
Unconditional foundations for
supersingular isogeny-based cryptography

Arthur Herlédan Le Merdy[0009−0007−6116−6863] and
Benjamin Wesolowski[0000−0003−1249−6077]

ENS de Lyon, CNRS, UMPA, UMR 5669, Lyon, France

Abstract. In this paper, we prove that the supersingular isogeny prob-
lem (Isogeny), endomorphism ring problem (EndRing) and maximal
order problem (MaxOrder) are equivalent under probabilistic polyno-
mial time reductions, unconditionally.
Isogeny-based cryptography is founded on the presumed hardness of
these problems, and their interconnection is at the heart of the design
and analysis of cryptosystems like the SQIsign digital signature scheme.
Previously known reductions relied on unproven assumptions such as the
generalized Riemann hypothesis. In this work, we present unconditional
reductions, and extend this network of equivalences to the problem of
computing the lattice of all isogenies between two supersingular elliptic
curves (HomModule).
For cryptographic applications, one requires computational problems
to be hard on average for random instances. It is well-known that if
Isogeny is hard (in the worst case), then it is hard for random instances.
We extend this result by proving that if any of the above-mentionned
classical problems is hard in the worst case, then all of them are hard
on average. In particular, if there exist hard instances of Isogeny, then
all of Isogeny, EndRing, MaxOrder and HomModule are hard on
average.

Keywords: Isogeny-based cryptography · Cryptanalysis · Endomorphism ring
· Isogeny path · Supersingular elliptic curve

1 Introduction

Isogeny-based cryptography, a branch of post-quantum cryptography, rests on
the presumed hardness of a few interconnected computational problems: varia-
tions around the supersingular isogeny problem (Isogeny) or the endomorphism
ring problem (EndRing). A collection of “fundamental problems” has grown
with our understanding of the field and with the needs of new cryptosystems.
Some, like OneEnd are well-suited for security proofs, their hardness serving as
a lower bound on the security of cryptographic schemes. Others, like EndRing,
are better suited for attacks, thereby serving as upper bounds on the security.
And some, like MaxOrder, reframe these problems in a radically different lan-
guage, deepening our understanding of the field.
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Connecting these problems, proving computational reductions, or even equiv-
alences, has thus become a central and fruitful line of research. Most notably,
the equivalence between the isogeny problem and the endomorphism ring prob-
lem [10,28] motivated the design of SQIsign [9], today the most compact post-
quantum digital signature scheme.

While all these fundamental problems are considered to be equivalent, only
few of the computational reductions linking them are fully, unconditionally
proven. Almost all previously-known results rely on an unproven assumption:
the generalized Riemann hypothesis (GRH). In this paper, we prove that all
the aforementioned problems, and more, are in fact equivalent under classical,
probabilistic polynomial time reductions, unconditionally.

1.1 Contribution

The main results of this paper are Theorem 1.1 and Theorem 1.2 below. The-
orem 1.1, summarized in Figure 1, establishes the unconditional equivalence of
fundamental problems of isogeny-based cryptography. Theorem 1.2 establishes
their average-case hardness: if any of them is hard in the worst case, then all of
them are hard on average, for uniformly random instances.

Let us start by informally introducing the computational problems at hand.
Formal definitions are provided in Section 2.5. The central objects of interest are
so-called supersingular elliptic curves. Isogenies are morphisms between elliptic
curves. Endomorphisms of an elliptic curve E are isogenies from E to itself; they
form a ring, written End(E).

– OneEnd (the One Endomorphism problem): Given a supersingular elliptic
curve E, find an endomorphism that is not a scalar multiplication, i.e., an
element of End(E) \ Z.

– EndRing (the Endomorphism Ring problem): Given a supersingular elliptic
curve E, compute a basis of the endomorphism ring End(E).

– Isogeny (the Isogeny problem): Given two supersingular elliptic curves E
and E′, find an isogeny from E to E′.

– ℓ-IsogenyPath (the ℓ-Isogeny Path problem): Given two supersingular el-
liptic curves E and E′, and a prime number ℓ, find an isogeny E → E′ of
degree a power of ℓ (i.e., an ℓ-isogeny path from E to E′).

– HomModule (the Homomorphism Module problem): Given two supersin-
gular elliptic curves E and E′, compute a basis of the lattice Hom(E,E′) of
all isogenies from E to E′. This problem has received very little attention so
far. It appears to have never been formally introduced in the literature, yet
has implicitly played a role.

– MaxOrder (the Maximal Order problem): Given a supersingular elliptic
curve E, find some “abstract ring” O isomorphic to End(E). More precisely,
End(E) is known to be isomorphic to a maximal order O in a quaternion
algebra Bp,∞. The MaxOrder problem asks to find an order in Bp,∞ iso-
morphic to End(E). To resolve an ambiguity in previous literature (see Sec-
tion 3), we formalize two variants: MaxOrder, where the solver is free to
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choose his own model for Bp,∞, and MaxOrderQ, where the solution has
to be in a model specified by an algorithm Q.

– MOER (the Maximal Order and Endomorphism Ring problem): Given a
supersingular elliptic curve E, compute a basis of the endomorphism ring
End(E), together with an isomorphism with an order in the quaternion al-
gebra Bp,∞.

ℓ-IsogenyPathIsogeny

EndRingOneEnd MOER

MaxOrder

HomModule

MaxOrderQ

Proposition 4.6

Proposition 6.1[19]

[19]

Proposition 5.5

Proposition 6.2

Proposition 3.1

Fig. 1. Summary of the relations between fundamental isogeny-based problems. All
arrows are unconditional classical polynomial time reductions. Thin arrows have a O(1)
query-complexity, and thick arrows have a polylog(p) query-complexity. Reductions
with no reference are trivial, and all others are proved in the associated reference.
Reductions involving MaxOrderQ require oracle access to Q.

Theorem 1.1. The problems Isogeny, EndRing, OneEnd, MOER, MaxOrder,
MaxOrderQ and HomModule are all equivalent under probabilistic polyno-
mial time reductions. Reductions involving MaxOrderQ require oracle access
to Q.

Map of the proof of Theorem 1.1 The strategy consists in proving the
computational reductions exhibited in Figure 1. Each arrow represents a com-
putational reduction, and comes with a pointer to the proof. Note that our un-
conditional reductions are substantially different from the existing conditional
reductions. To eliminate any reliance on GRH, we avoid all arguments that
rely on the “good” distribution of numbers represented by quadratic forms. This
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forbids us from using the powerful tools of KLPT-type algorithms [12]. In par-
ticular, we need to construct different “paths” in the network of reductions, and
develop new types of arguments. We prove the reductions in the following order.

– The novel distinction between the two computational problems MaxOrder
and MaxOrderQ is discussed in Section 3. Their equivalence, proved in
Proposition 3.1, hinges on a recent result [7, Proposition 4.1] to compute
isomorphisms between quaternion algebras, when some maximal orders are
known in each.

– The HomModule problem is the object of Section 4, where we prove that
it reduces to Isogeny. Given two curves E1 and E2, the strategy is the
following. First, we exploit the reduction from EndRing to Isogeny proved
in [19] to compute bases of End(E1) and End(E2). Then, we solve Isogeny
again to find some φ : E1 → E2. Through algebraic arguments, we prove that
one can extract a basis of Hom(E1, E2) from the data of End(E1), End(E2),
and φ.

– The reduction from OneEnd to MaxOrder is the object of Section 5. Nav-
igating between a problem which deals with endomorphisms (like OneEnd)
and another which deals with purely quaternionic data (like MaxOrder)
typically requires to connect instances to some special elliptic curve E0

for which both End(E0) and its embedding in the quaternions are already
known. This curve E0 provides an “endomorphism/quaternion” dictionary.
Without GRH, there is no guarantee that a special curve E0 can be found.
We thus need to develop a new strategy. To reduce OneEnd (say on some
input E) to MaxOrder, we solve MaxOrder on E and on a few “close
neighbours” of E. Doing so, we construct a “local” correspondence between
neighbours of E and quaternionic orders, and we prove that from enough such
“local” information, we can reconstruct a full “endomorphism/quaternion”
dictionary.

– The reduction from Isogeny to MOER is the object of Proposition 6.1. This
reduction hinges on recent advances in isogeny-based cryptography facilitat-
ing the conversion of ideals in quaternionic orders into the corresponding
isogenies [18].

– Finally, the reduction from MOER to EndRing is the object of Proposi-
tion 6.2. Of all the reductions, this one resembles the most closely an existing
reduction: the reduction from MaxOrder to EndRing in [10,28]. However,
these former reductions required GRH to provably avoid hard factorisations.
Instead, we show that no factorisation is needed if we are free to choose our
own model (a,bQ ) for the quaternion algebra. The parameters a and b are
possibly hard to factor, but it does not matter: the result [7, Proposition
4.1] allows one to convert the solution to more standard models without
factoring.

Discussion of Theorem 1.1 and comparison with previous work. The
former state of the art is summarized in Figure 2. We make the following obser-
vations.
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– The HomModule problem is absent from Figure 2: its relation to other
problems was never studied before.

– The MOER problem is also absent, yet it is folklore that, assuming GRH,
the reductions of [28] also extend to MOER.

– Reflecting previous litterature, Figure 2 makes no distinction between the
problems MaxOrder and MaxOrderQ. Indeed, this distinction is only
useful if one refuses to believe in GRH (see Section 3).

– There remains one reduction which is only known conditionally on GRH: the
reduction from ℓ-IsogenyPath to EndRing (or to any other problem in our
list). Indeed, by definition, ℓ-IsogenyPath asks to find isogenies with degree
of a prescribed form. The study of isogenies of prescribed degree closely
relates to the study of integers represented by certain quadratic forms. GRH
has a consequential impact on the distribution of integers represented by
quadratic forms, and currently known unconditional results seem insufficient
for the study of ℓ-IsogenyPath. 1

Isogeny

ℓ-IsogenyPath EndRing MaxOrder
GRH
[28]

OneEnd

GRH
[28]

[19]

[19]

Fig. 2. Former state of the art of (conditional) reductions between foundational prob-
lems of isogeny-based cryptography. All arrows are classical polynomial time reduc-
tions. Thin arrows have a O(1) query-complexity, and the thick arrow has a polylog(p)
query-complexity. Reductions with no reference are trivial, and all others are proved
in the associated reference. The GRH label signifies that a reduction assumes the
Generalized Riemann Hypothesis.

Theorem 1.1 implies that if hard instances exist for any one of the listed
problems, then hard instances must exist for all of them. However, the security
of isogeny-based schemes typically relies on the presumed hardness of random
instances of these problems. These random instances often follow a “natural”
distribution called the stationary distribution (see Definition 2.15 — note that it
is statistically indistinguishable from the uniform distribution). This distribution
emerged from the use of random walks as early as the Charles–Goren–Lauter
hash function [6], and up to the latest advances on the SQIsign digital signature
scheme [8,3]. We are thus interested in the hardness of the average case of the
1 Note that an attempt at replacing the GRH assumption with a factoring oracle is

presented in [15]. A mistake in the proof has been reported, but if it can be fixed, it
would link ℓ-IsogenyPath to the other problems under unconditional polynomial
time quantum reductions.
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fundamental problems (see Definition 2.19), with respect to the stationary (or
uniform) distribution.

The following Theorem 1.2 says that there are worst-case to average-case
reductions between all of these problems. In particular, if there exists even a
single hard instance for any of the listed problems, then all of the problems are
hard on average — a powerful statement for security analysis.

Theorem 1.2. For any pair of problems (P,Q) chosen from the problems Isogeny,
EndRing, OneEnd, MOER, MaxOrder, MaxOrderQ, HomModule, and
ℓ-IsogenyPath there exists a probablistic polynomial time worst-case to average-
case reduction from P to Q. All reductions hold unconditionally, with the two
following exceptions which require the generalized Riemann hypothesis:

– if P = ℓ-IsogenyPath, or
– if Q ∈ {MaxOrder,MaxOrderQ} and p ≡ 1 mod 8.

Reductions involving MaxOrderQ require oracle access to Q.

Map of the proof of Theorem 1.2 The strategy, carried out in Section 7,
consists in proving that the worst-case OneEnd problem reduces to the aver-
age case of any other problem in the list. The precise network of reductions
is summarized in Figure 3, page 25. We conclude from the fact, established in
Theorem 1.1, that the worst case of any problem in the list reduces to a worst-
case OneEnd instance (except for P = ℓ-IsogenyPath, which relies on the
conditional reduction of [28]).

Discussion of Theorem 1.2 and comparison with previous work. Some
of the worst-case to average-case reductions between the problems of interest are
already folklore. It is well known, for instance, that random walks in ℓ-isogeny
graphs can be used to re-randomize an instance of the ℓ-IsogenyPath, leading
naturally to a self-reduction. This straightforward approach extends to other
cases, but is not sufficient to obtain the full network of reductions proved in
Theorem 1.2. For instance, the reduction from the worst-case OneEnd prob-
lem to the average case Isogeny, HomModule or ℓ-IsogenyPath problems
is obtained by modifying a worst-case reduction proposed in [19]. The reduc-
tion from the worst-case OneEnd problem to the average case MaxOrder
or MaxOrderQ problems relies on recent advances facilitating the conversion
between ideals and isogenies and the division of isogenies.
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2 Preliminaries

2.1 Notation

We write Z for the ring of integers and Q for the field of rational numbers. For any
prime power q, we write Fq for the finite field with q elements. For any set S, we
denote by #S its cardinality. For any fieldK, we writeK for its algebraic closure.
We write f = O(g) for the classic big O notation, and use the soft O notation
Õ(g) = log(g)O(1) ·O(g). We also write poly(f1, . . . , fn) = (f1+· · ·+fn)O(1). The
function log is in base 2. For any ring R, we write R× for its group if invertible
elements, and M2(R) for the ring of 2× 2 matrices with coefficients in R.

2.2 Quaternion algebras

See [26] for a detailed reference on quaternion algebras. For any a, b ∈ Q×, the
quaternion algebra B = (a,bQ ) is a ring generated by a Q-basis (1, i, j, k) satisfying
the multiplication rules

i2 = a, j2 = b, k = ij = −ji.

In this article, we only consider quaternion algebra of this form. For any prime
p, we say that B is ramified at p if B ⊗ Qp ̸∼= M2(Qp). It is ramified at ∞
if B ⊗ R ̸∼= M2(R). We write Bp,∞ for a quaternion algebra (unique up to
isomorphism) ramified at p and ∞ (and unramified at all other primes).

Lemma 2.1 ([20]). Let p > 2 be a prime. Then, Bp,∞ ∼=
(

−q,−p
Q

)
, where

q =


1 if p ≡ 3 mod 4,

2 if p ≡ 5 mod 8,

qp if p ≡ 1 mod 8,

where qp is any prime such that qp ≡ 3 mod 4 and
(

p
qp

)
= −1.

Note that if GRH is true, when p ≡ 1 mod 8, the smallest suitable qp satisfies
qp = O((log p)2) (this follows from [13], see also [10, Proposition 1]).

Let B be a quaternion algebra. The canonical involution

a+ ib+ jc+ kd 7−→ a− ib− jc− kd

induces the reduced trace Trd(α) = α + α and the reduced norm Nrd(α) = αα.
The reduced norm is a quadratic form on B, with the associated bilinear form

⟨α, β⟩ = 1

2
Trd(αβ) =

1

2
(Nrd(α+ β)−Nrd(α)−Nrdβ) .

When B is ramified at ∞, the reduced norm is positive definite.
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A quadratic space is a Q-vector space V of finite dimension d together with
a (positive definite) quadratic form f : V → Q. A lattice in V is a subgroup
Λ ⊂ V of rank d such that V = QΛ. Given a Z-basis (bi)

d
i=1 of a lattice Λ,

its Gram matrix is G = (⟨bi, bj⟩)di,j=1. The volume of the lattice is Vol(Λ) =√
|det(G)|, where G is the Gram matrix of any basis of Λ. The discriminant of

Λ is disc(Λ) = 16Vol(Λ)2.
An order in a quaternion algebra B is a subring O ⊂ B that is also a lattice.

It is a maximal order if it is not contained in any other order. Maximal orders
in Bp,∞ have Vol(O) = p/4.

The following proposition shows that given maximal orders, one can effi-
ciently compute an isomorphism between different models of Bp,∞.

Proposition 2.2. [7, Proposition 4.1] Let A,B be quaternion algebras isomor-
phic to Bp,∞. Given OA a maximal order in A and OB a maximal order in B,
one can compute an isomorphism between A and B in polynomial time.

For any lattice Λ ⊂ B, its left order and right order are the orders

OL(Λ) = {α ∈ B | αΛ ⊆ Λ}, and OR(Λ) = {α ∈ B | Λα ⊆ Λ}.

If O is a maximal order, and I is a left ideal in O, then OL(I) = I, and OR(I) is
another maximal order. The connecting ideal of two maximal order O1 and O2

is the lattice

I(O1,O2) = {α ∈ B | αO2α ⊆ [O2 : O1 ∩ O2]O1}.

It is a left O1-ideal and a right O2-ideal.
Let I be a left ideal in a maximal order O. Its reduced norm is Nrd(I) =

gcd(Nrd(α) | α ∈ I) =
√
#(O/I). Its normalized quadratic form is the integral

quadratic form

qI : I −→ Z : α 7−→ Nrd(α)

Nrd(I)
.

In Bp,∞, the volume of I with respect to this quadratic form is p/4.

2.3 Elliptic curves

See [24] for a detailed reference on elliptic curves. An elliptic curve is an abelian
variety of dimension 1. Given a field k of characteristic p > 3, an elliptic curve
E can be described by a short Weierstrass equation y2 = x3 + ax+ b for a, b ∈ k
with 4a3+27b2 ̸= 0. The k-rational points of E is the set E(k) of pairs (x, y) ∈ k2

satisfying the curve equation, together with a point ∞E ‘at infinity’. They form
an abelian group, written additively, where ∞E is the neutral element.

Given two elliptic curves E1 and E2 defined over k, an isogeny φ : E1 → E2

is a non-constant rational map which is also a group homomorphism from E1(k)
to E2(k). The kernel ker(φ) is a finite subgroup of E1(k). The degree deg(φ) is
its degree as a rational map. An isomorphism is an isogeny of degree 1.
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For any integer m, the multiplication-by-m map [m] : E → E is an isogeny.
For any isogeny φ : E → E′, its dual is the unique isogeny φ̂ : E′ → E such that
φ̂ ◦ φ = [deg(φ)].

The isogeny φ is separable if deg(φ) = #ker(φ), and inseparable otherwise.
The isogeny is purely inseparable if ker(φ) is trivial (note that an isogeny is an
isomorphism if and only if it is both separable and purely inseparable). For any
finite subgroup G ⊂ E(k), there exists a separable isogeny φ : E → E/G with
ker(φ) = G (and φ is unique up to an isomorphism of the target).

If k has characteristic p > 0, the map ϕEpn : E → E(pn) : (x, y) 7→ (xp
n

, yp
n

)
is the pn-Frobenius isogeny. For any isogeny φ : E → E′, there is a maximal
integer n such that φ factors as φ = ψ ◦ϕEpn . Then, ψ is separable. The isogenies
ϕEpn are purely inseparable.

If φ is separable and deg(φ) = ℓ is prime, we say that φ is an ℓ-isogeny.

An endomorphism of E is an isogeny E → E. Endomorphisms, together
with the zero morphism, form the endomorphism ring End(E). The curve E is
supersingular when End(E) is a lattice of rank 4. Then, End(E)⊗Q is isomorphic
to the quaternion algebra Bp,∞, and End(E) is a maximal order. The degree map
deg : End(E) → Z coincides with the reduced norm of the algebra.

We write SSp for the set of Fp-isomorphism classes of supersingular elliptic
curves over Fp. We have #SSp = ⌊p/12⌋+ ε, with ε ∈ {0, 1, 2}, and all supersin-
gular elliptic curves have a model over Fp2 .

The Deuring correspondence highlights a deep connection between supersin-
gular elliptic curves and maximal orders in the quaternion algebra Bp,∞. Indeed,
for any supersingular E/Fp2 , we have that End(E) is a maximal order in the
algebra End(E)⊗Q ≃ Bp,∞. For any isogeny φ : E → E′, we have a left ideal

Iφ = Hom(E′, E) ◦ φ ⊆ End(E),

and the right order OR(Iφ) is isomorphic to End(E′). Any non-zero left ideal
I in End(E) is of this form, and we write φI : E → EI for the corresponding
isogeny. We thus have a bijection φ 7→ Iφ (with inverse I 7→ φφ) between

– Isogenies from E (up to isomorphism of the target), and
– Left ideals in End(E).

Furthermore, for any φ : E → E′, the lattice Iφ (with its normalized quadratic
form qIφ) is isomorphic to Hom(E,E′) (with the quadratic form deg).

2.4 Isogeny algorithms

There are several ways to encode an isogeny. In computational questions involv-
ing isogenies, we typically do not care how an isogeny is encoded, at long as it
is an efficient representation: an encoding that allows to store and evaluate the
isogeny φ in polynomial time in log(deg(φ)).
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Definition 2.3 (Efficient representation, following [29, Definition 1.3]).
Let A be a polynomial time algorithm. It is an efficient isogeny evaluator if for
any D ∈ {0, 1}∗ such that A(validity, D) outputs ⊤, there exists an isogeny
φ : E → E′ (defined over some finite field Fq) such that:

1. on input (curves, D), A returns (E,E′),
2. on input (degree, D), A returns deg(φ),
3. on input (eval, D, P ) with P ∈ E(Fqk), A returns φ(P ).

If furthermore D is of polynomial size in log(degφ) and log q, then D is an
efficient representation of φ (with respect to A).

The break of SIDH [5,14,22] had a major consequence on the computation of
isogenies: they can be interpolated. More precisely, one can compute an efficient
representation of an isogeny given only its image on a sufficiently large subgroup
of its domain. In this paper, we will use the following simplified version of this
result.

Proposition 2.4 (IsogenyInterpolation [23, Theorem 5.19]). Let φ :
E → E′ be an n-isogeny between supersingular elliptic curves defined over Fp2 .
Let N > n be an integer coprime to pn with prime power decomposition

∏r
i=1 ℓ

er
r .

Let (P1, Q1, . . . , Pr, Qr) be a set of generators of the N -torsion E[N ] such that
(Pi, Qi) is a basis of E[ℓeii ], for i = 1, . . . , r.

Then, given (P1, Q1, . . . , Pr, Qr, φ(P1), φ(Q1), . . . , φ(Pr), φ(Qr)), one can com-
pute an efficient representation of φ in polynomial time in the length of the input
and in the largest prime factor of N .

Using this interpolation result, it was then proved that there is an efficient
algorithm to divide isogenies. This application was first presented in [21] is some
particular case, and later generalised in [16].

Proposition 2.5 (IsogenyDivision, [21] and [16, Theorem 3]). Given an
isogeny φ : E1 → E2, where E1 and E2 are supersingular elliptic curves defined
over Fp2 , and an integer n < degφ, one can return an efficient representation
of φ/n if it is a well-defined isogeny, and return False otherwise, in time poly-
nomial in log p and log degφ.

Finally, we will use a recent unconditional polynomial-time algorithm to
translate O-left ideals to corresponding isogenies, where O is a maximal or-
der in a quaternion algebra isomorphic to Bp,∞. It is a direct generalisation of
the Clapoti algorithm [18] for computing class group action on oriented elliptic
curves in polynomial time, even if the norm of the acting ideal is not smooth.

Translating Clapoti into a general IdealToIsogeny algorithm has been
done in prior work, such as [3]. Notice that, for the sake of efficiency, the authors
of [3] chose to use isogenies in dimension 2, which required assuming heuristics.
In contrast, to obtain a rigorous polynomial-time algorithm, we consider the
most direct generalisation of Clapoti, using abelian varieties of dimension 8.
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Proposition 2.6 (IdealToIsogeny [18]). Let E be a supersingular elliptic
curve defined over Fq such that an isomorphism ε : End(E) ≃ O is known,
where O is a maximal order in some quaternion algebra isomorphic to Bp,∞.
Given a left O-ideal I, one can compute an efficient representation of the isogeny
φI : E → E/E[I] in polynomial time in the length of the input.

2.5 Computational problems

We now formally define the computational problems of interest. Every isogeny
in the input or output of these problems is considered to be in efficient repre-
sentation 2.3. The supersingular isogeny problem can then be simply expressed
as follows.

Problem 2.7 (Isogeny). Given E and E′ two supersingular elliptic curves de-
fined over Fp2 , compute an isogeny φ : E → E′.

Instead of asking for a single isogeny, one can ask for the collection of all
isogenies from E to E′. As this collection is a lattice, the following problem asks
to find a basis of this lattice.

Problem 2.8 (HomModule). Given two supersingular elliptic curves E and E′

defined over Fp2 , find four isogenies generating Hom(E,E′) as a Z-module.

It is often convenient to find an isogeny of a particular form. An ℓ-isogeny
path (of length n) from E to E′ is a sequence of ℓ-isogenies φi : Ei → Ei+1 such
that E0 = E and En = E′. Such a path provides an efficient representation of
the degree ℓn composition E → E′. The following version of the isogeny problem
appeared as early as [6], when no general method was known for the efficient
representation of arbitrary isogenies.

Problem 2.9 (ℓ-IsogenyPath). Given E and E′ two supersingular elliptic curves
defined over Fp2 , compute an ℓ-isogeny path from E to E′.

It soon appeared that the problem of finding isogenies is closely related to the
problem of finding endomorphisms. Again, there are several ways to formalize
it. The first asks to find a basis of the endomorphism ring.

Problem 2.10 (EndRing). Given a supersingular elliptic curve E defined over
Fp2 , find four endomorphisms generating End(E) as a Z-module.

Similarly to isogenies, we could ask to find a single endomorphism instead
of the whole ring. But extra care is required: some endomorphisms are always
easy to find: any scalar multiplication [m] on E is an endomorphism, forming
the subring Z ⊂ End(E).

Problem 2.11 (OneEnd). Given a supersingular elliptic curve E defined over
Fp2 , find an endomorphism in End(E) \ Z.



12 A. Herlédan Le Merdy and B. Wesolowski

Now, computing the endomorphism ring of E could be interpreted in a dif-
ferent way. Instead of finding actual endomorphisms of E as in EndRing, one
could ask for the abstract structure of End(E). Indeed, this ring is always iso-
morphic to a maximal order in Bp,∞, and determining which is the following
problem.

Problem 2.12 (MaxOrder). Given a supersingular elliptic curve E defined over
Fp2 , find a quaternion algebra B = (−a,−b

Q ) ≃ Bp,∞, together with four quater-
nions in B generating a maximal order isomorphic to End(E).

Note that in previous work such as [10,28], the problem MaxOrder does
not require finding a model (−a,−b

Q ) for Bp,∞. Instead, they make the implicit
assumption that a fixed model of the form Bp,∞ = (−p,−q

Q ) is used. Since there is
no “canonical” model of Bp,∞, we include the choice of a model in the definition
of the problem. We discuss this subtlety in further detail in Section 3, where we
prove that it does not actually matter: it is equivalent to the following problem
where a model for Bp,∞ of the same form as [10,28] is provided.

Problem 2.13 (MaxOrderQ). Let Q be an algorithm which for any prime num-
ber p, outputs a prime q = Q(p) such that Bp,∞ ≃ (−p,−q

Q ). The problem
MaxOrderQ is the following. Given a supersingular elliptic curve E defined
over Fp2 , find four quaternions in (−p,−Q(p)

Q ) generating a maximal order iso-
morphic to End(E).

As the EndRing problem asks to find actual endomorphisms generating
End(E), and the MaxOrder problem asks to find the “quaternionic” structure
of End(E), one can combine these two tasks as in the following problem.

Problem 2.14 (MOER). Given a supersingular elliptic curve E defined over Fp2 ,
find four endomorphisms (αi)

4
i=1 generating End(E) as a Z-module, a quaternion

algebra B = (−a,−b
Q ) ≃ Bp,∞, and four quaternions (βi)

4
i=1 in B such that

End(E)⊗Q −→ B : αi 7−→ βi

is an isomorphism.

2.6 Random walks

We will consider random processes in the set of supersingular elliptic curves. Let
CSSp be the set of functions SSp → C. We consider two natural distances on
CSSp . First,

dTV(f, g) =
1

2
∥f − g∥1 =

1

2

∑
E∈SSp

|f(E)− g(E)|.

When f and g are distributions on SSp, this is known as the total variation
distance. Second, we have the scalar product

⟨f, g⟩ =
∑

E∈SSp

f(E)g(E)#Aut(E),
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inducing the norm ∥f∥ = ⟨f, f⟩1/2. Note that by the Cauchy-Schwarz inequality
and Eichler’s formula, for any f, g, we have

dTV(f, g) ≤
∥f − g∥

2

 ∑
E∈SSp

1

#Aut(E)

1/2

=
∥f − g∥

2

(
p− 1

24

)1/2

.

Given an elliptic curve E, a prime ℓ and an integer k, a random ℓ-walk from
E of length k is a random sequence (φ0, . . . , φk−1) sampled as follows:

1. Let E0 = E,
2. For each i, let Gi be a uniformly random subgroup of order ℓ in Ei, and let
Ei+1 = Ei/Gi

3. For each i, let φi : Ei → Ei+1 be the quotient isogeny.

The curve E is the source of the walk, and the codomain of φk−1 is called
the target of the walk. Let N be a positive integer with prime factorization
N =

∏t
i=1 ℓ

ki
i . A random N -walk from E is a sequence (wi)

t
i=1 where

1. The source of w1 is E,
2. Each wi is a random ℓi-walk of length ki, and
3. For each i, the target of wi is the source of wi+1.

The target of the walk is the target of wt. Note that the walk itself depends on
an order of the prime factors of N , but the distribution of the target does not.

The following proposition states that random walks rapidly converge to the
so-called stationary distribution.

Definition 2.15. The stationary distribution on SSp is the probability distri-
bution defined by µ(E) = 24

(p−1)#Aut(E) .

Remark 2.16. For any p > 3, the quantity #Aut(E) is equal to 2 for all curves
E with two exceptions: if j(E) = 1728, then #Aut(E) = 4, and if j(E) = 0,
then #Aut(E) = 6. Therefore, the total variation distance between the uniform
distribution and the stationary distribution on SSp is O(1/p). In particular, the
two distributions are statistically and computationally indistinguishable.

Proposition 2.17. Let N be a positive integer with prime factorization N =∏t
i=1 ℓ

ki
i . Let E be a random supersingular elliptic curve defined over Fp2 , for

some distribution f . Let WN (f) be the distribution of the target of a random
N -walk from E. Then,

∥WN (f)− µ∥ ≤ ∥f − µ∥ ·
t∏

i=1

(
2
√
ℓi

ℓi + 1

)ki

,

where µ is the stationary distribution.
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Proof. This is a folklore consequence of Pizer’s proof that the supersingular ℓ-
isogeny graph is Ramanujan [20]. However, previous literature only details the
case where N is a prime power, so let us show that it extends to the general
case. Following [19, Appendix A.1], let Wℓ = Bℓ/(ℓ+ 1) be the ℓ-walk operator
in X: for any distribution f on SSp, we have that W k

ℓ (f) is the distribution of
the target of a random ℓ-walk of length k. From [19, Appendix A.1] and [19,
Theorem 3.10], we have ∥W k

ℓ (f)− µ∥ ≤ 2
√
ℓ

ℓ+1∥f − µ∥. We deduce that

∥WN (f)− µ∥ = ∥(W k1

ℓ1
◦ · · · ◦W kt

ℓt
)(f)− µ∥ ≤ ∥f − µ∥ ·

t∏
i=1

(
2
√
ℓi

ℓi + 1

)ki

,

as claimed. ⊓⊔

In our applications, we only need the following corollary, where we introduce
a useful notation τ(p, ε) for the subsequent proofs.

Corollary 2.18. Let E be a random supersingular elliptic curve defined over
Fp2 , for some distribution f , and let ε > 0. There exists a bound τ(p, ε) =

O(log(p) − log(ε)) such that for any N > 2τ(p,ε), the output distribution of a
random N -walk is at total variation distance at most ε to the stationary distri-
bution.

Proof. By [2, Theorem 7, Item 5], we have ∥f −µ∥ ≤
√
3. Let λ = log(3/(2

√
2)).

From Proposition 2.17, we have

∥WN (f)− µ∥ ≤ ∥f − µ∥ ·
t∏

i=1

(
2
√
ℓi

ℓi + 1

)ki

≤
√
3 ·

(
2
√
2

3

)log(N)

=
√
3 · 2−λ log(N).

Now,

dTV(WN (f), µ) ≤ ∥WN (f)− g∥
2

(
p− 1

24

)1/2

≤ 2−λ log(N)

(
p− 1

24

)1/2

.

The latter quantity is smaller than ε if and only if

log(N) ≥ λ

2
(log(p− 1)− log(24)− 2 log(ε)) = O(log(p)− log(ε)),

which proves the result. ⊓⊔

Thanks to the concepts introduced in this section, we can now properly define
average-case problems.

Definition 2.19. Let P be a problem from the list ℓ-IsogenyPath, Isogeny,
EndRing, OneEnd, MOER, MaxOrder, MaxOrderQ and HomModule.
The input of the problem P consists of one or two supersingular elliptic curves
defined over Fp2 . We define the average-case for P as the case where the input
curves are drawn from the stationary distribution on SSp.
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3 The Maximal Order problem

In this section, we discuss the MaxOrder problem, and a subtlety in its defi-
nition when one does not assume GRH. The classical definition makes the im-
plicit assumption that a reference quaternion algebra Bp,∞ is provided. How-
ever, there is no “canonical” model of Bp,∞. When p ≡ 3 mod 4 (respectively
p ≡ 5 mod 8), one can argue that the algebra (−p,−1

Q ) (respectively (−p,−2
Q )) is a

natural model for Bp,∞. However, when p ≡ 1 mod 8, there is no uniform value
of q for which Bp,∞ ≃ (−p,−q

Q ). In order to fix an algebra for each p, previous
works fix a procedure Q such that on input p, the output Q(p) is a prime sat-
isfying Bp,∞ ≃ (−p,−Q(p)

Q ). This Q(p) is typically set to be the smallest prime
number with the requested property. While a convenient choice, it is somewhat
arbitrary. Furthermore, without GRH, there is no guarantee for this value to be
small, nor easy to find.

As this model Bp,∞ = (−a,−b
Q ) might be hard to compute (without GRH,

when p ≡ 1 mod 8), the original definition of MaxOrder becomes ambiguous:
are a and b provided, or are they to be computed? We settle for a definition of
MaxOrder where a and b are left to be found. Let us show that the impact of
this choice is minimal: it is equivalent to the variant MaxOrderQ where the
algebra is imposed to be of the classical form (−p,−Q(p)

Q ), for any procedure Q
which returns a suitable prime. The key is Proposition 2.2, which allows one to
translate solutions accross different models of Bp,∞, so the choice of a particular
model matters not.

Proposition 3.1 (MaxOrderQ is equivalent to MaxOrder). Given ora-
cle access to Q, the two problems MaxOrder and MaxOrderQ are equivalent
under probabilistic polynomial time reductions. The reductions make a single
query to each oracle.

Proof. Let E/Fp2 be a supersingular elliptic curve. We first prove that MaxOrder
reduces to MaxOrderQ. Indeed, if O ⊂ (−p,−Q(p)

Q ) is a solution of MaxOrderQ,
then (p,Q(p),O) is a solution of MaxOrder.

We now prove that MaxOrderQ reduces to MaxOrder. Let O ⊆ (−a,−b
Q )

be a solution of MaxOrder, and let q = Q(p). Let Λ0 be the (non-maximal)
order spanned by the canonical basis (1, i, j, k) of (−p,−q

Q ). Thanks to the orthog-
onality of this basis and since the discriminant of any order O = (α0, . . . , α4) is
given by disc(O) =

√
|det((⟨αi, αj⟩)i,j)|, the discriminant of Λ0 is pq. The fac-

torisation of disc(Λ0) being known, one can construct a maximal order O0 ⊇ Λ0

in polynomial time with [25, Theorem 7.14].
From Proposition 2.2, one can compute an order O′ in (−p,−q

Q ) isomorphic
to O. Then, O′ is a solution of MaxOrderQ. ⊓⊔
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4 The Homomorphism Module problem

The HomModule problem has not been formally studied in the previous lit-
erature, yet it naturally appears in isogeny-based cryptography. For instance,
the homomorphism module between the commitment curve and the challenge
curve in SQISign [9] is the space of all possible responses during an identifica-
tion. While it is clear that Isogeny reduces to HomModule, we prove in this
section that both are actually equivalent.

The relation between HomModule and Isogeny is reminiscent of the rela-
tions between EndRing and OneEnd. The latter equivalence has been proved
in [19]. In this same paper, the authors also proved that OneEnd reduces to
Isogeny, both of these reductions being unconditional. Therefore, there is a
probabilistic polynomial time algorithm solving EndRing given an Isogeny
oracle. In order to take advantage of this fact to solve HomModule we prove
that knowing an isogeny between two elliptic curves and their respective en-
domorphism rings, one can compute efficiently a basis of the homomorphism
module between the said curves, Proposition 4.4 and Proposition 4.5. This leads
to the main result of the section Proposition 4.6, proving that HomModule
reduces to Isogeny.

Lemma 4.1. Let φi : E → Ei, for i ∈ {1, 2}, be separable isogenies such that
kerφ1 ∩ kerφ2 = 0. Then,

Hom(E1, E)φ1 +Hom(E2, E)φ2 = End(E).

Proof. Let φ3 : E → E3 be a separable isogeny with kerφ3 = kerφ1 + kerφ2.
Since kerφ1 ∩ kerφ2 = 0, we have | kerφ3| = | kerφ1|| kerφ2|. Each

Ii = Hom(Ei, E)φi = {α ∈ End(E) | kerφi ⊆ kerα}

is a left End(E)-ideal of reduced norm Nrd(Ii) = | kerφi|. We have

I1 ∩ I2 = {α ∈ End(E) | (kerφ1 + kerφ2) ⊆ kerα} = I3.

We have,

|I1/(I1 ∩ I2)|1/2 =
Nrd(I3)

Nrd(I1)
=

| kerφ3|
| kerφ1|

=
| kerφ1|| kerφ2|

| kerφ1|
= Nrd(I2) = |End(E)/I2|1/2.

By the second isomorphism theorem,

I1/(I1 ∩ I2) ∼= (I1 + I2)/I2 ⊆ End(E)/I2,

and since the leftmost and rightmost quotients have the same cardinality, we
deduce (I1 + I2)/I2 = End(E)/I2, hence I1 + I2 = End(E). ⊓⊔

Lemma 4.2. Let φi : E → Ei, for i ∈ {1, 2}, be separable isogenies such that
kerφ1 ∩ kerφ2 = 0. Then, for any elliptic curve E′,

Hom(E1, E
′)φ1 +Hom(E2, E

′)φ2 = Hom(E,E′).
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Proof. Clearly Hom(E1, E
′)φ1 +Hom(E2, E

′)φ2 ⊆ Hom(E,E′), so let us prove
the second inclusion. By Lemma 4.1,

Hom(E,E′) = Hom(E,E′) End(E)

= Hom(E,E′)(Hom(E1, E)φ1 +Hom(E2, E)φ2)

⊆ Hom(E1, E
′)φ1 +Hom(E2, E

′)φ2,

which proves the result. ⊓⊔

Proposition 4.3. Let φ : E → E′ be a separable isogeny. Then,

spanZ(End(E
′)φEnd(E)) = mHom(E,E′),

where m ∈ Z is the largest integer dividing φ.

Proof. Clearly spanZ(End(E
′)φEnd(E)) ⊆ mHom(E,E′), so let us prove the

other inclusion. Write φ = mψ with kerψ cyclic. Let n = deg(ψ). The ker-
nel kerψ ∼= Z/nZ is a cyclic subgroup of E[n] ∼= (Z/nZ)2. The action of
End(E)/nEnd(E) on E[n] is isomorphic to the action of M2(Z/nZ) on (Z/nZ)2,
so there exists an endomorphism α ∈ End(E) (of degree coprime with n) such
that ker(ψ) ∩ α−1(kerψ) = 0. In other words, ker(ψ) ∩ ker(ψα) = 0. Applying
Lemma 4.2, we deduce

End(E′)ψ + End(E′)ψα = Hom(E,E′).

We deduce

mHom(E,E′) = End(E′)φ+ End(E′)φα ⊆ spanZ(End(E
′)φEnd(E)),

which proves the proposition. ⊓⊔

Recall that any isogeny can be factored as ϕφ where φ is separable, and ϕ is
purely inseparable (ϕ might be an isomorphism). Then, the following proposition
generalized Proposition 4.3 to arbitrary isogenies.

Proposition 4.4. Let φ : E → E′′ be a separable isogeny, and ϕ : E′′ → E′ a
purely inseparable isogeny E. Then,

L = spanZ(End(E
′)ϕφEnd(E)) = mϕHom(E,E′′),

where m ∈ Z is the largest integer dividing φ.

Proof. Since ϕ : E′′ → E′ is purely inseparable, we have End(E′)ϕ = ϕEnd(E′′).
The result then immediately follows from Proposition 4.3. ⊓⊔

Proposition 4.5. Let E, E′ and E′′ be supersingular elliptic curves, and ϕ :
E′′ → E′ a purely inseparable isogeny E. Given a basis of ϕHom(E,E′′), one
can compute a basis of Hom(E,E′) in polynomial time.
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Proof. Let (bi)
4
i=1 be the provided basis of the lattice L = ϕHom(E,E′′). Let

pn = deg(ϕ). If n = 2m is even, then ϕ = pmα where α : E′′ → E′ is an
isomorphism. Then (bi/p

m)4i=1 is a basis of αHom(E,E′′) = Hom(E,E′). If
n = 2m+1 is odd, one can similarly divide by pm, and without loss of generality
we now consider the case where ϕ is the p-Frobenius. Consider the quadratic
form

q : L −→ Z : φ 7−→ deg(φ)/p.

We have

pHom(E,E′) = L ∩ (pHom(E,E′)) = {φ ∈ L | q(φ) ≡ 0 mod p}.

The equation q(φ) ≡ 0 mod p defines an Fp-linear subspace of L/pL which can
be computed as the kernel of the Gram matrix over Fp. ⊓⊔

Algorithm 1 Reducing HomModule to Isogeny
Input: Two isogeneous elliptic curves E1 and E2 and an access to an oracle of

Isogeny.
Output: Four isogenies φi : E1 → E2, i ∈ {1, ..., 4} generating Hom(E1, E2) as

a Z-module.

1: (α1, α2, α3, α4)← a basis of End(E1) ▷ [19, Theorem 8.6]
2: (β1, β2, β3, β4)← a basis of End(E2) ▷ [19, Theorem 8.6]
3: Compute an isogeny φ : E1 → E2 ▷ Using the Isogeny oracle
4: v ← vp(degφ) ▷ p-adic valuation of degφ
5: S ← {βj ◦ φ ◦ αi} ⊂ Hom(E1, E2)
6: (γ1, γ2, γ3, γ4)← a basis of the lattice generated by S ▷ [4]
7: m←

(
16 det(⟨γi, γj⟩)/p4v+2

)1/8
8: B0 ← (γ1/m, γ2/m, γ3/m, γ4/m) ▷ Proposition 2.5
9: Extract a basis of Hom(E,E′) from B ▷ Proposition 4.5

10: return B

Proposition 4.6 (HomModule reduces to Isogeny). Algorithm 1 is cor-
rect and runs in time polynomial in log p and in the length of the oracle outputs.

Proof. The running time of each step is ensured by the corresponding reference.
In particular, each is polynomial in log p and in the length of the oracle’s outputs.

Let us prove the correctness of the algorithm by treating the cases where
the isogeny φ, returned by the Isogeny oracle at Step 3, is inseparable and
separable independently.

We now assume that φ = ϕ ◦ ψ where ψ : E1 → E′ is a separable isogeny
and ϕ : E′ → E2 is a purely inseparable isogeny of degree pv ≥ 1, where
v := vp(degφ) (when v = 0, the purely inseparable part ϕ is an isomorphism).
Let m be the largest integer that divides ψ. Then, by Proposition 4.4, the set
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S generates the lattice mϕHom(E1, E
′). For a basis (γ1, . . . , γ4) of the lattice

generated by S, we have

det(⟨γi, γj⟩) = Vol(mϕHom(E1, E
′))2

= (m4 deg(ϕ)2Vol(Hom(E1, E
′)))2

= m8p4v+2/16,

thus the computation at Step 7 gives the correct m. In particular, the basis
B = (γ1/m, . . . , γ4/m) generates ϕHom(E1, E

′). From it, one can compute a
basis of Hom(E1, E2) using Proposition 4.5. ⊓⊔

5 Finding endomorphisms from quaternions

In the section we develop an unconditional reduction from the OneEnd prob-
lem to the MaxOrder problem. The main difficulty is that without GRH,
there is no general way to compute a “special” elliptic curve E0 for which both
End(E0) and its embedding in the quaternions are already known. Such a curve
provides an “endomorphism/quaternion” dictionary, and previous literature on
MaxOrder made critical use of that fact. Without such an E0, we need to de-
velop a completely different strategy. To reduce OneEnd (say on some input E)
to MaxOrder, we solve the MaxOrder problem on E, giving an order O, but
also on a few of its “neighbours”. We thereby constructing a “local” correspon-
dence: a canonical bijection between ℓ-isogenies from E and ideals of norm ℓ in
the order O. This is done in Algorithm 2. We then prove that this information can
be converted into isomorphisms End(E[ℓ]) ≃ O/ℓO which all descend from the
same implicit isomorphism End(E) ≃ O, via Algorithm 3. Finally, from this local
data, we reconstruct a full “endomorphism/quaternion” dictionary End(E) ≃ O
in Algorithm 4.

At several steps of this process, one might fail to construct the dictionary (for
instance when the isomorphism End(E) ≃ O is not unique). In such a scenario, a
non-scalar endomorphism of E is revealed, and we have solved OneEnd anyway.
If no such failure occurs, we successfully obtain a dictionary, which in turn reveals
(all!) non-scalar endomorphisms of E.

Lemma 5.1. Algorithm 2 is correct and runs in time polynomial in the length
of the input, in ℓ, and in the length of the MaxOrder oracle outputs.

Proof. The claim that the running time is polynomial follows from the references
provided in the comments of Algorithm 2.

Let us prove that the algorithm is correct.
First, the endomorphism α = φ̂j ◦ γ ◦ φi returned at Line 4 is not scalar.

Indeed, suppose by contradiction that α ∈ Z. It is of degree ℓ2, so α = [ℓ]. We
thus have φ̂j ◦φj = [ℓ] = φ̂j ◦ γ ◦φi, hence φj = γ ◦φi, hence ker(φj) = ker(φi),
hence Gi = Gj , contradicting that i ̸= j.

Second, the endomorphism returned at Line 8 is not scalar either. Indeed, it
has degree ℓ2p, which is not a square, so it cannot be scalar.



20 A. Herlédan Le Merdy and B. Wesolowski

Algorithm 2 Computing a bijection between ℓ-isogenies and ideals, given a
MaxOrder oracle

Input: A supersingular elliptic curve E/Fp2 , a prime ℓ ̸= p, a list (Gi)
ℓ
i=0 of all

subgroups of order ℓ in E, an algebra B = (−a,−b
Q ) ≃ Bp,∞, a maximal order

O ≃ End(E) in B, and access to an oracle for MaxOrder.
Output: Either an endomorphism α ∈ End(E) \ Z, or the list (Ii)

ℓ
i=0 of left

O-ideals such that OR(Ii) ≃ End(E/Gj) if and only if i = j.

1: Compute φi : E → E/Gi using Vélu’s formulas for i = 0, . . . , ℓ
2: if E/Gi ≃ E/Gj for some i ̸= j then
3: γ ← an isomorphism between E/Gi and E/Gj

4: return φ̂j ◦ γ ◦ φi ∈ End(E) \ Z
5: if E/Gi ≃ (E/Gj)

(p) for some i ̸= j then
6: γ ← an isomorphism between E/Gi and (E/Gj)

(p)

7: ϕp ← the Frobenius isogeny ϕp : E/Gj → (E/Gj)
(p)

8: return φ̂j ◦ ϕp ◦ γ ◦ φi ∈ End(E) \ Z
9: for i = 0, . . . , ℓ do

10: (Bi, Õi) ← an algebra Bi ≃ Bp,∞ and a maximal order Õi ⊂ Bi such that
Õi ≃ End(E/Gi). ▷ Using the oracle for MaxOrder on E/Gi

11: Oi ← an order in B isomorphic to End(E/Gi) ▷ Proposition 2.2 on (B,O)
and (Bi, Õi).

12: Ji ← I(O,Oi) the connecting ideal ▷ [11, Algorithm 3.5]
13: ⟨α1, . . . , α4⟩ ← a Minkowski-reduced basis of Ji ▷ [17]
14: if Nrd(α2) ≤ ℓNrd(Ji) then
15: α← a non-scalar endomorphism of E of degree at most ℓ2 ▷ For instance,

by exhaustive enumeration of isogenies of degree at most ℓ2 from E.
16: return α
17: Ii ← Jiα1/Nrd(Ji) ▷ The unique left O-ideal of norm ℓ equivalent to Ji.
18: return (B,O, (Ii)ℓi=0)

Note that after Line 8, the rings End(E/Gi) are pairwise non-isomorphic.
Indeed, by [26, Lemma 42.4.1], if End(E/Gi) ≃ End(E/Gj), then E/Gi is iso-
morphic to either E/Gj or to its Galois conjugate (E/Gj)

(p), in which case the
algorithm has terminated before Line 8. In particular, the codomains of all ℓ-
isogenies from E have pairwise distinct endomorphism rings, hence left ideals of
norm ℓ in O are uniquely identified by the isomorphism class of their right-order.

At each iteration of the for-loop, we consider two cases.

– If Nrd(α2) ≤ ℓNrd(Ji), by definition of Minkowski bases, we have that Nrd(α1) ≤
ℓNrd(Ji). As JiJ̄i = Nrd(Ji)O, the element α1ᾱ2/Nrd(Ji) is in O. Further-
emore, α1ᾱ2/Nrd(Ji) is not a scalar, otherwise α1 and α2 would be linearly
dependent. Therefore O (hence also End(E)) contains a non-scalar element
of norm

Nrd

(
α1ᾱ2

Nrd(Ji)

)
=

Nrd (α1)Nrd (α2)

Nrd(Ji)2
≤ ℓ2
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Then, a non-trivial endomorphism of degree at most ℓ2 can be found in time
polynomial in log p and ℓ by exhaustive search.

– Otherwise, Nrd(α2) > ℓNrd(Ji). Let us prove that in that case, the ideal Ii =
Jiᾱ1/Nrd(Ji) is the unique left O-ideal of norm ℓ with OR(Ii) ≃ End(E/Gi).
Recall that by the Deuring correspondence, the lattice Hom(E,E/Gi) (for
the quadratic form deg) is isomorphic to Ji (with quadratic form qJi

:
α 7→ Nrd(α)/Nrd(Ji)). Therefore, there exists an element β ∈ Ji such that
qJi

(β) = ℓ. Since qJi
(β) < qJi

(α2), the element β must be a multiple of α1:
there exists m ∈ Z such that β = mα1. Since

ℓ = qJi
(β) = qJi

(mα1) = m2qJi
(α1)

and ℓ is prime, we must have that m = 1 and qJi(α1) = ℓ. This implies that
Nrd(Ii) = ℓ.
The unicity of Ii follows from the previously established fact that left ideals
of norm ℓ in O are uniquely identified by the isomorphism class of their
right-order.

The unicity of each Ii proves that if Line 18 is reached, we indeed have OR(Ii) ≃
End(E/Gj) if and only if i = j. ⊓⊔

Lemma 5.2. Let ρ : M2(Fℓ) → M2(Fℓ) be a ring automorphism. If ker(m) =
ker(ρ(m)) for all m ∈M2(Fℓ), then ρ is the identity.

Proof. All automorphisms of M2(Fℓ) are inner, so there exists p ∈ GL2(Fℓ) such
that ρ(m) = p−1mp for all m ∈M2(Fℓ).

First, suppose there exists a line L ⊂ F2
ℓ such that p(L) ̸= L. Then, there

exists m ∈M2(Fℓ) such that m(L) = p(L) and m(p(L)) = {0}. We obtain

ρ(m)(L) = (p−1mp)(L) = p−1(m(p(L)) = p−1({0}) = {0}.

By construction, m cannot be invertible or the zero matrix; consequently, both
ker(ρ(m)) and ker(m) have dimension 1. Therefore L = ker(ρ(m)) = ker(m) =
p(L), a contradiction. We deduce that for any line L ⊂ F2

ℓ , we have p(L) = L.
Since p fixes all lines in F2

ℓ , all vectors of F2
ℓ are eigenvectors of p, so p is a scalar

matrix. In particular, ρ(m) = p−1mp = m. ⊓⊔

Corollary 5.3. Consider rings R ≃ R′ ≃ M2(Fℓ). Let ι1, ι2 : R → R′ be two
ring isomorphisms. If ι1(I) = ι2(I) for all left-ideals I in R, then ι1 = ι2.

Proof. Fix two isomorphisms g : R′ →M2(Fℓ) and f :M2(Fℓ) → R, and define

ρi = g ◦ ιi ◦ f :M2(Fℓ) →M2(Fℓ).

Let ρ = ρ−1
2 ◦ ρ1. Let us prove that ρ satisfies the condition of Lemma 5.2.

Let m ∈ M2(Fℓ). Let J = M2(Fℓ)m = {m̃ ∈ M2(Fℓ) | ker(m) ⊆ ker(m̃)} be
the left-ideal generated by m. Then, its image f(J) is a left-ideal in R, hence
ι1(f(J)) = ι2(f(J)), and

ρ(J) = f−1 ◦ ι−1
2 ◦ ι1 ◦ f(J) = f−1 ◦ ι−1

2 ◦ ι2 ◦ f(J) = J.
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In particular, ρ(m) ∈ ρ(J) = J , so ker(m) ⊆ ker(ρ(m)). Since ρ is an isomor-
phism, the matrices m and ρ(m) have the same rank, hence ker(m) = ker(ρ(m)).

We can thus apply Lemma 5.2, and deduce that ρ is the identity.
In particular, we obtain ρ1 = ρ2, therefore ι1 = ι2. ⊓⊔

Algorithm 3 Computing an isomorphism between quaternions and endomor-
phisms modulo ℓ, given a MaxOrder oracle

Input: A supersingular elliptic curve E/Fp2 , a prime ℓ, an algebra B ≃ Bp,∞, a
maximal order O ≃ End(E) in B, and access to an oracle for MaxOrder.

Output: Either an endomorphism α ∈ End(E) \ Z, or an isomorphism
λ : O/ℓO → End(E[ℓ]).

1: (Gi)
ℓ
i=0 ← a list of all subgroups of order ℓ of the elliptic curve E.

2: Using the oracle access, run Algorithm 2 on the list (Gi)
ℓ
i=0 to obtain either

– a non trivial endomorphism α ∈ End(E) \ Z,
– or a list (Ii)ℓi=0 such that Ii is the unique left O-ideal of norm ℓ with OR(Ii) ≃

End(E/Gi).
3: if α ∈ End(E) \ Z was found then
4: return α
5: g ← an isomorphism from End(E[ℓ]) to M2(Fℓ).
6: f ← an isomorphism O/ℓO to M2(Fℓ).
7: Ji ← {α ∈ End(E[ℓ])|Gi ⊂ kerα}, for i ∈ {0, . . . , ℓ}.
8: h ← an automorphism from M2(Fℓ) to M2(Fℓ) such that h(f(Ĩi)) = g(Ji) where

Ĩi is the reduction of Ii modulo ℓ.
9: λ← g−1 ◦ h ◦ f : O/ℓO → End(E[ℓ]).

10: return λ.

Lemma 5.4. Algorithm 3 is correct and runs in time polynomial in the length
of the input, in ℓ, and in the length of the output of the oracle for MaxOrder.

Proof. Let ι : O ∼→ End(E) be an isomorphism. Let us prove that the isomor-
phism λ computed by Algorithm 3 is its reduction modulo ℓ, thereby also proving
the correctness of this algorithm.

Since Ii is the unique left O-ideal of norm ℓ with OR(Ii) ≃ End(E/Gi), we
have that

ι(Ii) = {α ∈ End(E)|Gi ⊆ ker(α)}.

Then, reduced modulo ℓ, the equality becomes

ιℓ(Ĩi) = Ji,

where Ĩi is the reduction of Ii modulo ℓ. On the other hand, by construction,
we have λ(Ĩi) = Ji. Thus, by Corollary 5.3, the isomorphism λℓ is equal to the
isomorphism λ.
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Now, we demonstraste the complexity of the algorithm by giving the com-
plexity of its different steps. Obtaining the list of subgroup of order ℓ of the
elliptic curve E can be done by computing a basis of the ℓ-torsion of E. This
take a polynomial time in ℓ and in log p.

One can define the isomorphisms g, f and h by mapping the basis of the
domain to a basis of the codomain such that the map verified the respective
required properties. Since there are O(ℓ4) ordered bases of M2(Fℓ), these con-
structions can be carried out using an exhaustive search.

Finally, by Lemma 5.1, running Algorithm 2 takes a polynomial time in
the length of the input, in ℓ and in the length of the output of the oracle for
MaxOrder. All the previously discussed complexities are encompassed within
this running time.

⊓⊔

Algorithm 4 Computing a non-scalar endomorphism, given a MaxOrder or-
acle

Input: A supersingular elliptic curve E/Fp2 and an access to an oracle for
MaxOrder.

Output: An endomorphism θ ∈ End(E) \ Z.

1: O ← a maximal order in a quaternion algebra such that O ≃ End(E) ▷ Using
MaxOrder oracle

2: (βi)
4
i=1 ← a Minkowski-reduced basis of O ▷ [17]

3: α← β2 ▷ α is a shortest non-scalar vector in O
4: ℓ← 1, N ← 1
5: while N < Nrd(α) do
6: ℓ← the next prime after ℓ which is coprime to Nrd(α)
7: N ← ℓN
8: (Pℓ, Qℓ)← a basis of the ℓ-torsion E[ℓ] ▷ [1, Lemma 6.9]
9: λℓ ← the isomorphism O/ℓO ≃ End(E[ℓ]) ▷ Using Algorithm 3

10: (P ′
ℓ , Q

′
ℓ)← (λℓ(Pℓ), λℓ(Qℓ))

11: θ ← IsogenyInterpolation((Pℓ, Qℓ)ℓ, (P
′
ℓ , Q

′
ℓ)ℓ) ▷ Proposition 2.4

Proposition 5.5 (OneEnd reduces to MaxOrder). Algorithm 4 is correct
and runs in probabilistic polynomial time in the length of the instance and in the
length of the oracle’s output.

Proof. By the references cited in the comments, each step is at most polynomial
in log p, in the length of the MaxOrder oracle’s output and in ℓ (whenever a
prime ℓ is involved in the computation). Therefore, to prove the claimed com-
plexity, it remains only to establish bounds on the number of iterations of the
loop at line 5 and on the considered primes ℓ.

By [27], a Minkowski-reduced basis of a lattice in dimension 4 reaches all
the successive minimas. Hence, Nrd(α) is the second minima of O, i.e. the first
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minima of O \ Z. Additionally, by Minkowski’s second theorem, the product of
the successive minimas of O is smaller than γ24 disc(O), where γ4 is the Hermite
constant in dimension 4. Thus we have that Nrd(α) ≤ 2p2. Therefore, by the
prime number theorem, the while loop at line 5 has O(log p) iterations and the
largest ℓ considered is O(log p), proving the claimed complexity.

The correctness of Algorithm 4 comes from the fact that we return the output
of IsogenyInterpolation called on input corresponding to the evaluation of
ι(α) on the N -torsion subgroup E[N ] with N > Nrd(α), where ι is the Deuring
isomorphism. ⊓⊔

6 Reductions to the Endomorphism Ring problem

We now turn to proving that Isogeny and MOER reduce in polynomial time
to EndRing, thereby completing the equivalence of all problems presented in
Figure 1. We shall proceed by proving the following sequence of reductions:

Isogeny MOER EndRing
Proposition 6.1 Proposition 6.2

The main difficulty in reducing the Isogeny problem between two curves to
the MaxOrder problem lies in translating a connecting ideal between two max-
imal orders, which are isomorphic to the endomorphism ring of the curves, into
an isogeny between the curves. Before the break of SIDH [5,14,22], this process
required first finding a more suitable ideal, using KLPT-type algorithms [12],
which can be proven under GRH [28], and then computing the corresponding
isogeny using an elliptic curve with known endomorphism ring as a dictionnary
between endomorphisms and quaternions. Thanks to Proposition 2.6, it is now
possible to directly compute the isogeny corresponding to the connecting ideal.
However, one still needs to known an elliptic curve with an explicit basis of its
endomorphism ring. This is why, instead of reducing Isogeny to MaxOrder,
we reduce it to the MOER problem, ensuring access to such a curve.

Proposition 6.1 (Isogeny reduces to MOER). Given access to a MOER
oracle, one can solve the Isogeny problem in time polynomial in the length of
its input and in the length of the oracle’s output.

Proof. Let E1 and E2 be two supersingular elliptic curves defined over Fp2 . For
i ∈ {1, 2}, a MOER oracle provides a maximal order Oi in a quaternion algebra
Bi ≃ Bp,∞ together with an isomorphism εi : Oi

≃−→ End(Ei). By proposition
2.2, one can compute in polynomial time an isomorphism ε : B2

≃−→ B1. Then
O′

2 := ε(O2) is a maximal order in B1 isomorphic to End(E2). Using [11, Al-
gorithm 3.5], one can compute efficiently the connecting ideal I = I(O1,O′

2).



Unconditional foundations for isogeny-based cryptography 25

Finally, by Proposition 2.6, one can compute the isogeny φI : E1 → E2 in poly-
nomial time. ⊓⊔

We reduce MOER to EndRing by adapting the strategy of [10, Algorithm
6]. The freedom to chose a model for Bp,∞ in the definition of MOER allows
us to eliminate all heuristics in the proof of [10, Algorithm 6]. We recall that,
using Proposition 2.2, one can always translate a MOER solution into any target
quaternion algebra where a maximal order is already known.

Proposition 6.2 (MOER reduces to EndRing). Given a supersingular el-
liptic curve E defined over Fp2 together with a basis of its endomorphism ring
End(E), one can solve the MOER instance corresponding to the curve E in
time polynomial in log p and in the length of the elements in the provided basis
of End(E).

Proof. Let (γi)4i=0 be a basis of the endomorphism ring of a supersingular elliptic
curve E defined over Fp2 . By [10, Lemma 4 and Lemma 5], one can compute, in
time polynomial in log p and in logmax4i=1(deg(γi)), a rational invertible linear
transformation F sending (γ)4i=1 to some orthogonal basis (1, α, β, αβ). In par-
ticular, (1, α, β, αβ) is a basis of the endomorphism algebra End(E) ⊗ Q such
that α2 < 0, β2 < 0 and αβ = −βα. Hence, it is isomorphic to the quaternion al-
gebra B = (α

2,β2

Q ), with basis (1, i, j, ij) such that i2 = α2, j2 = β2 and ij = −ji.
Let ε : End(E) ⊗ Q ∼→ B be the explicit isomorphism sending (1, α, β, αβ) to
(1, i, j, ij). By applying F−1 to (1, i, j, ij) we get a maximal order O = ε((γi)

4
i=1)

in B isomorphic to End(E). Finally, since B is isomorphic to End(E)⊗Q, which
is itself isomorphic to Bp,∞, the solution we found satisfies all the conditions of
the MOER problem. ⊓⊔

7 Worst-case to Average-Case reductions

The goal of this section is to prove Theorem 1.2: there are worst-case to average-
case reductions between all of the listed fundamental problems of isogeny-based
cryptography. Recall that all of these problems take as input one or two elliptic
curves, and the average case of these problems corresponds to random instances
where the curves follow the stationary distribution (Definition 2.15).

To prove Theorem 1.2, we follow the network of reductions summarized in
Figure 3. Once established, this network of reductions implies that OneEnd (in
the worst-case) reduces to the average-case of any other problem. We then con-
clude from Theorem 1.1, which establishes that all problems reduce to OneEnd.

Note that since the stationary distribution is computationally indistinguish-
able from the uniform distribution (Remark 2.16), the reductions also apply to
the “uniform” version of the average-case problems.

The straightforward reductions. In Figure 3, every non-labeled arrow de-
notes a “trivial” reduction. To be more precise, these reductions simply forward
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OneEnd

OneEnd AC

ℓ-IsogenyPath AC

Isogeny AC

EndRing AC

HomModule AC

MaxOrder AC

MaxOrderQ AC

MOER

MOER AC

Proposition 7.3 Proposition 7.4
Proposition 7.5

assuming either GRH
or p ̸≡ 1 mod 8

Fig. 3. Summary of worst-case to average-case reductions. Each arrow represents a
probabilistic polynomial time reduction. Let “AC” label means “average-case”. All re-
ductions are one-to-one except for the thick arrow, which requires on average fewer
than 3 oracle calls. Each arrow is proved in the associated reference. Arrows without
reference are trivial reductions.

an instance for a given problem to an instance for a (at least as hard) variant
of this problem. In particular, the input of the average-case problems involved
in those reductions always follows the same distribution. For example, the in-
put distribution of the average-case Isogeny problem is a pair of two elliptic
curves following the stationary distribution which is also the input distribution
of the average-case HomModule. In addition, the solution we get for the harder
problem directly includes a solution to the weaker one. For instance, solving the
MOER problem also yields a solution to the corresponding EndRing instance.
Therefore, all these reductions are trivial, and we only need to prove the reduc-
tions from worst-case OneEnd to the average-case problems to complete the
figure. We shall address each proof of these non-trivial reductions in a dedicated
subsection.

7.1 The OneEnd problem reduces to the average-case Isogeny
problem

As there exist solutions of Isogeny of arbitrarily large degree, we ease the
analysis of the reduction by making a bound explicit, as in [19].
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Definition 7.1 (Isogenyλ). Let λ : Z>0 → Z>0 be a function. The Isogenyλ

problem is a variant of the Isogeny problem where the solution φ needs to verify
that log(deg(φ)) ≤ λ(log p).

In [19], the authors have proven that one can solve the OneEnd problem
in expected polynomial time in log(p) and λ(log p) by calling on average at
most 3 times an Isogenyλ oracle. In this section, we adapt this reduction [19,
Algorithm 6] to ensure that it produces an semi average-case Isogeny instance,
in the sense that at least one of the elliptic curves involved follows a distribution
indistinguishable from the stationary distribution. We then prove that the semi
average-case Isogenyλ reduces to the average-case Isogenyλ, and deduce the
claimed excepted polynomial time reduction from OneEnd to Isogenyλ.

Proposition 7.2. Let c1, c2 > 0, and consider the following variant of [19,
Algorithm 6] where

– the parameter ε is smaller than 1/p,
– the length of the non-backtracking random walks in the 3-isogeny graph is n,

where n satisfies n ≥ c1 log(p)− c2 log(ε).

There exist absolute computable constants c1 and c2 such that this algorithm
computes an endomorphism in excepted polynomial time in log p, λ(log p) and n
with at most 3 calls to an Isogenyλ oracle. In addition, these calls are done on
semi average-case instances.

Proof. For p > 6, the proof of [19, Theorem 8.6] still applies to this variant of [19,
Algorithm 6] ε < 1

6 , as we can set c1 and c2 such that n is larger than ⌈2 log3(p)−
4 log3(ε)⌉, as needed. In particular, the algorithm computes an endomorphism
in excepted polynomial time in log p, λ(log p) and n with at most 3 calls to an
Isogenyλ oracle.

We now prove the statement about the distribution of the instances given to
the oracle. Let E be the OneEnd instance (a supersingular elliptic curve over
Fp2). Let us denote by OIsogeny the Isogenyλ oracle we have access to. Following
[19, Algorithm 6], a point P ∈ E[2] is fixed, and each call to the oracle OIsogeny
is done on an instance (E′′, E) where E′′ is the codomain of the composition
of isogenies ν ◦ φ where φ : E → E′ is a non-backtracking random walk in the
3-isogeny graph of length n and ν : E′ → E′′ is an isogeny of kernel ⟨φ(S)⟩. As ν
and φ have coprime degree, the distribution of E′′ is the same as the codomain
of φ′ ◦ ν′ where ν′ : E → E/⟨S⟩, and φ′ : E/⟨S⟩ → E′′ is a non-backtracking
random walk in the 3-isogeny graph of length n. By [2, Theorem 11], we can set
c1 and c2 to ensure that for any n ≥ c1 log(p)−c2 log(ε), the distribution of E′′ is
an statistical distance at most ε from the stationary distribution. In particular,
each call to the oracle OIsogeny is done on semi average-case instances.

⊓⊔

Proposition 7.3 (OneEnd reduces to average-case Isogeny). Solving an
instance of the worst-case OneEnd problem can be reduced in excepted polyno-
mial time in log p and λ(log p) to solving 3 average instances of the Isogenyλ

problem.
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Proof. First, we show that an semi average instance of Isogenyλc
reduces to

an average instance of Isogenyλ, where λc(n) := λ(n) + 2cn+ 1, with c the O-
constant of Corollary 2.18. Note that c depends only on p and on some positive
parameter ε, which we fix to be ε := 1/p. Let E0 and E1 be two supersingular
elliptic curves defined over Fp2 such that E1 is sampled from the stationary
distribution. By Corollary 2.18, one can compute a random walk η : E0 → E2

in the 2-isogeny graph of length ⌈τ(p, ε)⌉ such that the distribution followed by
E2 is at total variation distance at most ε to the stationary distribution. Then,
as ε = 1/p, the two distributions are computationally indistiguishable.

Moreover, since τ(p, ε) = O(log(p) − log(ε)) and ε = 1/p, we have that
⌈τ(p, ε)⌉ ≤ 2c log(p) + 1. Then, the random 2⌈τ(p,ε)⌉-walk isogeny η verifies that
log(deg(η)) ≤ 2c log p+ 1.

A call to an Isogenyλ oracle the pair (E2, E1), which is indistinguishable
from an average-case instance, returns an isogeny φ : E2 → E1 such that
log deg(φ) ≤ λ(log p). Then, the isogeny ψ := φ ◦ η : E0 → E1 verifies that
log(degψ) ≤ 2c log(p) + λ(log p) + 1 = λc(log(p)). Thus the isogeny ψ is a solu-
tion to the initial Isogenyλc

problem corresponding to (E0, E1). This concludes
the proof that an semi average instance of Isogenyλc

reduces to an average
instance of Isogenyλ.

We can now conclude the proof: by Proposition 7.2 and because λc(log p)
is polynomial in λ(log p) and log p, the OneEnd worst-case problem reduces in
expected polynomial time in log(p) and λ(log(p)) to 3 semi average instances of
Isogenyλc

, which itself reduces to 3 average instances of Isogenyλ in polyno-
mial time as proven above. ⊓⊔

7.2 The OneEnd problem reduces to the average-case OneEnd
problem

The reduction presented in this subsection is analogous to the most folkoric meth-
ods for self-reducing the Isogeny problem from the worst-case to the average-
case, leveraging the rapid mixing properties of isogeny graphs.

Proposition 7.4 (OneEnd reduces to average-case OneEnd). Solving an
instance of the worst-case OneEnd problem can be reduced to solving an average-
case instance of the OneEnd problem in time polynomial in log p and in the
length of the averace-case solution.

Proof. Let E be a supersingular elliptic curve defined over Fp2 . Let η : E → E′

be a random-walk in the 2-isogeny graph of length n = ⌈τ(p, 1/p)⌉, so that the
distribution followed by E′ is asymptotically indistinguishable from the station-
ary distribution by Corollary 2.18. Then, from a solution θ : E′ → E′ to the
average-case OneEnd instance corresponding to the curve E′, one obtains a non
trivial endomorphism η̂ ◦ θ ◦ η : E → E which is a solution to the worst-case
instance of OneEnd given by E. Indeed, this endomorphism is non trivial; oth-
erwise there exists n ∈ Z such that η̂ ◦ θ ◦ η = n so [deg η] ◦ θ = n, thus θ is a
scalar endomorphism which is a contradiction. ⊓⊔
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7.3 The MOER problem reduces to the average-case MaxOrder
problem

The main challenge in proving unconditional reductions to the MaxOrder prob-
lem lies in leveraging the information obtained from the quaternion world to aid
in isogeny computation, without having an access to a dictionnary between en-
domorphisms and quaternions. Indeed, we recall that when p ≡ 1 mod 8, there
is currently no known polynomial time algorithm free from GRH that can com-
pute a supersingular elliptic curve defined over F̄p together with an embedding
of its endomorphism ring into some quaternion algebra isomorphic to Bp,∞. In
Section 5, we address this difficulty by “locally” computing this embedding for
sufficiently many primes, allowing us to apply the recent IsogenyInterpolation
algorithm. Unfortunately, this method requires solving the MaxOrder problem
for elliptic curves which are close to each other in the some isogeny graph. Thus,
it cannot be turned into a reduction to the average-case MaxOrder problem.
For this reason, the reduction presented below requires the construction of a
curve E0 for which a solution of MOERis known. This requires either p ̸≡ 1
mod 8, or to assume GRH.

Proposition 7.5 (MOER reduces to average-case MaxOrder). An in-
stance of the worst-case MOER can be reduced to an average instance of the
MaxOrder problem in polynomial time in the length of the input. If p ≡ 1
mod 8, this result assumes GRH.

Proof. By [10, Proposition 3], one can compute in polynomial-time a curve E0

together with a quaternionic order O0 and an isomorphism ε0 : O0
∼→ End(E0)

(i.e., a solution to MOER). This result assumes GRH in the case where p ≡ 1
mod 8. We denote by B the quaternion algebra containing O0.

Let E be a supersingular elliptic curves defined over Fp2 . Let us solve the
MOER problem for the elliptic curve E calling once a MaxOrder oracle on
an average elliptic curve E′.

Let N =
∏n

i=1 ℓi, where ℓi is the i-th smallest prime number, Let η : E → E′

be a random N -walk. By Corollary 2.18, by choosing n such that log(N) ≥
τ(p, 1/p), one can ensure that E′ follows a distribution statistically indistin-
guishable from the stationary distribution. In particular, as τ(p, 1/p) = O(log p),
by the prime number theorem, it is sufficient to consider primes up to some
ℓn = O(log(p)). Thus, the computation of η takes a time polynomial in log p.

Let us now solve the worst-case MOER instance corresponding to E from a
solution O′ to the average instance given by E′. Thanks to Proposition 2.2, one
can assume that O′ is a maximal order in the quaternion algebra B.

First, we compute a connecting ideal I between O′ and O0, [11, Algorithm
3.5], and the corresponding isogeny using Proposition 2.6. By running [8, Al-
gorithm 8], where the final division is done using Proposition 2.5, one obtains
an isomorphism between End(E′) and a maximal order O′ in polynomial time.
Then by using [28, Lemma 7.1] on the isogeny η̂, one can compute, in polynomial
time in log p, the corresponding left O′ ideal Iη̂ such that OR(I) = O. Hence,
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thanks again to [8, Algorithm 8], we obtain an explicit isomorphism between
End(E) and a maximal order in B. ⊓⊔

7.4 Proof of Theorem 1.2

We can now turn to the proof of the main theorem of this section.

Proof (of Theorem 1.2). Let P and Q be two problems chosen from the prob-
lems ℓ-IsogenyPath, Isogeny, EndRing, OneEnd, MOER, MaxOrder,
MaxOrderQ, and HomModule.

By Theorem 1.1, if P is not ℓ-IsogenyPath, we have a probabilistic poly-
nomial time reduction from P in the worst-case to OneEnd in the worst-case.
Otherwise, assuming the generalised Riemann hypothesis, there is a probabilistic
polynomial time reduction from ℓ-IsogenyPath in the worst-case to OneEnd
in the worst-case by [28] and [19]. Then using the results summarized in Fig-
ure 3, there is a probabilistic polynomial time reduction from OneEnd in the
worst-case to Q in the average-case. ⊓⊔
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