login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022212
Gaussian binomial coefficients [ n,5 ] for q = 5.
1
1, 3906, 12714681, 40053706056, 125368356709806, 391901483074853556, 1224770494838892134806, 3827456772141158994166056, 11960833022875371081037525431, 37377622327704219905090668384806, 116805081731088587940522831693775431
OFFSET
5,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
G.f.: x^5/((1-x)*(1-5*x)*(1-25*x)*(1-125*x)*(1-625*x)*(1-3125*x)). - Vincenzo Librandi, Aug 10 2016
a(n) = Product_{i=1..5} (5^(n-i+1)-1)/(5^i-1), by definition. - Vincenzo Librandi, Aug 10 2016
MATHEMATICA
QBinomial[Range[5, 15], 5, 5] (* Harvey P. Dale, Oct 05 2011 *)
Table[QBinomial[n, 5, 5], {n, 5, 20}] (* Vincenzo Librandi, Aug 10 2016 *)
PROG
(Sage) [gaussian_binomial(n, 5, 5) for n in range(5, 14)] # Zerinvary Lajos, May 27 2009
(Magma) r:=5; q:=5; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 10 2016
(PARI) r=5; q=5; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, Jun 04 2018
CROSSREFS
Sequence in context: A066386 A326385 A068240 * A131409 A209732 A221239
KEYWORD
nonn,easy
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 10 2016
STATUS
approved