85 results sorted by ID
Possible spell-corrected query: endomorphism ring
Unconditional foundations for supersingular isogeny-based cryptography
Arthur Herlédan Le Merdy, Benjamin Wesolowski
Foundations
In this paper, we prove that the supersingular isogeny problem (Isogeny), endomorphism ring problem (EndRing) and maximal order problem (MaxOrder) are equivalent under probabilistic polynomial time reductions, unconditionally.
Isogeny-based cryptography is founded on the presumed hardness of these problems, and their interconnection is at the heart of the design and analysis of cryptosystems like the SQIsign digital signature scheme. Previously known reductions relied on unproven...
Experimentally studying path-finding problem between conjugates in supersingular isogeny graphs: Optimizing primes and powers to speed-up cycle finding
Madhurima Mukhopadhyay
Public-key cryptography
We study the problem of finding a path between conjugate supersingular elliptic curves over $\mathbb{F}_{p^2}$ for a prime $p$, which is important for cycle finding in supersingular isogeny graphs. We see that for any given $p$, there is some $l$ corresponding to $p$ which accelerates the process of conjugate path-finding. Also, time-wise, the most efficient way of overviewing the graph is seeing $i(=3)$ steps at once. We have outlined methods in which the next vertex of any pseudo-random...
Computing Quaternion Embeddings and Endomorphism rings of Supersingular Oriented Elliptic curves
Maher Mamah
Public-key cryptography
In this paper, we investigate several computational problems motivated by post-quantum cryptosystems based on isogenies and ideal class group actions on oriented elliptic curves. Our main technical contribution is an efficient algorithm for embedding the ring of integers of an imaginary quadratic field \( K \) into some maximal order of the quaternion algebra \( B_{p,\infty} \) ramified at a prime \( p \) and infinity. Assuming the Generalized Riemann Hypothesis (GRH), our algorithm runs in...
Isogeny-based Cryptography using Isomorphisms of Superspecial Abelian Surfaces
Pierrick Gaudry, Julien Soumier, Pierre-Jean Spaenlehauer
Public-key cryptography
We investigate the algorithmic problem of computing isomorphisms between products of supersingular elliptic curves, given their endomorphism rings. This computational problem seems to be difficult when the domain and codomain are fixed, whereas we provide efficient algorithms to compute isomorphisms when part of the codomain is built during the construction. We propose an authentication protocol whose security relies on this asymmetry. Its most prominent feature is that the endomorphism...
PRISM: Simple And Compact Identification and Signatures From Large Prime Degree Isogenies
Andrea Basso, Giacomo Borin, Wouter Castryck, Maria Corte-Real Santos, Riccardo Invernizzi, Antonin Leroux, Luciano Maino, Frederik Vercauteren, Benjamin Wesolowski
Cryptographic protocols
The problem of computing an isogeny of large prime degree from a supersingular elliptic curve of unknown endomorphism ring is assumed to be hard both for classical as well as quantum computers.
In this work, we first build a two-round identification protocol whose security reduces to this problem. The challenge consists of a random large prime $q$ and the prover simply replies with an efficient representation of an isogeny of degree $q$ from its public key.
Using the hash-and-sign...
Structural Results for Maximal Quaternion Orders and Connecting Ideals of Prime Power Norm in $B_{p,\infty}$
James Clements
Foundations
Fix odd primes $p, \ell$ with $p \equiv 3 \mod 4$ and $\ell \neq p$. Consider the rational quaternion algebra ramified at $p$ and $\infty$ with a fixed maximal order $\mathcal{O}_{1728}$. We give explicit formulae for bases of all cyclic norm $\ell^n$ ideals of $\mathcal{O}_{1728}$ and their right orders, in Hermite Normal Form (HNF). Further, in the case $\ell \mid p+1$, or more generally, $-p$ is a square modulo $\ell$, we derive a parametrization of these bases along paths of the...
Parametrizing Maximal Orders Along Supersingular $\ell$-Isogeny Paths
Laia Amorós, James Clements, Chloe Martindale
Foundations
Suppose you have a supersingular $\ell$-isogeny graph with vertices given by $j$-invariants defined over $\mathbb{F}_{p^2}$, where $p = 4 \cdot f \cdot \ell^e - 1$ and $\ell \equiv 3 \pmod{4}$. We give an explicit parametrization of the maximal orders in $B_{p,\infty}$ appearing as endomorphism rings of the elliptic curves in this graph that are $\leq e$ steps away from a root vertex with $j$-invariant 1728. This is the first explicit parametrization of this kind and we believe it will be an...
Further Connections Between Isogenies of Supersingular Curves and Bruhat-Tits Trees
Steven Galbraith, Valerie Gilchrist, Shai Levin, Ari Markowitz
Foundations
We further explore the explicit connections between supersingular curve isogenies and Bruhat-Tits trees. By identifying a supersingular elliptic curve $E$ over $\mathbb{F}_p$ as the root of the tree, and a basis for the Tate module $T_\ell(E)$; our main result is that given a vertex $M$ of the Bruhat-Tits tree one can write down a generator of the ideal $I \subseteq \text{End}(E)$ directly, using simple linear algebra, that defines an isogeny corresponding to the path in the Bruhat-Tits tree...
An efficient collision attack on Castryck-Decru-Smith’s hash function
Ryo Ohashi, Hiroshi Onuki
Attacks and cryptanalysis
In 2020, Castryck-Decru-Smith constructed a hash function, using the (2,2)-isogeny graph of superspecial principally polarized abelian surfaces. In their construction, the initial surface was chosen from vertices very "close" to the square of a supersingular elliptic curve with a known endomorphism ring.
In this paper, we introduce an algorithm for detecting a collision on their hash function. Under some heuristic assumptions, the time complexity and space complexity of our algorithm are...
More Efficient Isogeny Proofs of Knowledge via Canonical Modular Polynomials
Thomas den Hollander, Sören Kleine, Marzio Mula, Daniel Slamanig, Sebastian A. Spindler
Cryptographic protocols
Proving knowledge of a secret isogeny has recently been proposed as a means to generate supersingular elliptic curves of unknown endomorphism ring, but is equally important for cryptographic protocol design as well as for real world deployments. Recently, Cong, Lai and Levin (ACNS'23) have investigated the use of general-purpose (non-interactive) zero-knowledge proof systems for proving the knowledge of an isogeny of degree $2^k$ between supersingular elliptic curves. In particular, their...
The Supersingular Isogeny Path and Endomorphism Ring Problems: Unconditional Reductions
Maher Mamah
Public-key cryptography
In this paper we study several computational problems related to current post-quantum cryptosystems based on isogenies between supersingular elliptic curves. In particular we prove that the supersingular isogeny path and endomorphism ring problems are unconditionally equivalent under polynomial time reductions. We show that access to a factoring oracle is sufficient to solve the Quaternion path problem of KLPT and prove that these problems are equivalent, where previous results either...
Fast computation of 2-isogenies in dimension 4 and cryptographic applications
Pierrick Dartois
Implementation
Dimension 4 isogenies have first been introduced in cryptography for the cryptanalysis of Supersingular Isogeny Diffie-Hellman (SIDH) and have been used constructively in several schemes, including SQIsignHD, a derivative of SQIsign isogeny based signature scheme. Unlike in dimensions 2 and 3, we can no longer rely on the Jacobian model and its derivatives to compute isogenies. In dimension 4 (and higher), we can only use theta-models. Previous works by Romain Cosset, David Lubicz and Damien...
Supersingular Hashing using Lattès Maps
Daniel Larsson
Cryptographic protocols
In this note we propose a variant (with four sub-variants) of the Charles--Goren--Lauter (CGL) hash function using Lattès maps over finite fields. These maps define dynamical systems on the projective line. The underlying idea is that these maps ``hide'' the $j$-invariants in each step in the isogeny chain, similar to the Merkle--Damgård construction. This might circumvent the problem concerning the knowledge of the starting (or ending) curve's endomorphism ring, which is known to create...
Avoiding Trusted Setup in Isogeny-based Commitments
Gustave Tchoffo Saah, Tako Boris Fouotsa, Emmanuel Fouotsa, Célestin Nkuimi-Jugnia
Cryptographic protocols
In 2021, Sterner proposed a commitment scheme based on supersingular isogenies. For this scheme to be binding, one relies on a trusted party to generate a starting supersingular elliptic curve of unknown endomorphism ring. In fact, the knowledge of the endomorphism ring allows one to compute an endomorphism of degree a power of a given small prime. Such an endomorphism can then be split into two to obtain two different messages with the same commitment. This is the reason why one needs a...
On the cryptosystems based on two Eulerian transfor-mations defined over the commutative rings $Z_{2^s}, s>1$.
Vasyl Ustimenko
Cryptographic protocols
We suggest the family of ciphers s^E^n, n=2,3,.... with the space of plaintexts (Z*_{2^s})^n, s >1 such that the encryption map is the composition of kind G=G_1A_1G_2A_2 where A_i are the affine transformations from AGL_n(Z_{2^s}) preserving the variety (Z*_{2^s)}^n , Eulerian endomorphism G_i , i=1,2 of K[x_1, x_2,...., x_n] moves x_i to monomial term ϻ(x_1)^{d(1)}(x_2)^{d(2)}...(x_n)^{d(n)} , ϻϵ Z*_{2^s} and act on (Z*_{2^s})^n as bijective transformations.
The cipher is...
Computing Orientations from the Endomorphism Ring of Supersingular Curves and Applications
Jonathan Komada Eriksen, Antonin Leroux
Public-key cryptography
This work introduces several algorithms related to the computation of orientations in endomorphism rings of supersingular elliptic curves. This problem boils down to representing integers by ternary quadratic forms, and it is at the heart of several results regarding the security of oriented-curves in isogeny-based cryptography.
Our main contribution is to show that there exists efficient algorithms that can solve this problem for quadratic orders of discriminant $n$ up to $O(p^{4/3})$....
Exploring SIDH-based Signature Parameters
Andrea Basso, Mingjie Chen, Tako Boris Fouotsa, Péter Kutas, Abel Laval, Laurane Marco, Gustave Tchoffo Saah
Public-key cryptography
Isogeny-based cryptography is an instance of post-quantum cryptography whose fundamental problem consists of finding an isogeny between two (isogenous) elliptic curves $E$ and $E'$. This problem is closely related to that of computing the endomorphism ring of an elliptic curve. Therefore, many isogeny-based protocols require the endomorphism ring of at least one of the curves involved to be unknown. In this paper, we explore the design of isogeny based protocols in a scenario where one...
Improved algorithms for finding fixed-degree isogenies between supersingular elliptic curves
Benjamin Benčina, Péter Kutas, Simon-Philipp Merz, Christophe Petit, Miha Stopar, Charlotte Weitkämper
Public-key cryptography
Finding isogenies between supersingular elliptic curves is a natural algorithmic problem which is known to be equivalent to computing the curves' endomorphism rings.
When the isogeny is additionally required to have a specific known degree $d$, the problem appears to be somewhat different in nature, yet its hardness is also required in isogeny-based cryptography.
Let $E_1,E_2$ be supersingular elliptic curves over $\mathbb{F}_{p^2}$. We present improved classical and quantum...
DEFEND: Towards Verifiable Delay Functions from Endomorphism Rings
Knud Ahrens, Jens Zumbrägel
Cryptographic protocols
We present a verifiable delay function based on isogenies of supersingular elliptic curves, using Deuring correspondence and computation of endomorphism rings for the delay. For each input x a verifiable delay function has a unique output y and takes a predefined time to evaluate, even with parallel computing. Additionally, it generates a proof by which the output can efficiently be verified. In our approach the input is a path in the 2-isogeny graph and the output is the maximal order...
IS-CUBE: An isogeny-based compact KEM using a boxed SIDH diagram
Tomoki Moriya
Public-key cryptography
Isogeny-based cryptography is one of the candidates for post-quantum cryptography. One of the benefits of using isogeny-based cryptography is its compactness. In particular, a key exchange scheme SIDH allowed us to use a $4\lambda$-bit prime for the security parameter $\lambda$.
Unfortunately, SIDH was broken in 2022 by some studies. After that, some isogeny-based key exchange and public key encryption schemes have been proposed; however, most of these schemes use primes whose sizes are...
The supersingular endomorphism ring problem given one endomorphism
Arthur Herlédan Le Merdy, Benjamin Wesolowski
Public-key cryptography
Given a supersingular elliptic curve $E$ and a non-scalar endomorphism $\alpha$ of $E$, we prove that the endomorphism ring of $E$ can be computed in classical time about $\text{disc}(\mathbb{Z}[\alpha])^{1/4}$ , and in quantum subexponential time, assuming the generalised Riemann hypothesis. Previous results either had higher complexities, or relied on heuristic assumptions.
Along the way, we prove that the Primitivisation problem can be solved in polynomial time (a problem previously...
A polynomial-time attack on instances of M-SIDH and FESTA
Wouter Castryck, Frederik Vercauteren
Public-key cryptography
The recent devastating attacks on SIDH rely on the fact that the protocol reveals the images $\varphi(P)$ and $\varphi(Q)$ of the secret isogeny $\varphi : E_0 \rightarrow E$ on a basis $\{P, Q\}$ of the $N$-torsion subgroup $E_0[N]$ where $N^2 > \deg(\varphi)$. To thwart this attack, two recent proposals, M-SIDH and FESTA, proceed by only revealing the images upto unknown scalars $\lambda_1, \lambda_2 \in \mathbb{Z}_N^\times$, i.e., only $\lambda_1 \varphi(P)$ and $\lambda_2 \varphi(Q)$...
The supersingular Endomorphism Ring and One Endomorphism problems are equivalent
Aurel Page, Benjamin Wesolowski
Attacks and cryptanalysis
The supersingular Endomorphism Ring problem is the following: given a supersingular elliptic curve, compute all of its endomorphisms. The presumed hardness of this problem is foundational for isogeny-based cryptography. The One Endomorphism problem only asks to find a single non-scalar endomorphism. We prove that these two problems are equivalent, under probabilistic polynomial time reductions.
We prove a number of consequences. First, assuming the hardness of the endomorphism ring...
Finding Orientations of Supersingular Elliptic Curves and Quaternion Orders
Sarah Arpin, James Clements, Pierrick Dartois, Jonathan Komada Eriksen, Péter Kutas, Benjamin Wesolowski
Public-key cryptography
Orientations of supersingular elliptic curves encode the information of an endomorphism of the curve. Computing the full endomorphism ring is a known hard problem, so one might consider how hard it is to find one such orientation. We prove that access to an oracle which tells if an elliptic curve is $\mathfrak{O}$-orientable for a fixed imaginary quadratic order $\mathfrak{O}$ provides non-trivial information towards computing an endomorphism corresponding to the $\mathfrak{O}$-orientation....
Verifiable random function from the Deuring correspondence and higher dimensional isogenies
Antonin Leroux
Cryptographic protocols
In this paper, we introduce $\mathsf{DeuringVUF}$, a new Verifiable Unpredictable Function (VUF) protocol based on isogenies between supersingular curves.
The most interesting application of this VUF is $\mathsf{DeuringVRF}$ a post-quantum Verifiable Random Function (VRF). The main advantage of this new scheme is its compactness, with combined public key and proof size of roughly 450 bytes, which is orders of magnitude smaller than other generic purpose post-quantum VRF...
Generating Supersingular Elliptic Curves over $\mathbb{F}_p$ with Unknown Endomorphism Ring
Youcef Mokrani, David Jao
Public-key cryptography
A number of supersingular isogeny based cryptographic protocols require the endomorphism ring of the initial elliptic curve to be either unknown or random in order to be secure. To instantiate these protocols, Basso et al. recently proposed a secure multiparty protocol that generates supersingular elliptic curves defined over
$\mathbb{F}_{p^2}$ of unknown endomorphism ring as long as at least one party acts honestly. However, there are many protocols that specifically require curves defined...
Generation of two ''independent'' points on an elliptic curve of $j$-invariant $\neq 0, 1728$
Dimitri Koshelev
Implementation
This article is dedicated to a new generation method of two ``independent'' $\mathbb{F}_{\!q}$-points $P_0$, $P_1$ on almost any ordinary elliptic curve $E$ over a finite field $\mathbb{F}_{\!q}$ of large characteristic. In particular, the method is relevant for all standardized and real-world elliptic curves of $j$-invariants different from $0$, $1728$. The points $P_0$, $P_1$ are characterized by the fact that nobody (even a generator) knows the discrete logarithm $\log_{P_0}(P_1)$ in the...
Hidden Stabilizers, the Isogeny To Endomorphism Ring Problem and the Cryptanalysis of pSIDH
Mingjie Chen, Muhammad Imran, Gábor Ivanyos, Péter Kutas, Antonin Leroux, Christophe Petit
Public-key cryptography
The Isogeny to Endomorphism Ring Problem (IsERP) asks to compute the endomorphism ring of the codomain of an isogeny between supersingular curves in characteristic $p$ given only a representation for this isogeny, i.e. some data and an algorithm to evaluate this isogeny on any torsion point. This problem plays a central role in isogeny-based cryptography; it underlies the security of
pSIDH protocol (ASIACRYPT 2022) and it is at the heart of the recent attacks that broke the SIDH key...
A Direct Key Recovery Attack on SIDH
Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, Benjamin Wesolowski
Attacks and cryptanalysis
We present an attack on SIDH utilising isogenies between polarized products of two supersingular elliptic curves. In the case of arbitrary starting curve, our attack (discovered independently from [CD22]) has subexponential complexity, thus significantly reducing the security of SIDH and SIKE. When the endomorphism ring of the starting curve is known, our attack (here derived from [CD22]) has polynomial-time complexity assuming the generalised Riemann hypothesis. Our attack applies to any...
Deuring for the People: Supersingular Elliptic Curves with Prescribed Endomorphism Ring in General Characteristic
Jonathan Komada Eriksen, Lorenz Panny, Jana Sotáková, Mattia Veroni
Constructing a supersingular elliptic curve whose endomorphism ring is isomorphic to a given quaternion maximal order (one direction of the Deuring correspondence) is known to be polynomial-time assuming the generalized Riemann hypothesis [KLPT14; Wes21], but notoriously daunting in practice when not working over carefully selected base fields.
In this work, we speed up the computation of the Deuring correspondence in general characteristic, i.e., without assuming any special form of the...
Computation of Hilbert class polynomials and modular polynomials from supersingular elliptic curves
Antonin Leroux
Public-key cryptography
We present several new heuristic algorithms to compute class polynomials and modular polynomials modulo a prime $p$ by revisiting the idea of working with supersingular elliptic curves.
The best known algorithms to this date are based on ordinary curves, due to the supposed inefficiency of the supersingular case. While this was true a decade ago, the recent advances in the study of supersingular curves through the Deuring correspondence motivated by isogeny-based cryptography has...
Efficient Isogeny Proofs Using Generic Techniques
Kelong Cong, Yi-Fu Lai, Shai Levin
Cryptographic protocols
Generating supersingular elliptic curves of unknown endomorphism ring has been a problem vexing isogeny-based cryptographers for several years. A recent development has proposed a trusted setup protocol to generate such a curve, where each participant generates and proves knowledge of an isogeny. Thus, the construction of efficient proofs of knowledge of isogeny has developed new interest.
Historically, the isogeny community has assumed that obtaining isogeny proofs of knowledge from...
Some applications of higher dimensional isogenies to elliptic curves (overview of results)
Damien Robert
Foundations
We give some applications of the "embedding Lemma". The first one is a polynomial time (in $\log q$) algorithm to compute the endomorphism ring $\mathrm{End}(E)$ of an ordinary elliptic curve $E/\mathbb{F}_q$, provided we are given the factorisation of $Δ_π$. In particular, this computation can be done in quantum polynomial time.
The second application is an algorithm to compute the canonical lift of $E/\mathbb{F}_q$, $q=p^n$, (still assuming that $E$ is ordinary) to precision $m$ in...
On Extremal Algebraic Graphs and Multivariate Cryptosystems
Vasyl Ustimenko
Public-key cryptography
Multivariate rule x_i -> f_i, i = 1, 2, ..., n, f_i from K[x_1, x_2, ..., x_n]
over commutative ring K defines endomorphism σ_n of K[x_1, x_2, ..., x_n] into itself given by its values on variables x_i. Degree of σ_n can be defined as maximum of degrees of polynomials f_i. We say that family σ_n, n = 2, 3, .... has trapdoor accelerator ^nT if the knowledge of the piece of information ^nT allows to compute reimage x of y = σ_n(x) in time O(n^2). We use extremal algebraic graphs for the...
Supersingular Curves You Can Trust
Andrea Basso, Giulio Codogni, Deirdre Connolly, Luca De Feo, Tako Boris Fouotsa, Guido Maria Lido, Travis Morrison, Lorenz Panny, Sikhar Patranabis, Benjamin Wesolowski
Public-key cryptography
Generating a supersingular elliptic curve such that nobody knows its endomorphism ring is a notoriously hard task, despite several isogeny-based protocols relying on such an object. A trusted setup is often proposed as a workaround, but several aspects remain unclear. In this work, we develop the tools necessary to practically run such a distributed trusted-setup ceremony.
Our key contribution is the first statistically zero-knowledge proof of isogeny knowledge that is compatible with any...
Masked-degree SIDH
Tomoki Moriya
Public-key cryptography
Isogeny-based cryptography is one of the candidates for post-quantum cryptography. SIDH is a compact and efficient isogeny-based key exchange, and SIKE, which is the SIDH-based key encapsulation mechanism, remains the NIST PQC Round 4. However, by the brilliant attack provided by Castryck and Decru, the original SIDH is broken in polynomial time (with heuristics). To break the original SIDH, there are three important pieces of information in the public key: information about the endomorphism...
An efficient key recovery attack on SIDH
Wouter Castryck, Thomas Decru
Public-key cryptography
We present an efficient key recovery attack on the Supersingular Isogeny Diffie-Hellman protocol (SIDH). The attack is based on Kani's "reducibility criterion" for isogenies from products of elliptic curves and strongly relies on the torsion point images that Alice and Bob exchange during the protocol. If we assume knowledge of the endomorphism ring of the starting curve then the classical running time is polynomial in the input size (heuristically), apart from the factorization of a small...
On Random Sampling of Supersingular Elliptic Curves
Marzio Mula, Nadir Murru, Federico Pintore
Public-key cryptography
We consider the problem of sampling random supersingular elliptic curves over finite fields of cryptographic size (SRS problem). The currently best-known method combines the reduction of a suitable complex multiplication (CM) elliptic curve and a random walk over some supersingular isogeny graph. Unfortunately, this method is not suitable when the endomorphism ring of the generated curve needs to be hidden, like in some cryptographic applications. This motivates a stricter version of the SRS...
Failing to hash into supersingular isogeny graphs
Jeremy Booher, Ross Bowden, Javad Doliskani, Tako Boris Fouotsa, Steven D. Galbraith, Sabrina Kunzweiler, Simon-Philipp Merz, Christophe Petit, Benjamin Smith, Katherine E. Stange, Yan Bo Ti, Christelle Vincent, José Felipe Voloch, Charlotte Weitkämper, Lukas Zobernig
Public-key cryptography
An important open problem in supersingular isogeny-based cryptography is to produce, without a trusted authority, concrete examples of "hard supersingular curves" that is, equations for supersingular curves for which computing the endomorphism ring is as difficult as it is for random supersingular curves. A related open problem is to produce a hash function to the vertices of the supersingular ℓ-isogeny graph which does not reveal the endomorphism ring, or a path to a curve of known...
An Effective Lower Bound on the Number of Orientable Supersingular Elliptic Curves
Antonin Leroux
Public-key cryptography
In this article, we prove a generic lower bound on the number of $\mathfrak{O}$-orientable supersingular curves over $\mathbb{F}_{p^2}$, i.e curves that admit an embedding of the quadratic order $\mathfrak{O}$ inside their endomorphism ring. Prior to this work, the only known effective lower-bound is restricted to small discriminants. Our main result targets the case of fundamental discriminants and we derive a generic bound using the expansion properties of the supersingular isogeny graphs....
On the decisional Diffie-Hellman problem for class group actions on oriented elliptic curves
Wouter Castryck, Marc Houben, Frederik Vercauteren, Benjamin Wesolowski
Public-key cryptography
We show how the Weil pairing can be used to evaluate the assigned characters of an imaginary quadratic order $\mathcal{O}$ in an unknown ideal class $[\mathfrak{a}] \in \mathrm{Cl}(\mathcal{O})$ that connects two given $\mathcal{O}$-oriented elliptic curves $(E, \iota)$ and $(E', \iota') = [\mathfrak{a}](E, \iota)$.
When specialized to ordinary elliptic curves over finite fields, our method is conceptually simpler and often faster than a recent approach due to Castryck, Sot\'akov\'a and...
Orienteering with one endomorphism
Sarah Arpin, Mingjie Chen, Kristin E. Lauter, Renate Scheidler, Katherine E. Stange, Ha T. N. Tran
Public-key cryptography
In supersingular isogeny-based cryptography, the path-finding problem reduces to the endomorphism ring problem. Can path-finding be reduced to knowing just one endomorphism? It is known that a small endomorphism enables polynomial-time path-finding and endomorphism ring computation (Love-Boneh [36]). An endomorphism gives an explicit orientation of a supersingular elliptic curve. In this paper, we use the volcano structure of the oriented supersingular isogeny graph to take...
A New Isogeny Representation and Applications to Cryptography
Antonin Leroux
Public-key cryptography
This paper focuses on isogeny representations, defined as ways to evaluate isogenies and verify membership to the language of isogenous supersingular curves (the set of triples $D,E_1,E_2$ with a cyclic isogeny of degree $D$ between $E_1$ and $E_2$).
The tasks of evaluating and verifying isogenies are fundamental for isogeny-based cryptography.
Our main contribution is the design of the suborder representation, a new isogeny representation targeted at the case of (big) prime...
Orientations and the supersingular endomorphism ring problem
Benjamin Wesolowski
We study two important families of problems in isogeny-based cryptography and how they relate to each other: computing the endomorphism ring of supersingular elliptic curves, and inverting the action of class groups on oriented supersingular curves. We prove that these two families of problems are closely related through polynomial-time reductions, assuming the generalised Riemann hypothesis.
We identify two classes of essentially equivalent problems. The first class corresponds to the...
A New Adaptive Attack on SIDH
Tako Boris Fouotsa, Christophe Petit
Public-key cryptography
The SIDH key exchange is the main building block of SIKE, the only isogeny based scheme involved in the NIST standardization process. In 2016, Galbraith et al. presented an adaptive attack on
SIDH. In this attack, a malicious party manipulates the torsion points in his public key in order to recover an honest party's static secret key, when having access to a key exchange oracle. In 2017, Petit designed a passive attack (which was improved by de Quehen et al. in 2020) that exploits the...
The supersingular isogeny path and endomorphism ring problems are equivalent
Benjamin Wesolowski
Public-key cryptography
We prove that the path-finding problem in $\ell$-isogeny graphs and the endomorphism ring problem for supersingular elliptic curves are equivalent under reductions of polynomial expected time, assuming the generalised Riemann hypothesis.
The presumed hardness of these problems is foundational for isogeny-based cryptography. As an essential tool, we develop a rigorous algorithm for the quaternion analog of the path-finding problem, building upon the heuristic method of Kohel, Lauter, Petit...
One-way functions and malleability oracles: Hidden shift attacks on isogeny-based protocols
Péter Kutas, Simon-Philipp Merz, Christophe Petit, Charlotte Weitkämper
Public-key cryptography
Supersingular isogeny Diffie-Hellman key exchange (SIDH) is a post-quantum protocol based on the presumed hardness of computing an isogeny between two supersingular elliptic curves given some additional torsion point information. Unlike other isogeny-based protocols, SIDH has been widely believed to be immune to subexponential quantum attacks because of the non-commutative structure of the endomorphism rings of supersingular curves.
We contradict this commonly believed misconception in this...
On the Isogeny Problem with Torsion Point Information
Tako Boris Fouotsa, Péter Kutas, Simon-Philipp Merz, Yan Bo Ti
Public-key cryptography
It has recently been rigorously proven (and was previously known under certain heuristics) that the general supersingular isogeny problem reduces to the supersingular endomorphism ring computation problem. However, in order to attack SIDH-type schemes, one requires a particular isogeny which is usually not returned by the general reduction. At Asiacrypt 2016, Galbraith, Petit, Shani and Ti presented a polynomial-time reduction of the problem of finding the secret isogeny in SIDH to the...
Ready-Made Short Basis for GLV+GLS on High Degree Twisted Curves
Bei Wang, Songsong Li, Yi Ouyang, Honggang Hu
Public-key cryptography
The crucial step in elliptic curve scalar multiplication based on scalar decompositions using efficient endomorphisms—such as GLV, GLS or GLV+GLS—is to produce a short basis of a lattice involving the eigenvalues of the endomorphisms, which usually is obtained by lattice basis reduction algorithms or even more specialized algorithms. Recently, lattice basis reduction is found to be unnecessary. Benjamin Smith (AMS 2015) was able to immediately write down a short basis of the lattice for the...
A New Twofold Cornacchia-Type Algorithm and Its Applications
Bei Wang, Yi Ouyang, Honggang Hu, Songsong Li
Public-key cryptography
We focus on exploring more potential of Longa and Sica's algorithm (ASIACRYPT 2012), which is an elaborate iterated Cornacchia algorithm that can compute short bases for 4-GLV decompositions. The algorithm consists of two sub-algorithms, the first one in the ring of integers $\mathbb{Z}$ and the second one in the Gaussian integer ring $\mathbb{Z}[i]$. We observe that $\mathbb{Z}[i]$ in the second sub-algorithm can be replaced by another Euclidean domain $\mathbb{Z}[\omega]$...
SQISign: compact post-quantum signatures from quaternions and isogenies
Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, Benjamin Wesolowski
Public-key cryptography
We introduce a new signature scheme, SQISign, (for Short Quaternion and Isogeny Signature) from isogeny graphs of supersingular elliptic curves. The signature scheme is derived from a new one-round, high soundness, interactive identification protocol. Targeting the post-quantum NIST-1 level of security, our implementation results in signatures of $204$ bytes, secret keys of $16$ bytes and public keys of $64$ bytes. In particular, the signature and public key sizes combined are an order of...
On Multivariate Algorithms of Digital Signatures Based on Maps of Unbounded Degree Acting on Secure El Gamal Type Mode.
V. Ustimenko
Cryptographic protocols
Multivariate cryptography studies applications of endomorphisms of K[x_1, x_2, …, x_n] where K is a finite commutative ring given in the standard form x_i →f_i(x_1, x_2,…, x_n), i=1, 2,…, n. The importance of this direction for the constructions of multivariate digital signatures systems is well known. Close attention of researchers directed towards studies of perspectives of quadratic rainbow oil and vinegar system and LUOV presented for NIST postquantum certification....
On Multivariate Algorithms of Digital Signatures of Linear Degree and Low Density.
Vasyl Ustimenko
Public-key cryptography
Multivariate cryptography studies applications of endomorphisms of K[x_1, x_2, …, x_n] where K is a finite commutative ring. The importance of this direction for the construction of multivariate digital signature systems is well known. We suggest modification of the known digital signature systems for which some of cryptanalytic instruments were found . This modification prevents possibility to use recently developed attacks on classical schemes such as rainbow oil and vinegar system,...
On Multivariate Algorithms of Digital Signatures on Secure El Gamal Type Mode.
Vasyl Ustimenko
Cryptographic protocols
The intersection of Non-commutative and Multivariate cryptography contains studies of cryptographic applications of subsemigroups and subgroups of affine Cremona semigroups defined over finite commutative ring K with the unit. We consider special subsemigroups (platforms) in a semigroup of all endomorphisms of K[x_1, x_2, …, x_n].
Efficiently computed homomorphisms between such platforms can be used in Post Quantum key exchange protocols when correspondents elaborate common...
Isogenies of certain abelian varieties over finite fields with p-ranks zero
Steve Thakur
Foundations
We study the isogenies of certain abelian varieties over finite fields with non-commutative endomorphism algebras with a view to potential use in isogeny-based cryptography. In particular, we show that any two such abelian varieties with endomorphism rings maximal orders in the endomorphism algebra are linked by a cyclic isogeny of prime degree.
CSIDH on Other Form of Elliptic Curves
Xuejun Fan, Song Tian, Bao Li, Xiu Xu
Public-key cryptography
Isogenies on elliptic curves are of great interest in post-quantum cryptography and appeal to more and more researchers. Many protocols have been proposed such as OIDH, SIDH and CSIDH with their own advantages. We now focus on the CSIDH which based on the Montgomery curves in finite fields Fp with p=3 mod 8 whose endomorphism ring is O. We try to change the form of elliptic curves into y^2=x^3+Ax^2-x and the characteristic of the prime field into p=7 mod 8 , which induce the endomorphism...
CSIDH on the surface
Wouter Castryck, Thomas Decru
Public-key cryptography
For primes \(p \equiv 3 \bmod 4\), we show that setting up CSIDH on the surface, i.e., using supersingular elliptic curves with endomorphism ring \(Z[(1 + \sqrt{-p})/2]\), amounts to just a few sign switches in the underlying arithmetic. If \(p \equiv 7 \bmod 8\) then the availability of very efficient horizontal 2-isogenies allows for a noticeable speed-up, e.g., our resulting CSURF-512 protocol runs about 5.68% faster than CSIDH-512. This improvement is completely orthogonal to all...
The Dark SIDH of Isogenies
Paul Bottinelli, Victoria de Quehen, Chris Leonardi, Anton Mosunov, Filip Pawlega, Milap Sheth
Public-key cryptography
Many isogeny-based cryptosystems are believed to rely on the hardness of the Supersingular Decision Diffie-Hellman (SSDDH) problem. However, most cryptanalytic efforts have treated the hardness of this problem as being equivalent to the more generic supersingular $\ell^e$-isogeny problem --- an established hard problem in number theory.
In this work, we shine some light on the possibility that the combination of two additional pieces of information given in practical SSDDH instances --- the...
Rational isogenies from irrational endomorphisms
Wouter Castryck, Lorenz Panny, Frederik Vercauteren
Public-key cryptography
In this paper, we introduce a polynomial-time algorithm to compute a connecting $\mathcal{O}$-ideal between two supersingular elliptic curves over $\mathbb{F}_p$ with common $\mathbb{F}_p$-endomorphism ring $\mathcal{O}$, given a description of their full endomorphism rings. This algorithm provides a reduction of the security of the CSIDH cryptosystem to the problem of computing endomorphism rings of supersingular elliptic curves. A similar reduction for SIDH appeared at Asiacrypt 2016,...
Isogeny-based hashing despite known endomorphisms
Lorenz Panny
The Charles-Goren-Lauter hash function on isogeny graphs of supersingular elliptic curves was shown to be insecure under collision attacks when the endomorphism ring of the starting curve is known. Since there is no known way to generate a supersingular elliptic curve with verifiably unknown endomorphisms, the hash function can currently only be used after a trusted-setup phase. This note presents a simple modification to the construction of the hash function which, under a few heuristics,...
A note on isogeny-based hybrid verifiable delay functions
Barak Shani
Cryptographic protocols
Using the idea behind the recently proposed isogeny- and paring-based verifiable delay function (VDF) by De Feo, Masson, Petit and Sanso, we construct an isogeny-based VDF without the use of pairings. Our scheme is a hybrid of time-lock puzzles and (trapdoor) verifiable delay functions. We explain how to realise the proposed VDF on elliptic curves with commutative endomorphism ring, however this construction is not quantum secure. The more interesting, and potentially quantum-secure,...
Semi-Commutative Masking: A Framework for Isogeny-based Protocols, with an Application to Fully Secure Two-Round Isogeny-based OT
Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, Christophe Petit, Nigel P. Smart
Public-key cryptography
We define semi-commutative invertible masking structures which aim to capture the methodology of exponentiation-only protocol design (such as discrete logarithm and isogeny-based cryptography). We discuss two instantiations: the first is based on commutative group actions and captures both the action of exponentiation in the discrete logarithm setting and the action of the class group of commutative endomorphism rings of elliptic curves, in the style of the CSIDH key-exchange protocol; the...
Supersingular isogeny graphs and endomorphism rings: reductions and solutions
Kirsten Eisentraeger, Sean Hallgren, Kristin Lauter, Travis Morrison, Christophe Petit
In this paper, we study several related computational problems for supersingular elliptic curves, their isogeny graphs, and their endomorphism rings. We prove reductions between the problem of path
finding in the $\ell$-isogeny graph, computing maximal orders isomorphic to the endomorphism ring of a supersingular elliptic
curve, and computing the endomorphism ring itself. We also give
constructive versions of Deuring's correspondence, which associates
to a maximal order in a certain...
On the Hardness of Computing Endomorphism Rings of Supersingular Elliptic Curves
Kirsten Eisentraeger, Sean Hallgren, Travis Morrison
Cryptosystems based on supersingular isogenies have been
proposed recently for use in post-quantum cryptography. Three problems have
emerged related to their hardness: computing an isogeny between two
curves, computing the endomorphism ring of a curve, and computing
a maximal order associated to it. While some of these problems
are believed to be polynomial-time equivalent based on heuristics,
their relationship is still unknown. We give the first reduction
between these problems, with...
Hard and Easy Problems for Supersingular Isogeny Graphs
Christophe Petit, Kristin Lauter
We consider the endomorphism ring computation problem for supersingular elliptic curves, constructive versions of Deuring's correspondence, and the security of Charles-Goren-Lauter's cryptographic hash function.
We show that constructing Deuring's correspondence is easy in one direction and equivalent to the endomorphism ring computation problem in the other direction. We also provide a collision attack for special but natural parameters of the hash function, and we prove that for general...
Horizontal isogeny graphs of ordinary abelian varieties and the discrete logarithm problem
Dimitar Jetchev, Benjamin Wesolowski
Fix an ordinary abelian variety defined over a finite field. The ideal class group of its endomorphism ring acts freely on the set of isogenous varieties with same endomorphism ring, by complex multiplication. Any subgroup of the class group, and generating set thereof, induces an isogeny graph on the orbit of the variety for this subgroup. We compute (under the Generalized Riemann Hypothesis) some bounds on the norms of prime ideals generating it, such that the associated graph has good...
Isogeny graphs of ordinary abelian varieties
Ernest Hunter Brooks, Dimitar Jetchev, Benjamin Wesolowski
Fix a prime number $\ell$. Graphs of isogenies of degree a power of $\ell$ are well-understood for elliptic curves, but not for higher-dimensional abelian varieties. We study the case of absolutely simple ordinary abelian varieties over a finite field.
We analyse graphs of so-called $\mathfrak l$-isogenies, resolving that they are (almost) volcanoes in any dimension. Specializing to the case of principally polarizable abelian surfaces, we then exploit this structure to describe graphs of a...
On the Security of Supersingular Isogeny Cryptosystems
Steven D. Galbraith, Christophe Petit, Barak Shani, Yan Bo Ti
Public-key cryptography
We study cryptosystems based on supersingular isogenies. This is an active area of research in post-quantum cryptography. Our first contribution is to give a very powerful active attack on the supersingular isogeny encryption scheme. This attack can only be prevented by using a (relatively expensive) countermeasure. Our second contribution is to show that the security of all schemes of this type depends on the difficulty of computing the endomorphism ring of a supersingular elliptic curve....
Koblitz curves over quadratic fields
Thomaz Oliveira, Julio López, Daniel Cervantes-Vázquez, Francisco Rodríguez-Henríquez
In this work, we retake an old idea that Koblitz presented in
his landmark paper, where he suggested the possibility of defining anomalous elliptic curves over the base field F4. We present a careful implementation of the base and quadratic field arithmetic required for computing the scalar multiplication operation in such curves. We also introduce two ordinary Koblitz-like elliptic curves defined over F4 that are equipped with efficient endomorphisms. To the best of our knowledge these...
A note on the construction of pairing-friendly elliptic curves for composite order protocols
Sorina Ionica, Malika Izabachène
In pairing-based cryptography, the security of protocols using composite
order groups relies on the difficulty of factoring a composite number
$N$. Boneh~\etal~proposed the Cocks-Pinch method to construct ordinary pairing-friendly elliptic curves having a subgroup of composite order $N$. Displaying such a curve as a public parameter implies revealing a square root $s$ of the complex multiplication discriminant $-D$ modulo $N$. We exploit this information leak and the structure of the...
Isogeny graphs with maximal real multiplication
Sorina Ionica, Emmanuel Thomé
An isogeny graph is a graph whose vertices are principally polarizable abelian varieties and whose edges are isogenies between these varieties. In his thesis, Kohel describes
the structure of isogeny graphs for elliptic curves and shows that one may compute the endomorphism ring of an elliptic curve defined over a finite field by using a depth-first search (DFS) algorithm in the graph. In dimension 2, the structure of isogeny graphs is less understood and existing algorithms for computing...
Symmetric Digit Sets for Elliptic Curve Scalar Multiplication without Precomputation
Clemens Heuberger, Michela Mazzoli
Implementation
We describe a method to perform scalar multiplication on two classes of
ordinary elliptic curves, namely $E: y^2 = x^3 + Ax$ in prime characteristic
$p\equiv 1$ mod~4, and $E: y^2 = x^3 + B$ in prime characteristic $p\equiv 1$
mod 3. On these curves, the 4-th and 6-th roots of unity act as (computationally
efficient) endomorphisms. In order to optimise the scalar multiplication, we consider a width-$w$-NAF (non-adjacent form) digit expansion of positive integers to the complex base of...
Easy scalar decompositions for efficient scalar multiplication on elliptic curves and genus 2 Jacobians
Benjamin Smith
Implementation
The first step in elliptic curve scalar multiplication algorithms based on scalar decompositions using efficient endomorphisms---including Gallant--Lambert--Vanstone (GLV) and Galbraith--Lin--Scott (GLS) multiplication, as well as higher-dimensional and higher-genus constructions---is to produce a short basis of a certain integer lattice involving the eigenvalues of the endomorphisms. The shorter the basis vectors, the shorter the decomposed scalar coefficients, and the faster the resulting...
Four-dimensional GLV via the Weil restriction
Aurore Guillevic, Sorina Ionica
The Gallant-Lambert-Vanstone (GLV) algorithm uses efficiently computable endomorphisms to accelerate the computation of scalar multiplication of points on an abelian variety. Freeman and Satoh proposed for cryptographic use two families of genus 2 curves defined over $\F_{p}$ which have the property that the corresponding Jacobians are $(2,2)$-isogenous over an extension field to a product of elliptic curves defined over $\F_{p^2}$. We exploit the relationship between the endomorphism rings...
On the evaluation of modular polynomials
Andrew V. Sutherland
Public-key cryptography
We present two algorithms that, given a prime ell and an elliptic curve E/Fq, directly compute the polynomial $\Phi_\ell(j(E),Y)\in\Fq[Y] whose roots are the j-invariants of the elliptic curves that are ell-isogenous to E. We do not assume that the modular polynomial Phi_ell(X,Y) is given. The algorithms may be adapted to handle other types of modular polynomials, and we consider applications to point counting and the computation of endomorphism rings. We demonstrate the practical...
Computing endomorphism rings of abelian varieties of dimension two
Gaetan Bisson
Foundations
Generalizing a method of Sutherland and the author for elliptic curves, we design a subexponential algorithm for computing the endomorphism ring structure of ordinary abelian varieties of dimension two over finite fields. Although its correctness and complexity bound rely on several assumptions, we report on practical computations showing that it performs very well and can easily handle previously intractable cases.
Improved CRT Algorithm for Class Polynomials in Genus 2
Kristin Lauter, Damien Robert
We present a generalization to genus~2 of the probabilistic algorithm of
Sutherland for computing Hilbert class polynomials. The improvement over
the Bröker-Gruenewald-Lauter algorithm
for the genus~2 case is that we do not need to find a curve in the
isogeny class whose endomorphism ring is the maximal order;
rather, we present a probabilistic algorithm for ``going up'' to a
maximal curve (a curve with maximal endomorphism ring), once we find
any curve in the right isogeny class. Then we...
Pairing-based methods for genus 2 jacobians with maximal endomorphism ring
Sorina Ionica
Using Galois cohomology, Schmoyer characterizes cryptographic non-trivial self-pairings of the \ell-Tate pairing in terms of the action of the Frobenius on the \ell-torsion of the Jacobian of a genus 2 curve. We apply similar techniques to study the non-degeneracy of the \ell-Tate pairing restrained to subgroups of the \ell-torsion which are maximal isotropic with respect to the Weil pairing. First, we deduce a criterion to verify whether the jacobian of a genus 2 curve has maximal...
Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies
Luca De Feo, David Jao, Jérôme Plût
Public-key cryptography
We present new candidates for quantum-resistant public-key
cryptosystems based on the conjectured difficulty of finding isogenies
between supersingular elliptic curves. The main technical idea in our
scheme is that we transmit the images of torsion bases under the isogeny
in order to allow the parties to construct a shared commutative square
despite the noncommutativity of the endomorphism ring. Our work is
motivated by the recent development of a subexponential-time quantum
algorithm for...
Computing endomorphism rings of elliptic curves under the GRH
Gaetan Bisson
Foundations
We design a probabilistic algorithm for computing endomorphism rings of ordinary elliptic curves defined over finite fields that we prove has a subexponential runtime in the size of the base field, assuming solely the generalized Riemann hypothesis.
Additionally, we improve the asymptotic complexity of previously known, heuristic, subexponential methods by describing a faster isogeny-computing routine.
Computing the endomorphism ring of an ordinary elliptic curve over a finite field
Gaetan Bisson, Andrew V. Sutherland
We present two algorithms to compute the endomorphism ring of an ordinary elliptic curve E defined over a finite field F_q. Under suitable heuristic assumptions, both have subexponential complexity. We bound the complexity of the first algorithm in terms of log q, while our bound for the second algorithm depends primarily on log |D_E|, where D_E is the discriminant of the order isomorphic to End(E). As a byproduct, our method yields a short certificate that may be used to verify that the...
More Discriminants with the Brezing-Weng Method
Gaetan Bisson, Takakazu Satoh
Foundations
The Brezing-Weng method is a general framework to generate families of pairing-friendly elliptic curves. Here, we introduce an improvement which can be used to generate more curves with larger discriminants. Apart from the number of curves this yields, it provides an easy way to avoid endomorphism rings with small class number.
Pairings on Jacobians of Hyperelliptic Curves
Christian Robenhagen Ravnshoj
Public-key cryptography
Consider the jacobian of a hyperelliptic genus two curve defined over a finite field. Under certain restrictions on the endomorphism ring of the jacobian we give an explicit description all non-degenerate, bilinear, anti-symmetric and Galois-invariant pairings on the jacobian. From this description it follows that no such pairing can be computed more efficiently than the Weil pairing.
To establish this result, we need an explicit description of the representation of the Frobenius...
Computing endomorphism rings of Jacobians of genus 2 curves over finite fields
David Freeman, Kristin Lauter
Implementation
We present probabilistic algorithms which, given a genus 2 curve C defined over a finite field and a quartic CM field K, determine whether the endomorphism ring of the Jacobian J of C is the full ring of integers in K. In particular, we present algorithms for computing the field of definition of, and the action of Frobenius on, the subgroups J[l^d] for prime powers l^d. We use these algorithms to create the first implementation of Eisentrager and Lauter's algorithm for computing Igusa...
Ramanujan Graphs and the Random Reducibility of Discrete Log on Isogenous Elliptic Curves
David Jao, Stephen D. Miller, Ramarathnam Venkatesan
Foundations
Cryptographic applications using an elliptic curve over a finite field
filter curves for suitability using their order as the primary criterion: e.g. checking that their order has a large prime divisor before accepting it. It is therefore natural to ask whether the discrete log problem (DLOG) has the same difficulty for all curves with the same order; if so it would justify the above practice. We prove that this is essentially true by showing random reducibility of dlog among such curves,...
In this paper, we prove that the supersingular isogeny problem (Isogeny), endomorphism ring problem (EndRing) and maximal order problem (MaxOrder) are equivalent under probabilistic polynomial time reductions, unconditionally. Isogeny-based cryptography is founded on the presumed hardness of these problems, and their interconnection is at the heart of the design and analysis of cryptosystems like the SQIsign digital signature scheme. Previously known reductions relied on unproven...
We study the problem of finding a path between conjugate supersingular elliptic curves over $\mathbb{F}_{p^2}$ for a prime $p$, which is important for cycle finding in supersingular isogeny graphs. We see that for any given $p$, there is some $l$ corresponding to $p$ which accelerates the process of conjugate path-finding. Also, time-wise, the most efficient way of overviewing the graph is seeing $i(=3)$ steps at once. We have outlined methods in which the next vertex of any pseudo-random...
In this paper, we investigate several computational problems motivated by post-quantum cryptosystems based on isogenies and ideal class group actions on oriented elliptic curves. Our main technical contribution is an efficient algorithm for embedding the ring of integers of an imaginary quadratic field \( K \) into some maximal order of the quaternion algebra \( B_{p,\infty} \) ramified at a prime \( p \) and infinity. Assuming the Generalized Riemann Hypothesis (GRH), our algorithm runs in...
We investigate the algorithmic problem of computing isomorphisms between products of supersingular elliptic curves, given their endomorphism rings. This computational problem seems to be difficult when the domain and codomain are fixed, whereas we provide efficient algorithms to compute isomorphisms when part of the codomain is built during the construction. We propose an authentication protocol whose security relies on this asymmetry. Its most prominent feature is that the endomorphism...
The problem of computing an isogeny of large prime degree from a supersingular elliptic curve of unknown endomorphism ring is assumed to be hard both for classical as well as quantum computers. In this work, we first build a two-round identification protocol whose security reduces to this problem. The challenge consists of a random large prime $q$ and the prover simply replies with an efficient representation of an isogeny of degree $q$ from its public key. Using the hash-and-sign...
Fix odd primes $p, \ell$ with $p \equiv 3 \mod 4$ and $\ell \neq p$. Consider the rational quaternion algebra ramified at $p$ and $\infty$ with a fixed maximal order $\mathcal{O}_{1728}$. We give explicit formulae for bases of all cyclic norm $\ell^n$ ideals of $\mathcal{O}_{1728}$ and their right orders, in Hermite Normal Form (HNF). Further, in the case $\ell \mid p+1$, or more generally, $-p$ is a square modulo $\ell$, we derive a parametrization of these bases along paths of the...
Suppose you have a supersingular $\ell$-isogeny graph with vertices given by $j$-invariants defined over $\mathbb{F}_{p^2}$, where $p = 4 \cdot f \cdot \ell^e - 1$ and $\ell \equiv 3 \pmod{4}$. We give an explicit parametrization of the maximal orders in $B_{p,\infty}$ appearing as endomorphism rings of the elliptic curves in this graph that are $\leq e$ steps away from a root vertex with $j$-invariant 1728. This is the first explicit parametrization of this kind and we believe it will be an...
We further explore the explicit connections between supersingular curve isogenies and Bruhat-Tits trees. By identifying a supersingular elliptic curve $E$ over $\mathbb{F}_p$ as the root of the tree, and a basis for the Tate module $T_\ell(E)$; our main result is that given a vertex $M$ of the Bruhat-Tits tree one can write down a generator of the ideal $I \subseteq \text{End}(E)$ directly, using simple linear algebra, that defines an isogeny corresponding to the path in the Bruhat-Tits tree...
In 2020, Castryck-Decru-Smith constructed a hash function, using the (2,2)-isogeny graph of superspecial principally polarized abelian surfaces. In their construction, the initial surface was chosen from vertices very "close" to the square of a supersingular elliptic curve with a known endomorphism ring. In this paper, we introduce an algorithm for detecting a collision on their hash function. Under some heuristic assumptions, the time complexity and space complexity of our algorithm are...
Proving knowledge of a secret isogeny has recently been proposed as a means to generate supersingular elliptic curves of unknown endomorphism ring, but is equally important for cryptographic protocol design as well as for real world deployments. Recently, Cong, Lai and Levin (ACNS'23) have investigated the use of general-purpose (non-interactive) zero-knowledge proof systems for proving the knowledge of an isogeny of degree $2^k$ between supersingular elliptic curves. In particular, their...
In this paper we study several computational problems related to current post-quantum cryptosystems based on isogenies between supersingular elliptic curves. In particular we prove that the supersingular isogeny path and endomorphism ring problems are unconditionally equivalent under polynomial time reductions. We show that access to a factoring oracle is sufficient to solve the Quaternion path problem of KLPT and prove that these problems are equivalent, where previous results either...
Dimension 4 isogenies have first been introduced in cryptography for the cryptanalysis of Supersingular Isogeny Diffie-Hellman (SIDH) and have been used constructively in several schemes, including SQIsignHD, a derivative of SQIsign isogeny based signature scheme. Unlike in dimensions 2 and 3, we can no longer rely on the Jacobian model and its derivatives to compute isogenies. In dimension 4 (and higher), we can only use theta-models. Previous works by Romain Cosset, David Lubicz and Damien...
In this note we propose a variant (with four sub-variants) of the Charles--Goren--Lauter (CGL) hash function using Lattès maps over finite fields. These maps define dynamical systems on the projective line. The underlying idea is that these maps ``hide'' the $j$-invariants in each step in the isogeny chain, similar to the Merkle--Damgård construction. This might circumvent the problem concerning the knowledge of the starting (or ending) curve's endomorphism ring, which is known to create...
In 2021, Sterner proposed a commitment scheme based on supersingular isogenies. For this scheme to be binding, one relies on a trusted party to generate a starting supersingular elliptic curve of unknown endomorphism ring. In fact, the knowledge of the endomorphism ring allows one to compute an endomorphism of degree a power of a given small prime. Such an endomorphism can then be split into two to obtain two different messages with the same commitment. This is the reason why one needs a...
We suggest the family of ciphers s^E^n, n=2,3,.... with the space of plaintexts (Z*_{2^s})^n, s >1 such that the encryption map is the composition of kind G=G_1A_1G_2A_2 where A_i are the affine transformations from AGL_n(Z_{2^s}) preserving the variety (Z*_{2^s)}^n , Eulerian endomorphism G_i , i=1,2 of K[x_1, x_2,...., x_n] moves x_i to monomial term ϻ(x_1)^{d(1)}(x_2)^{d(2)}...(x_n)^{d(n)} , ϻϵ Z*_{2^s} and act on (Z*_{2^s})^n as bijective transformations. The cipher is...
This work introduces several algorithms related to the computation of orientations in endomorphism rings of supersingular elliptic curves. This problem boils down to representing integers by ternary quadratic forms, and it is at the heart of several results regarding the security of oriented-curves in isogeny-based cryptography. Our main contribution is to show that there exists efficient algorithms that can solve this problem for quadratic orders of discriminant $n$ up to $O(p^{4/3})$....
Isogeny-based cryptography is an instance of post-quantum cryptography whose fundamental problem consists of finding an isogeny between two (isogenous) elliptic curves $E$ and $E'$. This problem is closely related to that of computing the endomorphism ring of an elliptic curve. Therefore, many isogeny-based protocols require the endomorphism ring of at least one of the curves involved to be unknown. In this paper, we explore the design of isogeny based protocols in a scenario where one...
Finding isogenies between supersingular elliptic curves is a natural algorithmic problem which is known to be equivalent to computing the curves' endomorphism rings. When the isogeny is additionally required to have a specific known degree $d$, the problem appears to be somewhat different in nature, yet its hardness is also required in isogeny-based cryptography. Let $E_1,E_2$ be supersingular elliptic curves over $\mathbb{F}_{p^2}$. We present improved classical and quantum...
We present a verifiable delay function based on isogenies of supersingular elliptic curves, using Deuring correspondence and computation of endomorphism rings for the delay. For each input x a verifiable delay function has a unique output y and takes a predefined time to evaluate, even with parallel computing. Additionally, it generates a proof by which the output can efficiently be verified. In our approach the input is a path in the 2-isogeny graph and the output is the maximal order...
Isogeny-based cryptography is one of the candidates for post-quantum cryptography. One of the benefits of using isogeny-based cryptography is its compactness. In particular, a key exchange scheme SIDH allowed us to use a $4\lambda$-bit prime for the security parameter $\lambda$. Unfortunately, SIDH was broken in 2022 by some studies. After that, some isogeny-based key exchange and public key encryption schemes have been proposed; however, most of these schemes use primes whose sizes are...
Given a supersingular elliptic curve $E$ and a non-scalar endomorphism $\alpha$ of $E$, we prove that the endomorphism ring of $E$ can be computed in classical time about $\text{disc}(\mathbb{Z}[\alpha])^{1/4}$ , and in quantum subexponential time, assuming the generalised Riemann hypothesis. Previous results either had higher complexities, or relied on heuristic assumptions. Along the way, we prove that the Primitivisation problem can be solved in polynomial time (a problem previously...
The recent devastating attacks on SIDH rely on the fact that the protocol reveals the images $\varphi(P)$ and $\varphi(Q)$ of the secret isogeny $\varphi : E_0 \rightarrow E$ on a basis $\{P, Q\}$ of the $N$-torsion subgroup $E_0[N]$ where $N^2 > \deg(\varphi)$. To thwart this attack, two recent proposals, M-SIDH and FESTA, proceed by only revealing the images upto unknown scalars $\lambda_1, \lambda_2 \in \mathbb{Z}_N^\times$, i.e., only $\lambda_1 \varphi(P)$ and $\lambda_2 \varphi(Q)$...
The supersingular Endomorphism Ring problem is the following: given a supersingular elliptic curve, compute all of its endomorphisms. The presumed hardness of this problem is foundational for isogeny-based cryptography. The One Endomorphism problem only asks to find a single non-scalar endomorphism. We prove that these two problems are equivalent, under probabilistic polynomial time reductions. We prove a number of consequences. First, assuming the hardness of the endomorphism ring...
Orientations of supersingular elliptic curves encode the information of an endomorphism of the curve. Computing the full endomorphism ring is a known hard problem, so one might consider how hard it is to find one such orientation. We prove that access to an oracle which tells if an elliptic curve is $\mathfrak{O}$-orientable for a fixed imaginary quadratic order $\mathfrak{O}$ provides non-trivial information towards computing an endomorphism corresponding to the $\mathfrak{O}$-orientation....
In this paper, we introduce $\mathsf{DeuringVUF}$, a new Verifiable Unpredictable Function (VUF) protocol based on isogenies between supersingular curves. The most interesting application of this VUF is $\mathsf{DeuringVRF}$ a post-quantum Verifiable Random Function (VRF). The main advantage of this new scheme is its compactness, with combined public key and proof size of roughly 450 bytes, which is orders of magnitude smaller than other generic purpose post-quantum VRF...
A number of supersingular isogeny based cryptographic protocols require the endomorphism ring of the initial elliptic curve to be either unknown or random in order to be secure. To instantiate these protocols, Basso et al. recently proposed a secure multiparty protocol that generates supersingular elliptic curves defined over $\mathbb{F}_{p^2}$ of unknown endomorphism ring as long as at least one party acts honestly. However, there are many protocols that specifically require curves defined...
This article is dedicated to a new generation method of two ``independent'' $\mathbb{F}_{\!q}$-points $P_0$, $P_1$ on almost any ordinary elliptic curve $E$ over a finite field $\mathbb{F}_{\!q}$ of large characteristic. In particular, the method is relevant for all standardized and real-world elliptic curves of $j$-invariants different from $0$, $1728$. The points $P_0$, $P_1$ are characterized by the fact that nobody (even a generator) knows the discrete logarithm $\log_{P_0}(P_1)$ in the...
The Isogeny to Endomorphism Ring Problem (IsERP) asks to compute the endomorphism ring of the codomain of an isogeny between supersingular curves in characteristic $p$ given only a representation for this isogeny, i.e. some data and an algorithm to evaluate this isogeny on any torsion point. This problem plays a central role in isogeny-based cryptography; it underlies the security of pSIDH protocol (ASIACRYPT 2022) and it is at the heart of the recent attacks that broke the SIDH key...
We present an attack on SIDH utilising isogenies between polarized products of two supersingular elliptic curves. In the case of arbitrary starting curve, our attack (discovered independently from [CD22]) has subexponential complexity, thus significantly reducing the security of SIDH and SIKE. When the endomorphism ring of the starting curve is known, our attack (here derived from [CD22]) has polynomial-time complexity assuming the generalised Riemann hypothesis. Our attack applies to any...
Constructing a supersingular elliptic curve whose endomorphism ring is isomorphic to a given quaternion maximal order (one direction of the Deuring correspondence) is known to be polynomial-time assuming the generalized Riemann hypothesis [KLPT14; Wes21], but notoriously daunting in practice when not working over carefully selected base fields. In this work, we speed up the computation of the Deuring correspondence in general characteristic, i.e., without assuming any special form of the...
We present several new heuristic algorithms to compute class polynomials and modular polynomials modulo a prime $p$ by revisiting the idea of working with supersingular elliptic curves. The best known algorithms to this date are based on ordinary curves, due to the supposed inefficiency of the supersingular case. While this was true a decade ago, the recent advances in the study of supersingular curves through the Deuring correspondence motivated by isogeny-based cryptography has...
Generating supersingular elliptic curves of unknown endomorphism ring has been a problem vexing isogeny-based cryptographers for several years. A recent development has proposed a trusted setup protocol to generate such a curve, where each participant generates and proves knowledge of an isogeny. Thus, the construction of efficient proofs of knowledge of isogeny has developed new interest. Historically, the isogeny community has assumed that obtaining isogeny proofs of knowledge from...
We give some applications of the "embedding Lemma". The first one is a polynomial time (in $\log q$) algorithm to compute the endomorphism ring $\mathrm{End}(E)$ of an ordinary elliptic curve $E/\mathbb{F}_q$, provided we are given the factorisation of $Δ_π$. In particular, this computation can be done in quantum polynomial time. The second application is an algorithm to compute the canonical lift of $E/\mathbb{F}_q$, $q=p^n$, (still assuming that $E$ is ordinary) to precision $m$ in...
Multivariate rule x_i -> f_i, i = 1, 2, ..., n, f_i from K[x_1, x_2, ..., x_n] over commutative ring K defines endomorphism σ_n of K[x_1, x_2, ..., x_n] into itself given by its values on variables x_i. Degree of σ_n can be defined as maximum of degrees of polynomials f_i. We say that family σ_n, n = 2, 3, .... has trapdoor accelerator ^nT if the knowledge of the piece of information ^nT allows to compute reimage x of y = σ_n(x) in time O(n^2). We use extremal algebraic graphs for the...
Generating a supersingular elliptic curve such that nobody knows its endomorphism ring is a notoriously hard task, despite several isogeny-based protocols relying on such an object. A trusted setup is often proposed as a workaround, but several aspects remain unclear. In this work, we develop the tools necessary to practically run such a distributed trusted-setup ceremony. Our key contribution is the first statistically zero-knowledge proof of isogeny knowledge that is compatible with any...
Isogeny-based cryptography is one of the candidates for post-quantum cryptography. SIDH is a compact and efficient isogeny-based key exchange, and SIKE, which is the SIDH-based key encapsulation mechanism, remains the NIST PQC Round 4. However, by the brilliant attack provided by Castryck and Decru, the original SIDH is broken in polynomial time (with heuristics). To break the original SIDH, there are three important pieces of information in the public key: information about the endomorphism...
We present an efficient key recovery attack on the Supersingular Isogeny Diffie-Hellman protocol (SIDH). The attack is based on Kani's "reducibility criterion" for isogenies from products of elliptic curves and strongly relies on the torsion point images that Alice and Bob exchange during the protocol. If we assume knowledge of the endomorphism ring of the starting curve then the classical running time is polynomial in the input size (heuristically), apart from the factorization of a small...
We consider the problem of sampling random supersingular elliptic curves over finite fields of cryptographic size (SRS problem). The currently best-known method combines the reduction of a suitable complex multiplication (CM) elliptic curve and a random walk over some supersingular isogeny graph. Unfortunately, this method is not suitable when the endomorphism ring of the generated curve needs to be hidden, like in some cryptographic applications. This motivates a stricter version of the SRS...
An important open problem in supersingular isogeny-based cryptography is to produce, without a trusted authority, concrete examples of "hard supersingular curves" that is, equations for supersingular curves for which computing the endomorphism ring is as difficult as it is for random supersingular curves. A related open problem is to produce a hash function to the vertices of the supersingular ℓ-isogeny graph which does not reveal the endomorphism ring, or a path to a curve of known...
In this article, we prove a generic lower bound on the number of $\mathfrak{O}$-orientable supersingular curves over $\mathbb{F}_{p^2}$, i.e curves that admit an embedding of the quadratic order $\mathfrak{O}$ inside their endomorphism ring. Prior to this work, the only known effective lower-bound is restricted to small discriminants. Our main result targets the case of fundamental discriminants and we derive a generic bound using the expansion properties of the supersingular isogeny graphs....
We show how the Weil pairing can be used to evaluate the assigned characters of an imaginary quadratic order $\mathcal{O}$ in an unknown ideal class $[\mathfrak{a}] \in \mathrm{Cl}(\mathcal{O})$ that connects two given $\mathcal{O}$-oriented elliptic curves $(E, \iota)$ and $(E', \iota') = [\mathfrak{a}](E, \iota)$. When specialized to ordinary elliptic curves over finite fields, our method is conceptually simpler and often faster than a recent approach due to Castryck, Sot\'akov\'a and...
In supersingular isogeny-based cryptography, the path-finding problem reduces to the endomorphism ring problem. Can path-finding be reduced to knowing just one endomorphism? It is known that a small endomorphism enables polynomial-time path-finding and endomorphism ring computation (Love-Boneh [36]). An endomorphism gives an explicit orientation of a supersingular elliptic curve. In this paper, we use the volcano structure of the oriented supersingular isogeny graph to take...
This paper focuses on isogeny representations, defined as ways to evaluate isogenies and verify membership to the language of isogenous supersingular curves (the set of triples $D,E_1,E_2$ with a cyclic isogeny of degree $D$ between $E_1$ and $E_2$). The tasks of evaluating and verifying isogenies are fundamental for isogeny-based cryptography. Our main contribution is the design of the suborder representation, a new isogeny representation targeted at the case of (big) prime...
We study two important families of problems in isogeny-based cryptography and how they relate to each other: computing the endomorphism ring of supersingular elliptic curves, and inverting the action of class groups on oriented supersingular curves. We prove that these two families of problems are closely related through polynomial-time reductions, assuming the generalised Riemann hypothesis. We identify two classes of essentially equivalent problems. The first class corresponds to the...
The SIDH key exchange is the main building block of SIKE, the only isogeny based scheme involved in the NIST standardization process. In 2016, Galbraith et al. presented an adaptive attack on SIDH. In this attack, a malicious party manipulates the torsion points in his public key in order to recover an honest party's static secret key, when having access to a key exchange oracle. In 2017, Petit designed a passive attack (which was improved by de Quehen et al. in 2020) that exploits the...
We prove that the path-finding problem in $\ell$-isogeny graphs and the endomorphism ring problem for supersingular elliptic curves are equivalent under reductions of polynomial expected time, assuming the generalised Riemann hypothesis. The presumed hardness of these problems is foundational for isogeny-based cryptography. As an essential tool, we develop a rigorous algorithm for the quaternion analog of the path-finding problem, building upon the heuristic method of Kohel, Lauter, Petit...
Supersingular isogeny Diffie-Hellman key exchange (SIDH) is a post-quantum protocol based on the presumed hardness of computing an isogeny between two supersingular elliptic curves given some additional torsion point information. Unlike other isogeny-based protocols, SIDH has been widely believed to be immune to subexponential quantum attacks because of the non-commutative structure of the endomorphism rings of supersingular curves. We contradict this commonly believed misconception in this...
It has recently been rigorously proven (and was previously known under certain heuristics) that the general supersingular isogeny problem reduces to the supersingular endomorphism ring computation problem. However, in order to attack SIDH-type schemes, one requires a particular isogeny which is usually not returned by the general reduction. At Asiacrypt 2016, Galbraith, Petit, Shani and Ti presented a polynomial-time reduction of the problem of finding the secret isogeny in SIDH to the...
The crucial step in elliptic curve scalar multiplication based on scalar decompositions using efficient endomorphisms—such as GLV, GLS or GLV+GLS—is to produce a short basis of a lattice involving the eigenvalues of the endomorphisms, which usually is obtained by lattice basis reduction algorithms or even more specialized algorithms. Recently, lattice basis reduction is found to be unnecessary. Benjamin Smith (AMS 2015) was able to immediately write down a short basis of the lattice for the...
We focus on exploring more potential of Longa and Sica's algorithm (ASIACRYPT 2012), which is an elaborate iterated Cornacchia algorithm that can compute short bases for 4-GLV decompositions. The algorithm consists of two sub-algorithms, the first one in the ring of integers $\mathbb{Z}$ and the second one in the Gaussian integer ring $\mathbb{Z}[i]$. We observe that $\mathbb{Z}[i]$ in the second sub-algorithm can be replaced by another Euclidean domain $\mathbb{Z}[\omega]$...
We introduce a new signature scheme, SQISign, (for Short Quaternion and Isogeny Signature) from isogeny graphs of supersingular elliptic curves. The signature scheme is derived from a new one-round, high soundness, interactive identification protocol. Targeting the post-quantum NIST-1 level of security, our implementation results in signatures of $204$ bytes, secret keys of $16$ bytes and public keys of $64$ bytes. In particular, the signature and public key sizes combined are an order of...
Multivariate cryptography studies applications of endomorphisms of K[x_1, x_2, …, x_n] where K is a finite commutative ring given in the standard form x_i →f_i(x_1, x_2,…, x_n), i=1, 2,…, n. The importance of this direction for the constructions of multivariate digital signatures systems is well known. Close attention of researchers directed towards studies of perspectives of quadratic rainbow oil and vinegar system and LUOV presented for NIST postquantum certification....
Multivariate cryptography studies applications of endomorphisms of K[x_1, x_2, …, x_n] where K is a finite commutative ring. The importance of this direction for the construction of multivariate digital signature systems is well known. We suggest modification of the known digital signature systems for which some of cryptanalytic instruments were found . This modification prevents possibility to use recently developed attacks on classical schemes such as rainbow oil and vinegar system,...
The intersection of Non-commutative and Multivariate cryptography contains studies of cryptographic applications of subsemigroups and subgroups of affine Cremona semigroups defined over finite commutative ring K with the unit. We consider special subsemigroups (platforms) in a semigroup of all endomorphisms of K[x_1, x_2, …, x_n]. Efficiently computed homomorphisms between such platforms can be used in Post Quantum key exchange protocols when correspondents elaborate common...
We study the isogenies of certain abelian varieties over finite fields with non-commutative endomorphism algebras with a view to potential use in isogeny-based cryptography. In particular, we show that any two such abelian varieties with endomorphism rings maximal orders in the endomorphism algebra are linked by a cyclic isogeny of prime degree.
Isogenies on elliptic curves are of great interest in post-quantum cryptography and appeal to more and more researchers. Many protocols have been proposed such as OIDH, SIDH and CSIDH with their own advantages. We now focus on the CSIDH which based on the Montgomery curves in finite fields Fp with p=3 mod 8 whose endomorphism ring is O. We try to change the form of elliptic curves into y^2=x^3+Ax^2-x and the characteristic of the prime field into p=7 mod 8 , which induce the endomorphism...
For primes \(p \equiv 3 \bmod 4\), we show that setting up CSIDH on the surface, i.e., using supersingular elliptic curves with endomorphism ring \(Z[(1 + \sqrt{-p})/2]\), amounts to just a few sign switches in the underlying arithmetic. If \(p \equiv 7 \bmod 8\) then the availability of very efficient horizontal 2-isogenies allows for a noticeable speed-up, e.g., our resulting CSURF-512 protocol runs about 5.68% faster than CSIDH-512. This improvement is completely orthogonal to all...
Many isogeny-based cryptosystems are believed to rely on the hardness of the Supersingular Decision Diffie-Hellman (SSDDH) problem. However, most cryptanalytic efforts have treated the hardness of this problem as being equivalent to the more generic supersingular $\ell^e$-isogeny problem --- an established hard problem in number theory. In this work, we shine some light on the possibility that the combination of two additional pieces of information given in practical SSDDH instances --- the...
In this paper, we introduce a polynomial-time algorithm to compute a connecting $\mathcal{O}$-ideal between two supersingular elliptic curves over $\mathbb{F}_p$ with common $\mathbb{F}_p$-endomorphism ring $\mathcal{O}$, given a description of their full endomorphism rings. This algorithm provides a reduction of the security of the CSIDH cryptosystem to the problem of computing endomorphism rings of supersingular elliptic curves. A similar reduction for SIDH appeared at Asiacrypt 2016,...
The Charles-Goren-Lauter hash function on isogeny graphs of supersingular elliptic curves was shown to be insecure under collision attacks when the endomorphism ring of the starting curve is known. Since there is no known way to generate a supersingular elliptic curve with verifiably unknown endomorphisms, the hash function can currently only be used after a trusted-setup phase. This note presents a simple modification to the construction of the hash function which, under a few heuristics,...
Using the idea behind the recently proposed isogeny- and paring-based verifiable delay function (VDF) by De Feo, Masson, Petit and Sanso, we construct an isogeny-based VDF without the use of pairings. Our scheme is a hybrid of time-lock puzzles and (trapdoor) verifiable delay functions. We explain how to realise the proposed VDF on elliptic curves with commutative endomorphism ring, however this construction is not quantum secure. The more interesting, and potentially quantum-secure,...
We define semi-commutative invertible masking structures which aim to capture the methodology of exponentiation-only protocol design (such as discrete logarithm and isogeny-based cryptography). We discuss two instantiations: the first is based on commutative group actions and captures both the action of exponentiation in the discrete logarithm setting and the action of the class group of commutative endomorphism rings of elliptic curves, in the style of the CSIDH key-exchange protocol; the...
In this paper, we study several related computational problems for supersingular elliptic curves, their isogeny graphs, and their endomorphism rings. We prove reductions between the problem of path finding in the $\ell$-isogeny graph, computing maximal orders isomorphic to the endomorphism ring of a supersingular elliptic curve, and computing the endomorphism ring itself. We also give constructive versions of Deuring's correspondence, which associates to a maximal order in a certain...
Cryptosystems based on supersingular isogenies have been proposed recently for use in post-quantum cryptography. Three problems have emerged related to their hardness: computing an isogeny between two curves, computing the endomorphism ring of a curve, and computing a maximal order associated to it. While some of these problems are believed to be polynomial-time equivalent based on heuristics, their relationship is still unknown. We give the first reduction between these problems, with...
We consider the endomorphism ring computation problem for supersingular elliptic curves, constructive versions of Deuring's correspondence, and the security of Charles-Goren-Lauter's cryptographic hash function. We show that constructing Deuring's correspondence is easy in one direction and equivalent to the endomorphism ring computation problem in the other direction. We also provide a collision attack for special but natural parameters of the hash function, and we prove that for general...
Fix an ordinary abelian variety defined over a finite field. The ideal class group of its endomorphism ring acts freely on the set of isogenous varieties with same endomorphism ring, by complex multiplication. Any subgroup of the class group, and generating set thereof, induces an isogeny graph on the orbit of the variety for this subgroup. We compute (under the Generalized Riemann Hypothesis) some bounds on the norms of prime ideals generating it, such that the associated graph has good...
Fix a prime number $\ell$. Graphs of isogenies of degree a power of $\ell$ are well-understood for elliptic curves, but not for higher-dimensional abelian varieties. We study the case of absolutely simple ordinary abelian varieties over a finite field. We analyse graphs of so-called $\mathfrak l$-isogenies, resolving that they are (almost) volcanoes in any dimension. Specializing to the case of principally polarizable abelian surfaces, we then exploit this structure to describe graphs of a...
We study cryptosystems based on supersingular isogenies. This is an active area of research in post-quantum cryptography. Our first contribution is to give a very powerful active attack on the supersingular isogeny encryption scheme. This attack can only be prevented by using a (relatively expensive) countermeasure. Our second contribution is to show that the security of all schemes of this type depends on the difficulty of computing the endomorphism ring of a supersingular elliptic curve....
In this work, we retake an old idea that Koblitz presented in his landmark paper, where he suggested the possibility of defining anomalous elliptic curves over the base field F4. We present a careful implementation of the base and quadratic field arithmetic required for computing the scalar multiplication operation in such curves. We also introduce two ordinary Koblitz-like elliptic curves defined over F4 that are equipped with efficient endomorphisms. To the best of our knowledge these...
In pairing-based cryptography, the security of protocols using composite order groups relies on the difficulty of factoring a composite number $N$. Boneh~\etal~proposed the Cocks-Pinch method to construct ordinary pairing-friendly elliptic curves having a subgroup of composite order $N$. Displaying such a curve as a public parameter implies revealing a square root $s$ of the complex multiplication discriminant $-D$ modulo $N$. We exploit this information leak and the structure of the...
An isogeny graph is a graph whose vertices are principally polarizable abelian varieties and whose edges are isogenies between these varieties. In his thesis, Kohel describes the structure of isogeny graphs for elliptic curves and shows that one may compute the endomorphism ring of an elliptic curve defined over a finite field by using a depth-first search (DFS) algorithm in the graph. In dimension 2, the structure of isogeny graphs is less understood and existing algorithms for computing...
We describe a method to perform scalar multiplication on two classes of ordinary elliptic curves, namely $E: y^2 = x^3 + Ax$ in prime characteristic $p\equiv 1$ mod~4, and $E: y^2 = x^3 + B$ in prime characteristic $p\equiv 1$ mod 3. On these curves, the 4-th and 6-th roots of unity act as (computationally efficient) endomorphisms. In order to optimise the scalar multiplication, we consider a width-$w$-NAF (non-adjacent form) digit expansion of positive integers to the complex base of...
The first step in elliptic curve scalar multiplication algorithms based on scalar decompositions using efficient endomorphisms---including Gallant--Lambert--Vanstone (GLV) and Galbraith--Lin--Scott (GLS) multiplication, as well as higher-dimensional and higher-genus constructions---is to produce a short basis of a certain integer lattice involving the eigenvalues of the endomorphisms. The shorter the basis vectors, the shorter the decomposed scalar coefficients, and the faster the resulting...
The Gallant-Lambert-Vanstone (GLV) algorithm uses efficiently computable endomorphisms to accelerate the computation of scalar multiplication of points on an abelian variety. Freeman and Satoh proposed for cryptographic use two families of genus 2 curves defined over $\F_{p}$ which have the property that the corresponding Jacobians are $(2,2)$-isogenous over an extension field to a product of elliptic curves defined over $\F_{p^2}$. We exploit the relationship between the endomorphism rings...
We present two algorithms that, given a prime ell and an elliptic curve E/Fq, directly compute the polynomial $\Phi_\ell(j(E),Y)\in\Fq[Y] whose roots are the j-invariants of the elliptic curves that are ell-isogenous to E. We do not assume that the modular polynomial Phi_ell(X,Y) is given. The algorithms may be adapted to handle other types of modular polynomials, and we consider applications to point counting and the computation of endomorphism rings. We demonstrate the practical...
Generalizing a method of Sutherland and the author for elliptic curves, we design a subexponential algorithm for computing the endomorphism ring structure of ordinary abelian varieties of dimension two over finite fields. Although its correctness and complexity bound rely on several assumptions, we report on practical computations showing that it performs very well and can easily handle previously intractable cases.
We present a generalization to genus~2 of the probabilistic algorithm of Sutherland for computing Hilbert class polynomials. The improvement over the Bröker-Gruenewald-Lauter algorithm for the genus~2 case is that we do not need to find a curve in the isogeny class whose endomorphism ring is the maximal order; rather, we present a probabilistic algorithm for ``going up'' to a maximal curve (a curve with maximal endomorphism ring), once we find any curve in the right isogeny class. Then we...
Using Galois cohomology, Schmoyer characterizes cryptographic non-trivial self-pairings of the \ell-Tate pairing in terms of the action of the Frobenius on the \ell-torsion of the Jacobian of a genus 2 curve. We apply similar techniques to study the non-degeneracy of the \ell-Tate pairing restrained to subgroups of the \ell-torsion which are maximal isotropic with respect to the Weil pairing. First, we deduce a criterion to verify whether the jacobian of a genus 2 curve has maximal...
We present new candidates for quantum-resistant public-key cryptosystems based on the conjectured difficulty of finding isogenies between supersingular elliptic curves. The main technical idea in our scheme is that we transmit the images of torsion bases under the isogeny in order to allow the parties to construct a shared commutative square despite the noncommutativity of the endomorphism ring. Our work is motivated by the recent development of a subexponential-time quantum algorithm for...
We design a probabilistic algorithm for computing endomorphism rings of ordinary elliptic curves defined over finite fields that we prove has a subexponential runtime in the size of the base field, assuming solely the generalized Riemann hypothesis. Additionally, we improve the asymptotic complexity of previously known, heuristic, subexponential methods by describing a faster isogeny-computing routine.
We present two algorithms to compute the endomorphism ring of an ordinary elliptic curve E defined over a finite field F_q. Under suitable heuristic assumptions, both have subexponential complexity. We bound the complexity of the first algorithm in terms of log q, while our bound for the second algorithm depends primarily on log |D_E|, where D_E is the discriminant of the order isomorphic to End(E). As a byproduct, our method yields a short certificate that may be used to verify that the...
The Brezing-Weng method is a general framework to generate families of pairing-friendly elliptic curves. Here, we introduce an improvement which can be used to generate more curves with larger discriminants. Apart from the number of curves this yields, it provides an easy way to avoid endomorphism rings with small class number.
Consider the jacobian of a hyperelliptic genus two curve defined over a finite field. Under certain restrictions on the endomorphism ring of the jacobian we give an explicit description all non-degenerate, bilinear, anti-symmetric and Galois-invariant pairings on the jacobian. From this description it follows that no such pairing can be computed more efficiently than the Weil pairing. To establish this result, we need an explicit description of the representation of the Frobenius...
We present probabilistic algorithms which, given a genus 2 curve C defined over a finite field and a quartic CM field K, determine whether the endomorphism ring of the Jacobian J of C is the full ring of integers in K. In particular, we present algorithms for computing the field of definition of, and the action of Frobenius on, the subgroups J[l^d] for prime powers l^d. We use these algorithms to create the first implementation of Eisentrager and Lauter's algorithm for computing Igusa...
Cryptographic applications using an elliptic curve over a finite field filter curves for suitability using their order as the primary criterion: e.g. checking that their order has a large prime divisor before accepting it. It is therefore natural to ask whether the discrete log problem (DLOG) has the same difficulty for all curves with the same order; if so it would justify the above practice. We prove that this is essentially true by showing random reducibility of dlog among such curves,...