A018847
- primes, strong: A051634
- primes, sum of the first k^n primes, k=2,3,5,6,7,10: A099825, A099826, A113633, A113634, A113635, A099824
- Primes, sums of digits of, A007605
- Primes, sums of, A007610, A001414, A007504, A007468, A002373, A001043, A001172
- Primes, sums of, divisibility: see Index to sums of powers of primes divisibility sequences
- primes, sums of, minimizing: A022894, A083309, A113040, A215036, A215029, A215030
- Primes, supersingular, A006962
- primes, that divide sum of all primes <= p: A007506, A024011, A028581, A028582
- Primes, to odd powers only, A002035
- primes, transformed by cellular automata: A093510 A093511 A093512 A093513 A093514 A093515 A093516 A093517
- primes, transforms of, A007442, A007444, A007447, A007441, A007445, A007296, A007446
- primes, truncatable: see truncatable primes
- primes, truncated: see truncatable primes
- primes, twin primes conjecture: see also A093483
- primes, twin: A001359*, A014574*, A006512*, A001097*, A077800
- primes, twin: see also twin primes constant
- primes, twin: see also A005597, A007508, A033843, A036061, A036062, A036063
- primes, undulating: A039944
- primes, various subsets in range 2^n,2^(n+1): (A-numbers in parentheses give the primes whose occurrences are being counted)
- A036378* (A000040), A095005 (A027697), A095006 (A027699), A095007 (A002144), A095008 (A002145), A095009 (A007519), A095010 (A007520), A095011 (A007521), A095012 (A007522), A095013 (A001132), A095014 (A003629), A095015 (A002476), A095016 (A007528), A095017 (A001359), A095018 (A066196), A095019 (A095071), A095020 (A095070), A095021 (A030430), A095022 (A030432), A095023 (A030431), A095024 (A030433), A095052 (A095072), A095053 (A095073), A095054 (A095074), A095055 (A095075), A095056 (A081091), A095057 (A095077), A095058 (A095078), A095059 (A095079), A095060 (A095080), A095061 (A095081), A095062 (A095082), A095063 (A095083), A095064 (A095084), A095065 (A095085), A095066 (A095086), A095067 (A095087), A095068 (A095088), A095069 (A095089), A095092 (A095102), A095093 (A095103), A095094 (A080114), A095095 (A080115)
- primes, weak or weakly: A050249, A051635, A137985, A158124, A158125, A186995, A192545; see also A158641, A253269, A323745
- primes, weakly prime numbers: A050249
- primes, which are average of their neighbors: A006562
- primes, whose reversal is a square, A007488
- primes, Wilson: A007540*
- Primes, with consecutive digits, A006510, A006055
- primes, with embedded primes:
- primes, with first digit 1 (or 2, 3, etc.): A045707, A045708, A045709, etc.
- Primes, with large least nonresidues, A002225, A002226, A002228, A002227
- Primes, with prime subscripts, A006450
- primes, Woodall: A002234*, A050918*
- primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,...:
- A000043 A001770 A001771 A001772 A001773 A001774 A001775 A002235 A002236 A002237 A002238 A002240 A002242 A002253 A002254 A002256 A002258 A002259 A002261 A002269 A002274
- A032353 A032356 A032359 A032360 A032361 A032362 A032363 A032364 A032365 A032366 A032367 A032368 A032370 A032371 A032372 A032373 A032374 A032375 A032376 A032377 A032379 A032380 A032381 A032382 A032383 A032384 A032385 A032386 A032387 A032388 A032389 A032390 A032391 A032392 A032393 A032394 A032395 A032396 A032397 A032398 A032399 A032400 A032401 A032402 A032403 A032404 A032405 A032406 A032407 A032408 A032409 A032410 A032411 A032412 A032413 A032414 A032415 A032416 A032417 A032418 A032419 A032420 A032421 A032422 A032423 A032424 A032425
- A032453 A032454 A032455 A032456 A032457 A032458 A032459 A032460 A032461 A032462 A032464 A032465 A032466 A032467 A032468 A032469 A032470 A032471 A032472 A032473 A032474 A032475 A032476 A032477 A032478 A032479 A032480 A032481 A032482 A032483 A032484 A032485 A032486 A032487 A032488 A032489 A032490 A032491 A032492 A032493 A032494 A032495 A032496 A032497 A032498 A032499 A032500 A032501 A032502 A032503 A032504 A032507
- A046758 A050537 A050538 A050539 A050540 A050541 A050543 A050544 A050545 A050546 A050547
- A050549 A050550 A050551 A050552 A050553 A050554 A050555 A050556 A050557 A050558 A050559 A050560 A050561 A050562 A050563 A050564 A050565 A050566 A050567 A050568 A050569 A050570 A050571 A050572 A050573 A050574 A050575 A050576 A050577 A050578 A050579 A050580 A050581 A050582 A050583 A050584 A050585 A050586 A050587 A050588 A050589 A050590 A050591 A050592 A050593 A050594 A050595 A050596 A050597 A050598 A050599
- A050616 A050617 A050618 A050619
- A050830 A050831 A050832 A050833 A050834 A050835 A050836 A050837 A050838 A050839 A050840 A050841 A050842 A050843 A050844 A050845 A050846 A050847 A050848 A050849 A050850 A050851 A050852 A050853 A050854 A050855 A050856 A050857 A050858 A050859 A050860 A050861 A050862 A050863 A050864 A050865 A050866 A050867 A050868 A050869
- A050877 A050878 A050879 A050880 A050881 A050882 A050883 A050884 A050885 A050886 A050887 A050888 A050889 A050890 A050891 A050892 A050893 A050894 A050895 A050896 A050897 A050898 A050899 A050900 A050901 A050902 A050903 A050904 A050905 A050906 A050907 A050908
- A053345 A053346 A053348 A053349 A053350 A053351 A053352 A053353 A053354 A053355 A053356 A053357 A053358 A053359 A053360 A053361 A053362 A053363 A053364 A053365 A053366
- A007505 A050522 A050523 A050524 A050525 A050526 A050527 A050528 A002255 A050413
- primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,...:
- Primes: A005361, A002200, A002038, A007445, A007296, A001259, A006450, A001275
primeth recurrence: A007097*
primitive (1): A000020, A003050, A002233, A002199, A000019, A005992, A001578, A006246, A006245, A002589
primitive (2): A001122, A007348, A006248, A006991, A006039, A006036, A001913, A001123, A007627, A006576, A007349, A001124, A001125, A002975, A001126
Primitive factors, A002185, A007138, A002184
primitive polynomials: see also trinomials over GF(2)
- primitive roots, primes by: see primes by primitive root
- primitive roots: A060749*, A001918*, A002199, A002229, A002230, A002231, A029932, A071894
- primorial base: A049345*
- primorial base, digit sum: A276150
- primorial base, digits as table: A235168
- primorial base, number of nonzero digits: A267263
- primorial base, number of significant digits: A235224
- primorial base, number of trailing zeros: A276084*, A257993
- primorial base, prime-factorization encodings of related polynomials: A276086
- primorial base, shift left operation (append 0 to right): A276154
- primorial base, the least significant digit: A000035
- primorial base, the least significant nonzero digit: A276088
- primorial base, the least significant nonzero digit decremented by one: A276151
- primorial base, the least significant nonzero digit replaced by zero: A276093
- primorial base, the most significant digit: A276153
- primorial base, with pattern, digits in maximal descending sequence ..6421: A057588
- primorial base, with pattern, no digits larger than one: A276156
- primorial base, with pattern, one 1 and the rest zeros: A002110
- primorial base, with pattern, only one nonzero digit: A060735
- primorial base, with pattern, repunits: A143293
- primorial numbers: A002110*, A034386*
- primorial numbers: see also A056113, A056129, A006862, A057588, A129912
- primorial primes: A005234*, A014545*, A018239*, A006794*, A057704*, A057705*, A057706
principal character: A005368
prism numbers: A005914, A005915, A005919, A005920
- This is a section of the Index to the OEIS®.
- For further information see the main Index to OEIS page.
- Please read Index: Instructions For Updating Index to OEIS before making changes to this page.
- If you did not find what you were looking for in this Index, you can always search the database for a particular word or phrase.
- Full list of sections:
[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]