
More Efficient Isogeny Proofs of Knowledge via
Canonical Modular Polynomials
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Abstract
Proving knowledge of a secret isogeny has recently been proposed as a means to generate

supersingular elliptic curves of unknown endomorphism ring, but is equally important for cryp-
tographic protocol design as well as for real world deployments. Recently, Cong, Lai and Levin
(ACNS’23) have investigated the use of general-purpose (non-interactive) zero-knowledge proof
systems for proving the knowledge of an isogeny of degree 2k between supersingular elliptic
curves. In particular, their approach is to model this relation via a sequence of k successive steps
of a walk in the supersingular isogeny graph and to show that the respective j-invariants are roots
of the second modular polynomial. They then arithmetize this relation and show that this ap-
proach, when compared to state-of-the-art tailor-made proofs of knowledge by Basso et al. (EU-
ROCRYPT’23), gives a 3-10× improvement in proof and verification times, with comparable proof
sizes.

In this paper we ask whether we can further improve the modular polynomial-based approach
and generalize its application to primes ℓ > 2, as used in some recent isogeny-based construc-
tions. We will answer these questions affirmatively, by designing efficient arithmetizations for
each ℓ ∈ {2, 3, 5, 7, 13} that achieve an improvement over Cong, Lai and Levin of up to 48%.

Our main technical tool and source of efficiency gains is to switch from classical modular poly-
nomials to canonical modular polynomials. Adapting the well-known results on the former to the
latter polynomials, however, is not straight-forward and requires some technical effort. We prove
various interesting connections via novel use of resultant theory, and advance the understanding
of canonical modular polynomials, which might be of independent interest.

1 Introduction

More than twenty years have passed since the seminal works by Couveignes [Cou06], Rostovstev,
and Stolbunov [RS06] have introduced the idea of using maps between elliptic curves, called isoge-
nies, for cryptographic purposes. Although their original attempts seemed too inefficient to compare
with concurrent cryptosystems, later efforts in this direction [JD11, CLM+18] gave birth to a rich, and
still lively, branch of cryptography.

A strong reason for researchers to push into this field is that the main problem on which it is
based – namely, recovering a secret isogeny between two given elliptic curves – is considered hard
even for quantum computers. Moreover, compared with other proposals for post-quantum cryptog-
raphy, isogenies enjoy shorter parameters which though come at the price of slower performance.
Since its proposal, isogeny-based cryptography has evolved into a very active and dynamic field,
and many different cryptographic applications have been proposed so far.

In this work we are focusing on non-interactive zero-knowledge proofs of knowledge of secret
isogenies, which are an important tool for cryptographic protocol design. An immediate applica-
tion of such proofs is the design of signature schemes obtained via the Fiat-Shamir heuristic, e.g.
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GPS signatures [GPS17], CSI-FiSh [BKV19] or SQISign [DKL+20]. Moreover, they can be used to
construct related primitives such as verifiable random functions (VRFs), as recently demonstrated
using isogenies by Levin and Pedersen [LP24].

They also enable cryptographic tools that otherwise require a trusted setup. More precisely, such
proofs have been studied for settings where one wants to avoid a trusted setup to generate super-
singular curves of unknown endomorphism ring [BCC+23, CLL23]. Such curves are needed for
several isogeny-based protocols ranging from hash functions [CLG09] to verifiable delay functions
(VDFs) [BBBF18, DMPS19], delay encryption schemes [BD21], and public-key encryption [FMP23,
Mor23]. In all these applications it is central to the security that the trapdoor is discarded after the
trusted setup – a requirement that is hard to enforce in practice. Basso et al. [BCC+23] propose to
implement a sequential multi-party ceremony to replace the trusted setup. Loosely speaking, they
consider a walk in the isogeny graph

E0 → E1 → · · · → Ek

that starts from some (known) curve E0 and then each party i takes the previous curve Ei−1, gener-
ates a random isogeny to a new curve Ei and provides a proof that they know the isogeny from Ei−1
to Ei. Such a protocol can be used to replace a trusted setup as long as one of the parties in the chain
can be assumed to be honest (i.e. discards its secret isogeny).1

Finally, such proofs are a central tool to enforce honest behavior in multi-party protocols, where
parties are forced to demonstrate that certain values such as (partial) public keys are well formed,
e.g. in distributed key generation schemes [ABCP23a, ABCP23b]. These proofs-of-possession (PoPs)
are, moreover, an important measure to prevent rogue key attacks in multi-party signature proto-
cols [RY07]. In practice, this is required in public-key infrastructures (PKIs) when requesting the
issuance of a certificate. In current PKIs based on X.509 certificates [CSF+08], these so-called certifi-
cate signing requests realize these PoPs via signatures. While this only works for certifying signing
keys, it becomes more revelant in a post-quantum setting – for example, when certifying KEM keys
for KEMTLS [SSW20], one explicitly requires zero-knowledge proofs [GHL+22].

1.1 Previous Work

In general one can distinguish between tailor-made approaches and generic (or general-purpose) ap-
proaches to prove knowledge of isogenies in zero-knowledge. Subsequently, we are only focusing
on work directly relevant to our approach, and we refer the reader to a recent comprehensive survey
of proofs of knowledge of isogenies by Beullens et al. [BFGP23] for a complete overview.

For tailor-made approaches, the most recent work is the one of Basso et al. [BCC+23], which
builds on the SIDH proof of knowledge from [DFJP14, DDGZ22] and achieves statistical zero-know-
ledge. One main limitation of this (and most previous approaches, with the exception of [DKL+20])
is that the small challenge space requires numerous parallel executions of the protocol in order to
reduce the soundness error. Moreover, the knowledge soundness achieved in [BCC+23] is not exact
but only relaxed, i.e. while the relation is intended to prove knowledge of a d-isogeny, one can only
extract an ℓ2id-isogeny for some small prime ℓ and 0 ≤ i ≤ n.

The second approach is to take a general-purpose (non-interactive) zero-knowledge proof sys-
tem that is capable of proving any language in NP, such as a zk-SNARK, and prove the respective
isogeny relation using this proof system. While tailor-made approaches might intuitively seem to
be more efficient than such a generic approach, there has been enormous progress in the field of
zk-SNARKs over the last decade (cf. [Tha22] for a good overview). This has led Cong, Lai and Levin
[CLL23] (CLL henceforth) to look into how well such an approach can perform when concretely in-
stantiated with various recent general-purpose zero-knowledge proof systems. As a starting point
CLL take the work by Chavez-Saab, Rodrı́guez-Henrı́quez and Tibouchi [CSRT22], which constructs
isogeny-based verifiable delay functions (VDFs) [BBBF18] using a succinct non-interactive argu-
ment (SNARG) system. For the evaluation of their VDF they require to prove isogeny walks be-
tween supersingular elliptic curves. In brief, for a small prime ℓ they consider the supersingular
isogeny graph of ℓ-isogenous supersingular elliptic curves (represented by their j-invariants) and

1This is a technique often used to avoid a trusted setup for generating the structured reference string (SRS) for succinct
non-interactive argument of knowledge systems (zk-SNARKs) [GKM+18], and can be seen as a variant where one uses
explicit zero-knowledge proofs for the updates [AGRS24] instead of knowledge assumptions [GKM+18].
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want to prove a walk in this graph. Their idea now is to consider the ℓth modular polynomial
Φℓ(X, Y) ∈ Z[X, Y], for which it holds that two curves E and E′ are ℓ-isogenous (over an algebraic
closure) if and only if their j-invariants satisfy Φℓ(j(E), j(E′)) = 0. Consequently, when aiming to
prove a walk in the ℓ-isogeny graph from some starting curve E to some curve E′, we can efficiently
represent it as a sequence of successive steps, i.e. a sequence of j-invariants j0, j1, . . . , jk such that
Φℓ(ji, ji+1) = 0 for all i ∈ {0, . . . , k − 1}, and j0 = j(E) and jk = j(E′). This means that the relation2

Rℓk-ISOPATH = {((E, E′), ϕ) | ϕ : E → E′ is an isogeny of degree ℓk}

can equivalently be represented by means of the relation

Rℓk-MODPOLY =

((E, E′), (ji)i∈[k−1]

)∣∣∣∣∣∣
Φℓ(j(E), j1) = 0 ∧
Φℓ(jk−1, j(E′)) = 0∧

i∈[k−2] Φℓ(ji, ji+1) = 0

 . (1)

We note that in [CSRT22] the authors do not require the zero-knowledge and knowledge soundness
properties for the VDF application, and thus a SNARG suffices. CLL then use the above relation for
the specific case of an isogeny of degree 2k to construct a rank-1 constraint system (R1CS), which
is a very popular arithmetization method in state-of-the-art zk-SNARKs. They then take a num-
ber of existing plausibly post-quantum zero-knowledge argument systems and in particular Aurora
[BCR+19], Ligero [AHIV17] and Limbo [DOT21], which do not need to make additional structured
cryptographic assumptions (e.g. such as lattice-based proof systems for R1CS [NS22, BS23]).

Although CLL focus on ℓ = 2, it is not uncommon for isogeny-based protocols to involve, or
at least allow for, other small primes. For instance, the KEM presented in [Mor23] makes use of
a 3-smooth isogeny as a public key, and a 5- or 7-smooth isogeny for encapsulation. Similarly, a 3-
smooth isogeny is used for the encryption in the PKE schemes from [DFV24] and [Bas24, Protocol 2].
More generally, while the choice ℓ = 2 is usually done for simplicity, considering different small
primes can provide greater flexibility and also allows for trade-offs in the efficiency between the
building blocks and the isogeny proofs of knowledge.

The results in [CLL23] show that the efficiency of this general-purpose approach when compared
with the recent tailor-made approach in [BCC+23] achieves an order of magnitude improvement
over proof and verification times, with slightly worse but still comparable proof sizes. Moreover,
compared to existing tailor-made solutions, this approach provides a stronger notion of soundness,
i.e. an exact instead of a relaxed one.

In this work we ask whether this is the best we can do when targeting R1CS and whether the
approach can be generalized to prove the knowledge of isogenies of degree ℓk for primes ℓ greater

than 2.

1.2 Our Contributions

The goal of this paper is to improve on the state-of-the-art results of [CLL23] for proving the knowl-
edge of an isogeny, and we make the following contributions.

Use of canonical modular polynomials. We consider canonical modular polynomials in place of the
classical modular polynomials used in [CSRT22, CLL23], and we show that constructing a proof of
knowledge of the corresponding relation Rℓk-MODROOT is computationally equivalent to proving the
relations Rℓk-ISOPATH and Rℓk-MODPOLY mentioned above. While the approach via classical modular
polynomials stems directly from well-known theoretical results, the same results are not as readily
available for the case of canonical polynomials. Therefore we incorporate them and prove connec-
tions to the classical modular polynomials via novel use of resultant theory. We also spot a few gaps
in the relevant literature and provide new proofs of some basic properties of the modular polyno-
mials over finite fields. For example, we analyze the existence of edges of multiplicity at least three
in the supersingular ℓ-isogeny graph for small ℓ – which seems to be known to experts of the field,
at least in a weaker form – and we study the relationship between multiple edges in the ℓ-isogeny
graph on the one hand and multiple roots of the ℓth canonical modular polynomial on the other
hand. Therefore this part might also be of interest beyond the concrete application in this paper.

2In Rℓk-ISOPATH we consider all ℓk-isogenies defined over a fixed algebraic closure.
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Improved and generalized isogeny proofs of knowledge. By moving to canonical modular polyno-
mials we obtain a more efficient arithmetization for the equivalent relation Rℓk-MODPOLY. Moreover,
while [CLL23] only consider isogenies of 2-power degrees, we generalize the approach to cover iso-
genies of degree ℓk, where ℓ ∈ {2, 3, 5, 7, 13}. This is of interest not only because such primes are
used in some recent isogeny-based constructions [Mor23, DFV24, Bas24], but also because here we
reduce the number of constraints further, potentially yielding even more efficient proof systems.

We first encode our new relation into an R1CS over the fieldFp2 , and subsequently lift these arith-
metizations to Fp ×Fp in order to obtain a formulation that works over Fp. We are able to exploit
the structured nature of the canonical modular polynomials to optimize the resulting arithmetiza-
tions. We describe several techniques to minimize the non-zero entries in the constraint matrices
when lifting, such as a basis change for product relations and a change of variables for linear rela-
tions, which may be applicable more broadly. To give some intuition, this translates to a concrete
reduction in prover times from roughly 1.2 seconds to 700 ms and in verifier time from roughly 100
ms to 60 ms for the identification scheme over Fp described in [CLL23]. Additionally, we provide a
circuit for backtracking prevention that is three times more efficient compared to [CLL23]. All these
improvements are presented in Section 5.

As multiple of our proofs contain involved calculations, we verify the necessary computational
claims with SageMath scripts that can be found in the accompanying GitHub repository3.

1.3 High-level Overview

To improve upon the previous approach of [CLL23], we introduce the canonical modular polyno-
mials Φc

ℓ(X, j) and study how, for ℓ ∈ {2, 3, 5, 7, 13} and a fixed j-invariant, their roots relate to
ℓ-isogenies: First, we use resultant theory to arrive at the Multiplicity Theorem, which states that
the number of ℓ-isogenies j0 → j1 agrees with the number of solutions of the equation system

Φc
ℓ(X, j0) = 0 = Φc

ℓ(ℓ
s/X, j1), (2)

where s = 12/(ℓ − 1). Next, we argue why, in most cases, there are at most two such solu-
tions/isogenies, which allows for efficient computation of these roots via the Euclidean algorithm.
Then, up to avoiding ramification, the connection between the solutions and ℓ-isogenies is made
more explicit in the Reconstruction Theorem by systematically associating to a solution of the above
system (2) a kernel polynomial describing an ℓ-isogeny j0 → j1. As we can recover the solution
from the coefficients of said kernel polynomial, we use this result as our main tool to show that
the solutions lie in Fp2 when considering supersingular j-invariants. Finally, we demonstrate how
the developed theory can be leveraged to yield an efficient arithmetization by encoding (a slightly
modified variant of) the equation system (2) as an R1CS over both Fp2 and Fp, where we optimize
the number of variables, constraints and non-zero entries.

1.4 Concurrent Work

In [LP24], Levin and Pedersen examine radical isogenies and develop a verifiable random function
(VRF) from an efficient proof of knowledge of an isogeny. Although the theory behind the two
approaches is quite different, they also obtain an arithmetization that uses the same number of con-
straints and number of variables asymptotically for ℓ = 2. An advantage of their approach is that
it prevents backtracking for free. We improve on [CLL23] in Subsection 4.4, but nonetheless require
one additional constraint per step over both Fp2 and Fp. On the other hand, our approach is more
general in two respects: We do not put restrictions on the prime p while they need p = 3 mod 4,
and we also generalize to isogeny degrees beyond ℓ = 2, where we are able to obtain systems with
fewer constraints and variables.

3https://github.com/QuSAC/IsogenyPoKviaCanonicalModPolys
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2 Preliminaries

2.1 Isogeny Graphs and Classical Modular Polynomials

Let K be a perfect field, and let E0, E1 be elliptic curves over K. An isogeny is a morphism of curves
ϕ : E0 −→ E1 which induces also a surjective group homomorphism on the sets of K-rational points.
An isogeny of degree n is also called an n-isogeny, and two elliptic curves E0 and E1 over K are called
n-isogenous if there exists an n-isogeny ϕ : E0 −→ E1. An isogeny of degree 1 is called an isomorphism,
an isogeny ϕ : E −→ E is called an endomorphism, and an endomorphism of degree 1 is called an au-
tomorphism. We refer the interested reader to Appendix A.1 for other standard definitions, properties
and references on elliptic curves and isogenies.

We will say that two n-isogenies ϕ1 : E −→ E1 and ϕ2 : E −→ E2 are equivalent if they are the same
up to post-composition with an isomorphism, i.e. if there exists an isomorphism σ : E1 −→ E2 such
that ϕ2 = σ ◦ ϕ1. The kernel of an isogeny ϕ can be represented by its kernel polynomial [Koh96, §2.4],
which is the square-free monic polynomial whose roots are precisely the x-coordinates of non-trivial
points in the kernel of ϕ. We say that ϕ is defined over K if the coefficients of its kernel polynomial
lie in K. Closely related to kernel polynomials is the nth division polynomial ψn of an elliptic curve E
(which we scale by 2y for even n compared to the usual definition [Was08, p. 81], so that it is always
a polynomial in x only): It is the kernel polynomial of the multiplication-by-n endomorphism scaled
by the factor n (resp. 2n) for odd n (resp. even n).

To each elliptic curve E defined over a field K one can attach a j-invariant j(E) ∈ K which can
be computed efficiently from the coefficients of E. Two elliptic curves E0 and E1 are isomorphic if
and only if j(E0) = j(E1), and any j0 ∈ K is the j-invariant of an elliptic curve defined over K(j0)
[Sil09, Proposition III.1.4]. By a slight abuse of terminology, we will often refer to the number of non-
equivalent n-isogenies j0 → j1 to indicate the number of equivalence classes of n-isogenies starting
from a fixed elliptic curve E0 of j-invariant j0 and landing on some elliptic curve of j-invariant j1;
note that the number of such equivalence classes does not depend on the choice of representative E0
of j0.

Now fix a prime p and let q = pk for some positive integer k. An elliptic curve E over Fq is called
supersingular if the cardinality of E(Fq) is congruent to 1 modulo p [Was08, Proposition 4.31]. Given
a prime ℓ ̸= p, the supersingular ℓ-isogeny graph Gℓ(p) is defined as follows: The vertices of Gℓ(p)
shall be the isomorphism classes of supersingular elliptic curves, which we parametrize by their
j-invariants in Fp2 [Sil09, Theorem V.3.1], and the number of edges j0 → j1 is precisely the number
of non-equivalent ℓ-isogenies j0 → j1.

The graph Gℓ(p) is connected, (ℓ+ 1)-regular, and it is Ramanujan [Piz90, CL24]. Furthermore,
since every isogeny admits a dual isogeny [Sil09, Theorem III.6.1-2], it can almost be considered as
an undirected graph; however, curves of j-invariants 0 or 1728 have special automorphisms [Sil09,
Theorem III.10.1], which can cause asymmetries in the graph for p ≥ 5: If we write µ(0) := 3,
µ(1728) := 2 and µ(j) := 1 for j /∈ {0, 1728}, then there are µ(j0)/µ(j1) times as many non-equivalent
ℓ-isogenies j0 → j1 as there are non-equivalent ℓ-isogenies j1 → j0 (cf. [AAM19, Formula (11)]).

In this paper we will consider random walks on Gℓ(p), i.e. sequences

j(E0) −→ j(E1) −→ . . . −→ j(Ek)

of adjacent j-invariants in Gℓ(p). It is easy to check whether two given j-invariants belong to a pair
of ℓ-isogenous elliptic curves. To this end, one can use the so-called classical modular polynomials (see
[Mü95, §4.3], [AAM19, §2.4] and [Sut13, §2.3]): The ℓth classical modular polynomial Φℓ(X, Y) is
a bivariate polynomial with integer coefficients whose roots are given by the pairs of j-invariants
of ℓ-isogenous elliptic curves – more precisely, given the prime ℓ and any two elliptic curves E, E′

over a field K with char(K) ̸= ℓ, the number of non-equivalent ℓ-isogenies E → E′ is equal to the
multiplicity of j(E′) as a root of Φℓ(j(E), Y).

2.2 Resultants

Let R be an integral domain and let g, h ∈ R[X] be non-zero polynomials. The Sylvester matrix of g
and h and especially its determinant, the resultant res(g, h) of g and h, are important algebraic tools
to detect common divisors between two polynomials. We only state the necessary properties here
and give the theoretical background together with proofs for the below results in Appendix B.
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Proposition 1. Let R be an integral domain, let g, h ∈ R[X] be non-zero polynomials and let φ : R → S
be a ring homomorphism of integral domains, extended to a ring homomorphism φ : R[X] → S[X]
via coefficient-wise application. Then the following holds:

(a) If φ preserves the degrees of g and h, then

res(φ(g), φ(h)) = φ(res(g, h)).

(b) res(g, h) = 0 if and only if g and h share a common divisor of positive degree.

Proof. Lemma 17 and Corollary 18.

Remark 1. We note that, as the discriminant of g is defined as the resultant of g and ∂
∂X g up to scaling,

the above results also translate to the discriminant; see Corollary 23 for a precise formulation of the
first claim for discriminants.

Proposition 2. Let R = K[Y] be a polynomial ring over a field K and fix an element y0 ∈ K. Addi-
tionally let g, h ∈ R[X] be non-zero polynomials and extend the K-linear evaluation homomorphism
φ : R → K given by Y 7→ y0 to a ring homomorphism φ : R[X] → K[X] via coefficient-wise applica-
tion. Further suppose that φ preserves the X-degrees of g and h, and write

m := deg gcd(φ(g), φ(h)).

Then
∂k

∂Yk

∣∣∣∣
Y=y0

resX(g, h) = 0 for k ∈ {0, . . . , m − 1}.

Proof. Corollary 20.

2.3 Zero-Knowledge Argument Systems and R1CS

As stated before, in this work we will use generic techniques to prove the knowledge of isogenies,
improving and expanding on the previous results of [CLL23]. Since our arithmetization is broadly
applicable across different argument systems and we do not need any formal properties of an argu-
ment system throughout this work, we will omit a full formal treatment of zk-SNARKS. For a com-
prehensive formal treatment, readers are referred to the respective proof systems [BCR+19, AHIV17,
XZZ+19].

A zk-SNARK is a non-interactive argument system that is complete, knowledge-sound, zero-
knowledge and succinct. The proving algorithm takes a statement and witness pair (s, w) for some
NP-relation and generates a proof π. There is a verification algorithm to check the validity of a
proof. Completeness indicates that a valid proof can be generated from any pair (s, w) in the rela-
tion. Knowledge soundness means that any prover that can generate a valid proof for a statement
s needs to know a corresponding witness w. Zero-knowledge means that the proof does not reveal
any information about the witness. An argument system is succinct if the proof size is small and
the proof can be verified efficiently. Usually, both proof size and verifier time are required to be
polynomial in |x| and polylogarithmic in |w|.

In this paper we design an efficient arithmetization in the form of a rank-1 constraint system
(R1CS). This represents a popular choice of arithmetization and it allows us to cover many different
proof systems. An R1CS is defined as follows:

Definition 1 ([BCR+19]). The relation RR1CS is the set of pairs ((F, k, n, m, A, B, C, v), w) whereF is a
finite field, k, n, m ∈ N denote the numbers of inputs, variables and constraints respectively (k ≤ n),
A, B, C are m × (1 + n)-matrices over F, v ∈ Fk, and w ∈ Fn−k, such that for all i ∈ [m](

n

∑
j=0

Aijzj

)
·
(

n

∑
j=0

Bijzj

)
=

(
n

∑
j=0

Cijzj

)
,

where (1, v, w) =: z = (zj)j ∈ Fn+1.
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It is worth noting that the efficiency of proving and verifying knowledge of a witness may de-
pend on different aspects of the R1CS, depending on the proof system that is used. For example,
the prover time of pairing-based SNARKs is usually O(n), the proof size is constant, and the verifier
time is O(k) [Gro16, Lip22]. On the other hand, [BCR+19, AHIV17, XZS22] have prover time pro-
portional to the circuit size, which corresponds to the number of non-zero entries in the constraint
matrices A, B and C, which we will denote by nnz. Lastly, for [DOT21] the proof size and prover
and verifier times seem to be determined by the number of multiplications, corresponding to the
number of R1CS constraints m. The efficiency of the arithmetization in [CLL23] is only quantified
through the number of constraints m and optimized using this metric.

In this work, we will provide all of n, m and nnz. When optimizing, we will focus on the latter
two, since the number of variables is mostly relevant for the non-post-quantum secure pairing-based
SNARKs. Often, optimizing for one metric also improves another, such as when a linear constraint
can be removed to eliminate a variable, but this is not always the case. As we will see in Section 5,
we achieve very efficient constraint systems in terms of all three metrics.

3 Canonical Modular Polynomials

The classical modular polynomials tend to have many non-vanishing coefficients, which makes
these polynomials quite expensive to handle in an R1CS. To be more precise, the polynomial Φℓ(X, Y)
is symmetric in X and Y, of degree ℓ+ 1 in both variables [Lan87, Theorem 5.2.3], and typically most
of the possible mixed monomials XiY j with i, j ≤ ℓ occur. For example, the third classical modular
polynomial is given by (see [CFA+06, Example 17.18])

Φ3(X, Y) = −X3Y3 + X4 + Y4 + 2232(X3Y2 + X2Y3)

− 1069956(X3Y + XY3) + 36864000(X3 + Y3)

+ 2587918086X2Y2 + 8900222976000(X2Y + XY2)

+ 452984832000000(X2 + Y2)− 770845966336000000XY
+ 1855425871872000000000(X + Y).

Luckily, there is a related class of polynomials called canonical modular polynomials Φc
ℓ [Ler97,

§3.3.2][Mor95, §2.2][Mü95, §5.1-2], which are asymmetric and have a smaller degree in the second
variable. To contrast our previous example, the third canonical modular polynomial is given by

Φc
3(X, j) = X4 + 36X3 + 270X2 + 756X + 729 − X · j.

The general (modular) construction. In general, the ℓth canonical modular polynomial is con-
structed as follows: Letting s ∈ N denote the smallest non-zero natural number such that s·(ℓ−1)

12
is an integer and letting η denote the Dedekind η function, the function

f (τ) :=
(

η(τ)

η(ℓτ)

)2s

is a modular function of weight 0 that is invariant under Möbius transformations of τ given by
elements of

Γ0(ℓ) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 mod ℓ

}
.

The finitely many cosets of SL2(Z)/Γ0(ℓ) are represented by the matrices

Sn =

(
0 −1
1 n

)
, 0 ≤ n < ℓ, and Sℓ =

(
1 0
0 1

)
,

and one defines the canonical modular polynomial as

Φc
ℓ(X) :=

ℓ

∏
n=0

(X − f (Sn(τ))).

7



This polynomial can now be expressed as a polynomial Φc
ℓ(X, j) with integer coefficients in X and

the j-invariant j = j(τ), which itself is a modular function of weight 0 invariant under transforma-
tions given by matrices in SL2(Z). In fact, one has a concrete formula for the degree κ in the second
variable j (see [Mü95, Equation (5.1) and Lemma 5.7]): It is given by κ = s·(ℓ−1)

12 , where s is defined
as above; more explicitly, we have

s =
12

gcd(12, ℓ− 1)
and κ =

ℓ− 1
gcd(12, ℓ− 1)

.

Restricting to ℓ ∈ {2, 3, 5, 7, 13}. The ℓth canonical modular polynomial thus has, for suitable coeffi-
cients ci,m ∈ Z, the form

Φc
ℓ(X, j) =

ℓ+1

∑
i=0

κ

∑
m=0

ci,mXi jm.

In the case κ = 1, i.e. ℓ ∈ {2, 3, 5, 7, 13}, these polynomials are hence quite sparse – we list them
in Appendix A.2, and from this point onward we will work with these explicitly given polynomials
directly.

Lemma 3. Let ℓ ∈ {2, 3, 5, 7, 13}. Setting ci := ci,0 ∈ Z, the ℓth canonical modular polynomial
Φc

ℓ(X, j) then is of the form

Φc
ℓ(X, j) = Xℓ+1 +

ℓ

∑
i=1

ciXi + ℓs − X · j = Φc
ℓ(X, 0)− X · j.

In particular, the rational function

Θc
ℓ(X, j) := Φc

ℓ(ℓ
s/X, j) · Xℓ+1/ℓs = Xℓ+1 +

ℓ

∑
i=1

ciℓ
s·(i−1)Xℓ+1−i + ℓs·ℓ − Xℓ · j

is a polynomial with integer coefficients. With Jℓ(X) := Φc
ℓ(X, 0)/X we furthermore have that for

any f ∈ K× and j0 ∈ K:
j0 = Jℓ( f ) if and only if Φc

ℓ( f , j0) = 0.

Proof. The claim on the form of Φc
ℓ(X, j) follows from direct inspection, and the claim on the form

of Θc
ℓ(X, j) is an immediate consequence. Furthermore we have Φc

ℓ(X, j) = X · Jℓ(X)− X · j, which
implies the claim on Jℓ(X).

Since the constant coefficients of Φc
ℓ(X, j) and Θc

ℓ(X, j) are powers of ℓ, we obtain:

Corollary 4. Let ℓ ∈ {2, 3, 5, 7, 13}, assume char(K) ̸= ℓ and let j0, j1 ∈ K be j-invariants with j0 ̸= j1.
Then

gcd(Φc
ℓ(X, j0), Φc

ℓ(X, j1)) = 1 = gcd(Θc
ℓ(X, j0), Θc

ℓ(X, j1)).

Roadmap for this section. In Subsection 3.1 we investigate how, for a given j0 ∈ K, the roots of
Φc

ℓ(X, j0) relate to the number of ℓ-isogenies j0 → j1 to some j1 ∈ K, culminating in the Multiplicity
Theorem. Then we discuss in Subsection 3.2 how many of the related ℓ-isogenies can lead to the
same target j1 (Proposition 8, Theorem 9, Corollary 10) to argue how these roots can be computed
efficiently. Finally, we analyze in Subsection 3.3 in which field extension a root f lies by giving a
connection to kernel polynomials via the Reconstruction Theorem, which we then exploit together
with previous results to determine the splitting behavior of Φc

ℓ(X, j0) for a supersingular j-invariant
j0 in Theorem 12.

In relation to ℓ-isogenies, the above mentioned restriction to the five primes ℓ ∈ {2, 3, 5, 7, 13}
satisfying κ = 1 also has a conceptual reason. In fact, these primes are precisely those for which
the modular curve X0(ℓ) has genus 0 by [Tsu13, Proposition 2.3.5]. In relation to the modular con-
struction, this gives a high-level intuition of why we obtain a compact representation of ℓ-isogenies:
The elements of X0(ℓ), which are the edges in Gℓ(p), can then be parametrized (up to issues at the
‘ramified’ points j ∈ {0, 1728}) by f ∈ Fp

×. This parametrization, which we will later analyze in the
Reconstruction Theorem, has already been studied in the works of Fricke [Fri11, Section 2, Chapters
4-5], Mestre [Mes86, §5], and Elkies [Elk98, §4].
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3.1 The Multiplicity Theorem

Unfortunately, it is no longer true that Φc
ℓ(j0, j1) = 0 if j0 and j1 are ℓ-isogenous j-invariants in Fp.

Instead, taking inspiration from the modular interpretation given e.g. by [Ler97, p. 41], we will
show that we need to find a common root f of the two functions Φc

ℓ(X, j0) and Φc
ℓ(ℓ

s/X, j1), where
s = 12/(ℓ− 1) is defined as above. To prove a more precise version of this claim, we first relate the
classical modular polynomial to the canonical modular polynomial via resultant theory.

Corollary 5. For any ℓ ∈ {2, 3, 5, 7, 13} we have, computing over the coefficient ring R = Z[J0, J1],
the resultant equation

resX(Θc
ℓ(X, J1), Φc

ℓ(X, J0)) = ℓs·ℓ · Φℓ(J0, J1).

In particular, suppose that we have a field K of characteristic char(K) /∈ [ℓ] as well as j0, j1 ∈ K with
m := deg gcd(Φc

ℓ(X, j0), Θc
ℓ(X, j1)). Then

∂k

∂Jk
1

∣∣∣∣
J1=j1

Φℓ(j0, J1) = 0 for k ∈ {0, . . . , m − 1},

i.e. there are at least m non-equivalent ℓ-isogenies from j0 to j1.

Proof. The first claim is checked in the script additional computations.sage. For the second claim
we first apply the ring homomorphism Z[J0] → K defined by J0 7→ j0 in view of Proposition 1(a) to
obtain in K[J1] the equality

resX(Θc
ℓ(X, J1), Φc

ℓ(X, j0)) = ℓs·ℓ · Φℓ(j0, J1).

Now we consider the K-linear evaluation homomorphism φ : K[J1] → K given by J1 7→ j1, ex-
tended via coefficient-wise application to φ : K[J1][X] → K[X]. As φ preserves the X-degrees of
g := Θc

ℓ(X, J1) and h := Φc
ℓ(X, j0), we are exactly in the situation of Proposition 2. With char(K) /∈ [ℓ]

we thus deduce that resX(g, h) = ℓs·ℓ · Φℓ(j0, J1) has a root of multiplicity at least m at j1, and
char(K) ̸= ℓ yields the claim.

The previous relation will be the main tool in establishing the desired connection between the
classical and the canonical modular polynomial. For the proof we need to analyze root multiplicities
of the canonical modular polynomial in the next two results, which can also be found in [Tsu13, §4.3]
in the language of modular curves.

Lemma 6. Let ℓ ∈ {2, 3, 5, 7, 13}, assume char(K) ̸= ℓ and let j0 ∈ K. Then Φc
ℓ(X, j0) has a double

root in K if and only if j0 = 0 or j0 = 1728.

Proof. To simplify notation we may assume that K is algebraically closed. In view of Lemma 3 we
obtain the univariate polynomial

Dℓ(X) := j + ∂
∂X Φc

ℓ(X, j).

Now an element f ∈ K is a double root of Φc
ℓ(X, j0) if and only if it is non-zero (due to char(K) ̸= ℓ)

and satisfies Jℓ( f ) = j0 = Dℓ( f ). From this we see that the double roots are precisely the common
roots of Φc

ℓ(X, j0) and the polynomial

Dℓ(X) · X −Jℓ(X) · X = −Φc
ℓ(X,Dℓ(X)),

which has leading coefficient ℓ. In the script additional computations.sage we check that there
are e, m, n ∈ N such that

resX(Φc
ℓ(X, J),−Φc

ℓ(X,Dℓ(X))) = (−1)ℓ · ℓe · (J − 0)m · (J − 1728)n,

computed over the coefficient ring R = Z[J]. Therefore char(K) ̸= ℓ allows us to apply Proposi-
tion 1 (with the homomorphism Z[J] → K given by the evaluation J 7→ j0) to deduce the claimed
equivalence.

The second result discusses the special j-invariants 0 and 1728; for an explicit list of the factors
given below we refer the reader to Appendix A.3.
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Lemma 7. For each ℓ ∈ {2, 3, 5, 7, 13} there are (ℓ-dependent) monic polynomials g0 and g1728 in
Z[X] of degree at most 2 and (ℓ-dependent) monic non-constant polynomials h0,± and h1728,± in
Z[X] such that

Φc
ℓ(X, 0) = g0 · h3

0,+, Θc
ℓ(X, 0) = g0 · h3

0,−

and
Φc

ℓ(X, 1728) = g1728 · h2
1728,+, Θc

ℓ(X, 1728) = g1728 · h2
1728,−.

Moreover, if K is a field with char(K) /∈ {2, 3, ℓ} and j∗ ∈ {0, 1728}, then each hj∗ ,± does neither have
a double root nor share a root with gj∗ in K.

Proof. In the SageMath script additional computations.sage we confirm the above factorizations
as well as that, for j∗ ∈ {0, 1728}, the prime factors of deg(hj∗ ,±) lie in {2, 3}, and that the prime
factors of disc(hj∗ ,±) and res(gj∗ , hj∗ ,±) lie in {2, 3, ℓ}. To prove the additional claim, we now make
use of resultant theory once more by considering the unique homomorphism φ : Z → K. This
homomorphism preserves the degree of hj∗ ,± and, as the prime factors of deg(hj∗ ,±) are contained
in {2, 3}, the degree of ∂

∂X hj∗ ,± due to our assumption on char(K). Therefore this assumption and
Proposition 1(a) (cf. Remark 1) yield

disc(φ(hj∗ ,±)) = φ(disc(hj∗ ,±)) ̸= 0,

so hj∗ ,± cannot have a double root in K by Proposition 1(b). Similarly we obtain

res(φ(gj∗), φ(hj∗ ,±)) = φ(res(gj∗ , hj∗ ,±)) ̸= 0,

i.e. gj∗ and hj∗ ,± cannot have a common root in K by Proposition 1(b).

With the above preparations we are finally ready to state and prove the following crucial relation
between the classical and canonical modular polynomial:

Multiplicity Theorem. Let ℓ ∈ {2, 3, 5, 7, 13}, let K be a field of characteristic char(K) /∈ [ℓ] and let
j0, j1 ∈ K. Then there are exactly as many non-equivalent ℓ-isogenies j0 → j1 as there are roots f ∈ K× of
Φc

ℓ(X, j0) (counted with multiplicity) such that Φc
ℓ(ℓ

s/ f , j1) = 0. In particular, j0 and j1 are ℓ-isogenous if
and only if there exists an f ∈ K× such that

Φc
ℓ( f , j0) = 0 = Φc

ℓ(ℓ
s/ f , j1). (MT)

Proof. To simplify notation we assume that K is algebraically closed. As before we consider the
polynomial Θc

ℓ(X, j1) = Φc
ℓ(ℓ

s/X, j1) · Xℓ+1/ℓs instead of the rational function Φc
ℓ(ℓ

s/X, j1), noting
that it has the same roots due to char(K) ̸= ℓ. For any j0, j1 ∈ K we write βℓ(j0, j1) for the number
of roots of Φc

ℓ(X, j0) (counted with multiplicity) that are roots of Θc
ℓ(X, j1), and we write νℓ(j0, j1) for

the number of non-equivalent ℓ-isogenies from j0 to j1.
Hence our goal is to show that βℓ(j0, j1) = νℓ(j0, j1); however, it suffices to prove the inequality

βℓ(j0, j1) ≤ νℓ(j0, j1) for all j0, j1 ∈ K. Indeed, summing both quantities over all possible j1 for a fixed
j0 ∈ K then yields

ℓ+ 1 = degX(Φ
c
ℓ(X, j0)) = ∑

j1∈K
βℓ(j0, j1) ≤ ∑

j1∈K
νℓ(j0, j1) = ℓ+ 1

in view of Lemma 3, and thus all inequalities have to be equalities.
To prove the inequalities, we first note that Corollary 5 immediately yields

deg gcd(Φc
ℓ(X, j0), Θc

ℓ(X, j1)) ≤ νℓ(j0, j1). (3)

We will use this inequality in the following, but we need to work through a slightly tedious case
distinction: First, if j0 /∈ {0, 1728}, then any root of Φc

ℓ(X, j0) is a simple root by Lemma 6, so

βℓ(j0, j1) = deg gcd(Φc
ℓ(X, j0), Θc

ℓ(X, j1)) ≤ νℓ(j0, j1).

Next we consider an edge case: Let char(K) = 3 and let j0 = j∗ = 0 = 1728 be the unique super-
singular j-invariant in K (cf. [Sil09, §V.4]). Then all ℓ + 1 non-equivalent ℓ-isogenies starting from
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j∗ are loops, and one can directly verify that we have Θc
ℓ(X, 0) = Φc

ℓ(X, 0) over K. Therefore, for
j1 ̸= j∗, Corollary 4 yields

βℓ(j∗, j∗) = ℓ+ 1 = νℓ(j∗, j∗) and βℓ(j∗, j1) = 0 = νℓ(j∗, j1);

thus we may now assume char(K) /∈ {2, 3, ℓ}. To proceed we recall the multiplicity factors

µ(0) = 3, µ(1728) = 2 and µ(j) = 1

for j ∈ K \ {0, 1728}, and consider a special j-invariant j0 = j∗ ∈ {0, 1728}. For j∗ ̸= j1 any (dis-
tinct) root f of Φc

ℓ(X, j∗) such that Θc
ℓ( f , j1) = 0 then has multiplicity µ(j∗) (resp. µ(j1)) as a root

of Φc
ℓ(X, j∗) (resp. of Θc

ℓ(X, j1)). Indeed, if j1 /∈ {0, 1728} the second claim follows from Lemma 6,
and otherwise all multiplicities are derived from Lemma 7 since Corollary 4 and the assumption
j∗ ̸= j1 force f to be a root of hj∗ ,+ and hj1,− (if j1 ∈ {0, 1728}), which only have simple roots by our
restriction on the characteristic.

With the inequality (3) and µ(1728) < µ(0) we hence see that the roots of the greatest common
divisor of Φc

ℓ(X, 1728) and Θc
ℓ(X, 0) all have multiplicity µ(1728), so we obtain

βℓ(1728, 0) = deg gcd(Φc
ℓ(X, 1728), Θc

ℓ(X, 0)) ≤ νℓ(1728, 0).

Using the multiplicity-preserving correspondence f 7→ ℓs/ f between roots of Φc
ℓ(X, j) and roots of

Θc
ℓ(X, j), we further deduce from the above analysis that

βℓ(j∗, j1) =
µ(j∗)
µ(j1)

· βℓ(j1, j∗) ≤ µ(j∗)
µ(j1)

· νℓ(j1, j∗) = νℓ(j∗, j1)

in all other cases with j∗ ̸= j1, where the middle inequality has been derived in previous cases and
the last equality is due to the larger automorphism groups at the special j-invariants 0 and 1728, as
explained in Subsection 2.1.

The final case to consider is j∗ = j1, where Lemma 7 also does the heavy lifting: Here any root f
of Φc

ℓ(X, j∗) is either a root of gj∗ – then with the same multiplicity for both Φc
ℓ(X, j∗) and Θc

ℓ(X, j∗)
– or it is a root of both hj∗ ,±, in which case its multiplicity for both Φc

ℓ(X, j∗) and Θc
ℓ(X, j∗) is µ(j∗)

since each hj∗ ,± only has simple roots. Therefore we also deduce

βℓ(j∗, j∗) = deg gcd(Φc
ℓ(X, j∗), Θc

ℓ(X, j∗)) ≤ νℓ(j∗, j∗)

from the inequality (3), and this finishes the proof.

Remark 2. In fact, it is true for all primes ℓ ∈ N and ℓ-isogenous j-invariants j0, j1 ∈ Fp that we can
always find a common root of the system (MT). Indeed, we can first view j0 and j1 as reductions
modulo p of CM j-invariants J0, J1 ∈ C ([Lan87, Theorem 13.5.14]) that are integral by [Cox13, Theo-
rem 11.1]. Now equations (5.2-4) in [Mü95, §5] show that there is a common solution f̃ ∈ C that has
to be integral as it satisfies the polynomial Φc

ℓ(X, J0); therefore it can be reduced to a solution f ∈ Fp
of the system (MT).

However, the restriction to κ = 1 is crucial for the other direction: For example, for ℓ = 11,
p = 61 the j-invariants j0 = 41 and j1 = 37 are not ℓ-isogenous over Fp; in fact, they are not even
isogenous since j0 is supersingular, whereas j1 is ordinary. Nonetheless, either root of the polynomial
X2 + 3X − 27 ∈ Fp2 [X] gives a solution to the system (MT).

In spite of that, experiments seem to suggest that there are still at most as many ℓ-isogenies j0 → j1
as there are roots from j0 to j1 (counted as in the Multiplicity Theorem). Note that this does not
contradict our previous findings since Corollary 4 fails for κ > 1: For instance, in our example we
have

gcd(Φc
11(X, 41), Φc

11(X, 50)) = X2 − 30X − 1 ∈ Fp[X].

3.2 Isogeny Relations and Root Computation

Recall that our goal is to build an efficient proof of knowledge for isogenies of degree ℓk (where
ℓ ∈ {2, 3, 5, 7, 13}), or, equivalently, for the relation Rℓk-MODPOLY (Eq. (1)). However, to apply the
canonical modular polynomials we instead need to consider the relation

Rℓk-MODROOT :=


(
(E, E′),(

(ji)i∈[k−1], ( fi)i∈[k]

) )
∣∣∣∣∣∣∣

Φc
ℓ( f1, j(E)) = 0 ∧

Θc
ℓ( fk, j(E′)) = 0∧

i∈[k−1]
Θc

ℓ( fi, ji) = 0 = Φc
ℓ( fi+1, ji)

 .

11



With the Multiplicity Theorem we see that simply omitting the roots ( fi)i∈[k] from the witness
brings us back to Rℓk-MODPOLY, so this new relation requires additional information from the prover.
To gauge the related additional work for the prover, we will investigate two questions: How many
roots can the system (MT) have? And in which field do these roots lie?

How many roots? To answer the first question in view of the Multiplicity Theorem, we investigate
the number of ℓ-isogenies between j-invariants more closely. The following result is a consequence
of the well-known structure of ordinary isogeny volcanoes:

Proposition 8. Let ℓ be a prime and suppose that we have two j-invariants j0, j1 ∈ Fp for some prime
p ̸= ℓ. If j0 is ordinary, then the following holds:

(a) If j0 /∈ {0, 1728} or j0 = j1, then there are at most two non-equivalent ℓ-isogenies j0 → j1.

(b) If j0 = 0 ̸= j1, then there are at most three non-equivalent ℓ-isogenies j0 → j1 and at most one
non-equivalent ℓ-isogeny j1 → j0.

(c) If j0 = 1728 ̸= j1, then there are at most two non-equivalent ℓ-isogenies j0 → j1 and at most
one non-equivalent ℓ-isogeny j1 → j0.

Proof. This follows immediately from [Sut13, Theorem 7 & Remark 8] (note, however, that for ℓ = 2
there is exactly 1 vertex at the first level of the ordinary isogeny graph component containing 1728 –
the second formula given in Remark 8 only holds for odd ℓ).

Remark 3. Müller claims in [Mü95, Lemma 4.14] that the ℓ+ 1 non-equivalent ℓ-isogenies defined
on an ordinary curve over Fp with j-invariant not in {0, 1728} map to ℓ + 1 distinct j-invariants,
i.e. to ℓ + 1 non-isomorphic elliptic curves. However, if we consider p = 29, ℓ = 7 and the two
j-invariants j0 = 23 and j1 = 12 (noting that 1728 ≡ 17 mod 29), then the curve

E0 : y2 = x3 + 21x + 26

satisfies j(E0) = 23 = j0 and admits two 7-isogenies α1 and α2 (defined over F29) to the elliptic curve

E1 : y2 = x3 + 6x + 9

of j-invariant j(E1) = 12 = j1.
Importantly, the kernels of these two 7-isogenies are distinct (and hence the isogenies are not

equivalent) since their kernel polynomials

x3 + 2x2 + 21x + 16 and x3 + 14x2 + 13x + 23

are distinct. The issue is that the endomorphism α̂2 ◦ α1 of degree 72 is not equivalent to the
multiplication-by-7 isogeny [7] on E0, which again can be checked by comparing the kernel poly-
nomials of these two endomorphisms.

In general, Proposition 8 does not extend to supersingular j-invariants – the following example
can, using the Multiplicity Theorem, easily be checked with both the classical and the canonical
modular polynomial:

Example 1. For ℓ = 7 and p = 71 there are 6 non-equivalent ℓ-isogenies 0 → 48, 2 non-equivalent
ℓ-isogenies 48 → 0 and 4 non-equivalent ℓ-isogenies 40 → 40.

Luckily, we can strictly limit when the claims of Proposition 8 do not transfer to supersingular
j-invariants in our setting:

Theorem 9. Let ℓ ≤ 13 be a prime. Then there is a prime pℓ < 4ℓ3 (given in Table 1) such that for any prime
p > pℓ and any two supersingular j-invariants j0, j1 ∈ Fp2 the following holds:

(a) If j0 /∈ {0, 1728} or j0 = j1, then there are at most two non-equivalent ℓ-isogenies j0 → j1.

(b) If j0 = 0 ̸= j1, then there are at most three non-equivalent ℓ-isogenies j0 → j1 and at most one
non-equivalent ℓ-isogeny j1 → j0.

(c) If j0 = 1728 ̸= j1, then there are at most two non-equivalent ℓ-isogenies j0 → j1 and at most one
non-equivalent ℓ-isogeny j1 → j0.
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Proof. We first argue that for j0 ̸= 0 there are at most two non-equivalent ℓ-isogenies j0 → j1. If this
were not the case, then Φℓ(j0, Y) would have a triple root at Y = j1, and in Appendix B – specifically
Proposition 22 – we use resultant theory to computationally check that this can only happen up to
the prime pℓ < 4ℓ3 given in Table 1 below.

In the script additional computations.sage we check that Φℓ(0, 1728) does not have a prime
factor larger than pℓ, i.e. 0 and 1728 cannot be ℓ-isogenous for p > pℓ. Now consider j0 = 0, which
forces p ≡ 2 mod 3 (cf. [Sil09, Example V.4.4]). For ℓ ∈ {2, 3} we check in the same script that, due to
p > pℓ, Φℓ(0, Y) has a triple root j1 ∈ Fp \ {0, 1728}, and for ℓ = 3 a single root at 0. Since the number
of non-equivalent ℓ-isogenies 0 → j1 is three times the number of non-equivalent ℓ-isogenies j1 → 0,
both claims hence hold for j0 = 0 here.

For ℓ > 3 we can use p > pℓ > 3ℓ2 to apply [LOX20, Theorem 2(2)], which directly yields claim
(b) and further shows that – with

(
ℓ
3

)
denoting the Legendre symbol – there are exactly

(ℓ+ 1)− 3 · 1
3

(
ℓ−

(
ℓ
3

))
= 1 +

(
ℓ
3

)
≤ 2

non-equivalent ℓ-isogenies 0 → 0, thus also finishing the proof of claim (a).
Finally, for j0 = 1728 ̸= j1 we have already shown that there are at most two non-equivalent

ℓ-isogenies 1728 → j1 and that 1728 is not ℓ-isogenous to 0. Thus the number of non-equivalent ℓ-
isogenies 1728 → j1 is exactly twice the number of non-equivalent ℓ-isogenies j1 → 1728, and claim
(c) follows.

ℓ 2 3 5 7 11 13
pℓ 13 53 379 1217 5101 8387
j0 5 6a + 28 117a + 322 379a + 173 977a + 4220 326a + 4482
j1 5 47a + 28 262a + 322 838a + 173 4124a + 4220 8061a + 4482

Table 1: Maximal primes pℓ for which a pair (j0, j1) of non-zero j-invariants with at least three ℓ-
isogenies between them exists (a is a square root of 349 modulo pℓ).

Remark 4. For any prime ℓ ∈ N one can find a prime pℓ as in Theorem 9, and one has the bound
pℓ < 4ℓ4. Indeed, due to [LOX20, Theorem 2] it suffices to consider the situation where we have at
least three non-equivalent ℓ-isogenies j0 → j1 for j0 /∈ {0, 1728} or (j0, j1) = (0, 1728). In view of
[BCNE+19, Theorem 4.10] we can then construct two non-commuting endomorphisms of degree ℓ2

on a curve E with j(E) = j0 by composing two non-equivalent ℓ-isogenies j0 → j1 with a suitable
ℓ-isogeny j1 → j0. Hence we obtain two embeddings of quadratic orders into the endomorphism
ring of E with distinct images, and these embeddings can be extended to optimal embeddings of
(possibly larger) quadratic orders that still have distinct images as the endomorphisms do not com-
mute. Thus Kaneko’s bound [Kan89, Theorem 2’] yields 4pℓ ≤ (−4ℓ2)2, i.e. pℓ < 4ℓ4. In particular,
by the discussion in Subsection 2.1 this proves that 0 and 1728 cannot be ℓ-isogenous for p > 4ℓ4.

Returning to our relation, let us suppose that we have two j-invariants j0, j1 ∈ Fp. As before we
consider the polynomials

Φc
ℓ(X, j0) and Θc

ℓ(X, j1) = Φc
ℓ(ℓ

s/X, j1) · Xℓ+1/ℓs,

which have the same set of common solutions as the system (MT) due to p ̸= ℓ; these common
solutions are, moreover, precisely the roots of the polynomial

Γℓ(j0, j1) := gcd (Φc
ℓ(X, j0), Θc

ℓ(X, j1)) ∈ Fp(j0, j1)[X].

The previous results now show that the degree of Γℓ(j0, j1) is low in most cases:

Corollary 10. Let ℓ ∈ {2, 3, 5, 7, 13}, let j0, j1 ∈ Fp for a prime p > ℓ, and consider as above the
gcd-polynomial Γℓ(j0, j1) ∈ Fp[X]. Then

deg Γℓ(j0, j1) = min{νℓ(j0, j1), νℓ(j1, j0)}

where νℓ(j, j′) denotes the number of non-equivalent ℓ-isogenies j → j′. In particular:
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(a) deg Γℓ(j0, j1) ≥ 1 if and only if j0 and j1 are ℓ-isogenous.

(b) If j0 is ordinary or p > pℓ (e.g. if p ≥ 4ℓ3), then deg Γℓ(j0, j1) ≤ 2.

Proof. The main claim is a direct consequence of the Multiplicity Theorem and the multiplicity analy-
sis that was performed in its proof, noting that the minimum is necessary to account for higher root
multiplicities at j-invariants 0 and 1728 (see also Lemma 7); hence claim (a) follows immediately.
Moreover, Proposition 8 and Theorem 9 imply claim (b).

Remark 5. Since we can always factor an ℓ2-isogeny into two ℓ-isogenies (cf. [Sil09, Corollary
III.4.11]), the j-invariants j0 for which there is some j-invariant j1 with deg Γℓ(j0, j1) ≥ 2 correspond
precisely to the j-invariants of ℓ2-small curves as defined in [LB20], where the authors also prove that
these j-invariants form a vanishingly small, but generally non-empty subset of Fp for large p.

For ℓ ∈ {2, 3, 5, 7, 13} we can bound the size of this set more precisely: By factoring the J1-
resultant

resJ1(Φℓ(J0, J1), ∂
∂J1

Φℓ(J0, J1)) ∈ Z[J0],

we see that the J0-degree sum of all its distinct irreducible factors is at most ℓ2 + 1 (cf. the script
additional computations.sage). Hence Proposition 1(a) shows that there are at most ℓ2 + 1 in-
variants j0 ∈ Fp that can belong to an ℓ2-small curve for p > ℓ.

Computing roots. Corollary 10 suggests the following efficient strategy to find a root f of the system
(MT) for two ℓ-isogenous j-invariants j0, j1 ∈ Fp: If the j-invariants do not lie in Fp2 , and are hence
necessarily ordinary, or if we have p ≥ 4ℓ3 (which is guaranteed for cryptographically large primes),
we can simply compute the gcd-polynomial Γℓ(j0, j1) and obtain a root either by directly reading
it off (in the degree 1 case) or by using the quadratic formula (in the degree 2 case, which only
occurs rarely by Remark 5). Otherwise we will see in the next section (Theorem 12) that Γℓ(j0, j1) ∈
Fp2 [X] splits into linear factors over Fp2 – this allows us to factor the polynomial over Fp2 , e.g. using
Berlekamp factorization. Note, however, that we are only interested in finding one root; thus we
may, starting with Γℓ(j0, j1), iteratively compute a partial factorization and only keep the factor of
smallest degree at each step.

In view of the above results, we conclude that our new relation is practically equivalent to the
relation Rℓk-MODPOLY, i.e. a user with knowledge of an ℓ-isogeny j-invariant chain of length k can
efficiently compute the additional roots ( fi)i∈[k] needed to prove their knowledge with respect to
the relation Rℓk-MODROOT.

3.3 Isogeny Reconstruction and Splitting Behavior

Where do the roots lie? After we have now given an essentially optimal bound on the number of
roots of the system (MT) in large characteristic, we next investigate where these roots lie. Due to
Remark 5 and the Multiplicity Theorem, this question is easily answered in the overwhelming ma-
jority of cases: For a j-invariant j0 and a root f of Φc

ℓ(X, j0) such that there is only one non-equivalent
ℓ-isogeny to j1 = Jℓ(ℓ

s/ f ), f is the unique root of the system given by the two polynomial equa-
tions Φc

ℓ(X, j0) = 0 and Θc
ℓ(ℓ

s/X, j1) = 0, and hence lies in the field extension Fp(j0, j1). In fact, as
Jℓ( f ) = j0 and Jℓ(ℓ

s/ f ) = j1 by Lemma 3, we have Fp( f ) = Fp(j0, j1).
To analyze the splitting behavior in general, however, additional work is required: As the fol-

lowing example shows, the field extension generated by the two j-invariants is not guaranteed to
contain a root of the system (MT).

Example 2. Let ℓ = 3, p = 61 and j0 = 9 ∈ F61. Then we have the factorizations

Φ3(9, j1) = (j1 − 9)2 · (j1 − 41)2 and Φc
3(X, 9) = (X2 − 15X − 3) · (X2 − 10X + 1)

over F61. Further we have Γ3(9, 9) = X2 − 15X − 3 and Γ3(9, 41) = X2 − 10X + 1; these polynomials
are irreducible over F61, i.e. their roots lie in F612 \F61.

As a remedy to this issue, the following result describes how we can reconstruct an ℓ-isogeny
from a common root f of the system (MT) in most situations:
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Reconstruction Theorem. Let ℓ ∈ {2, 3, 5, 7, 13}, let K be a field of characteristic char(K) /∈ {2, 3, ℓ}, let
j0 ∈ K \ {0, 1728} be a j-invariant and let f ∈ K× be a root of Φc

ℓ(X, j0). Define the parameters

A = −3j0(j0 − 1728) and B = −2j0(j0 − 1728)2

and the elliptic curve
E : y2 = x3 + Ax + B.

Then j(E) = j0, and we can associate to f a kernel polynomial ϕℓ( f ) of degree
⌈
ℓ−1

2

⌉
that defines over K( f )

an ℓ-isogeny from E to a curve with j-invariant Jℓ(ℓ
s/ f ). Moreover, f can be expressed as a K-rational

function in the coefficients 1 = s0, s1, . . . , sn of ϕℓ( f ), i.e.

K( f ) = K(s1, . . . , sn).

Proof. To limit confusion of variable names in this proof, we will write the canonical modular poly-
nomial in the variables T and j (instead of the usual variables X and j). This proof will be highly
computational – the observational claims used along the way can be verified via the SageMath script
kernel polynomials.sage.

The discriminant of the curve E is 211 · 35 · j0 · (j0 − 1728), which is non-zero by our assumptions.
Hence E is an elliptic curve and one easily verifies that j(E) = j0.

To work computationally, we will consider the coefficient ring Z[T, T−1] of Laurent polynomials
over Z; since the root f is non-zero due to char(K) ̸= ℓ, we can then apply the ring homomorphism
Z[T, T−1] → K( f ) given by evaluating T at f . By Lemma 3 we can represent j0 via the rational
function

j0(T) = Jℓ(T) = Φc
ℓ(T, 0)/T;

now considering the coefficients of E as elements of Z[T, T−1], and hence E = E(T) as a curve over
Q(T), we can apply the following deciding trick, which is based on the ideas in [CW05] and [Tsu13,
§3-4]: The ℓth division polynomial ψℓ ∈ Q(T)[x] of E(T) has coefficients in Z[T, T−1] and admits in
Z[T, T−1][x] a monic factor ϕℓ ∈ Z[T, T−1][x] of degree

⌈
ℓ−1

2

⌉
=: n. Evaluating at f hence yields the

polynomial ϕℓ( f ) ∈ K( f )[x] of degree n, and we want to show that this is a kernel polynomial.
For ℓ = 2 we do this directly: Writing ϕ2 = x − ξ and plugging the root ξ into the x-coordinate

of E(T) yields y2 = 0, so (ξ( f ), 0) is a 2-torsion point of E( f ) as desired.
To prove that ϕℓ( f ) is a kernel polynomial for ℓ ≥ 3, we want to apply the Kernel polynomial

criterion given in [Tsu13, §3.3], noting that a = 2 is a semi-primitive root modulo ℓ as stated on [Tsu13,
p. 34].

Hence we first have to compute the action [2]∗(x) of the [2]-endomorphism of E on the x-coordinate.
By the point doubling formula [Sil09, Group Law Algorithm III.2.3(d)] we have

[2]∗(x) =
x4 − 2A(T)x2 − 8B(T)x + A(T)2

4x3 + 4A(T)x + 4B(T)
=:

t1(T)
t2(T)

,

and due to our assumptions that char(K) /∈ {2, 3} and j0 /∈ {0, 1728} one can easily check with the
Euclidean algorithm that gcd(t1( f ), t2( f )) = 1 in K( f )[x].

Next we have to evaluate ϕℓ (in x) at [2]∗(x), which gives

ϕℓ

(
t1(T)
t2(T)

)
=

1
t2(T)n ·

[
ϕℓ

(
t1(T)
t2(T)

)
· t2(T)n

]
=:

1
t2(T)n · hℓ(T)

where hℓ( f ) is coprime to t2( f )n in K( f )[x] since t1( f ) and t2( f ) are coprime. Now we define the
monic polynomial

τ2(ϕℓ( f )) := gcd(ψℓ( f ), hℓ( f ));

as ψℓ( f ) is the ℓth division polynomial of E( f ), we see with [Tsu13, Corollary 3.3.2] that ϕℓ( f ) is a
kernel polynomial of an ℓ-isogeny if and only if τ2(ϕℓ( f )) = ϕℓ( f ).

However, by [Tsu13, Proposition 3.3.1] we also see that τ2(ϕℓ( f )) is a monic polynomial of degree
n = ℓ−1

2 , so it suffices to show that ϕℓ( f ) divides τ2(ϕℓ( f )). To this end, first note that ϕℓ(T) divides
ψℓ(T) over Z[T, T−1] by construction, which allows us to deduce that ϕℓ( f ) divides ψℓ( f ).
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Furthermore we can check computationally that ϕℓ(T) divides hℓ(T) over Z[T, T−1], and hence
ϕℓ( f ) also divides hℓ( f ). Therefore the definition of τ2(ϕℓ( f )) forces it to be divisible by ϕℓ( f ), and
we conclude that ϕℓ( f ) is a kernel polynomial of an ℓ-isogeny defined on E( f ).

Penultimately, we want to show that the isogeny defined by ϕℓ( f ) maps to a curve of j-invariant
Jℓ(ℓ

s/ f ). This can be deduced directly from Vélu’s formulas – more precisely, in [Koh96, §2.4] Kohel
describes the target curve in terms of A, B and the coefficients of ϕℓ( f ). Applying these formulas, we
see that the target curve is in short Weierstrass form with discriminant ∆ = 211 · 35 · f ℓ−1 · A · B ̸= 0
and j-invariant Jℓ(ℓ

s/ f ).
Finally, we refer to Appendix A.4 for the (ℓ-dependent) expressions of f as a K-rational function

in the coefficients of ϕℓ( f ); here we only note that, as a kernel polynomial, ϕℓ( f ) will never have any
double roots, so disc(ϕℓ( f )) ̸= 0 by Proposition 1(b) (in view of Remark 1).

Remark 6. Note that we can also reconstruct ℓ-isogenies from a root f ∈ K× of Φc
ℓ(X, j0) if we have

j1 = Jℓ(ℓ
s/ f ) /∈ {0, 1728}. Indeed, in this case we first compute the dual isogeny (up to equivalence)

by applying the above techniques to ℓs/ f , and then take its dual and precompose with the different
automorphisms at j0 to obtain the non-equivalent ℓ-isogenies j0 → j1 corresponding to f .

To now analyze the splitting behavior of Φc
ℓ(X, j0), i.e. where its roots lie, for a supersingular

j-invariant j0, we still need to handle the special j-invariants:

Proposition 11. Let ℓ ∈ {2, 3, 5, 7, 13}, let p ̸= ℓ be a prime and further let j∗ ∈ {0, 1728} ⊆ Fp2 be
supersingular. Then Φc

ℓ(X, j∗) splits over Fp2 .

Proof. We restrict to the case p > pℓ – the finitely many remaining cases are checked in the SageMath
script splitting special.sage. By Theorem 9(b-c) and Corollary 10 we see that Γℓ(j∗, j1) ∈ Fp2 [X]

has degree at most 1 for any supersingular j1 ̸= j∗, so the only roots of Φc
ℓ(X, j∗) that may not lie in

Fp2 are the roots of Γℓ(j∗, j∗). However, by Corollary 10(b) this is a polynomial of degree at most 2
over Fp.

With the Reconstruction Theorem we obtain the splitting behavior of Φc
ℓ(X, j0) for a supersingu-

lar j-invariant j0:

Theorem 12. Let ℓ ∈ {2, 3, 5, 7, 13}, let p ̸= ℓ be a prime and let j0 ∈ Fp2 be a supersingular j-invariant.
Then Φc

ℓ(X, j0) splits over Fp2 .

Proof. Due to Proposition 11 we may assume j0 /∈ {0, 1728} and, in particular, p ≥ 5. Now let
f ∈ Fp be a root of Φc

ℓ(X, j0). With the Reconstruction Theorem we can then associate to f the kernel
polynomial ϕℓ( f ) of an ℓ-isogeny defined on a curve E over Fp2 .

Moreover, the kernel of this isogeny is invariant under the action of the p2-Frobenius isomor-
phism of Fp on E. Indeed, this action is given by evaluation of the p2-Frobenius endomorphism π
of E; due to [AAM19, §4] we further see that π has trace ±2p since j0 /∈ {0, 1728}, so it acts on E
via scalar multiplication by ±p (cf. [AAM19, §5]) and we conclude that any subgroup of E(Fp) is
invariant under the action of π.

Therefore the coefficients of the kernel polynomial ϕℓ( f ) lie in Fp2 as well, and with the second
part of the Reconstruction Theorem we deduce f ∈ Fp2 as desired.

We give an application, which can alternatively be proven by showing that any Legendre param-
eter of a supersingular j-invariant lies in Fp2 [AT02, Proposition 2.2].

Corollary 13. Let p be a prime and let j0 ∈ Fp2 be a supersingular j-invariant. Then j0 − 1728 is a
square in Fp2 .

Proof. As all elements of Fp are squares in Fp2 , we may assume j0 /∈ {0, 1728} and, in particular,
p ≥ 5. Due to Proposition 1(a) we can thus compute the discriminant of Φc

2(X, j0) by first computing
the discriminant of Φc

2(X, J0) over Z[J0] and then reducing modulo p and evaluating J0 at j0, which
yields

disc(Φc
2(X, j0)) = 22 · j20 · (j0 − 1728).

Now Φc
2(X, j0) does not have multiple roots by Lemma 6 and splits into three linear factors over Fp2

by Theorem 12, so [Gow90, Theorem 1.8] shows that disc(Φc
2(X, j0)) must be a square in Fp2 , and

the claim follows.
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4 Proving Isogeny Knowledge via R1CS

In the previous section we have laid all the theoretical foundations for describing the R1CS that
will enable us to build an efficient proof of knowledge for an ℓ-isogeny walk with k steps. Before
we describe our approach based on canonical modular polynomials, we briefly revisit the strategy
pursued in [CLL23] for the prime ℓ = 2.

4.1 Revisiting the Approach in [CLL23]

The authors of [CLL23] use the classical modular polynomial Φ2(X, Y) to construct an R1CS to prove
knowledge of a 2k-isogeny with respect to the relation Rℓk-MODPOLY (cf. Equation (1)). They do this
by finding an efficient arithmetization to prove that Φ2(ji, ji+1) = 0 for a chain of k + 1 successive
j-invariants. Here j0 = j(E0) and jk = j(Ek) are part of the statement, and ji for 0 < i < k are part
of the R1CS witness. We can recover the original isogeny by searching at each step for ℓ-isogenous
elliptic curves Ei, Ei+1 where j(Ei) = ji and j(Ei+1) = ji+1. On the other hand, such a chain of j-
invariants can be found for any 2k-isogeny by iteratively computing 2-isogenies using kernel points.
This means that the problem of finding such a chain of j-invariants is equivalent to finding an explicit
isogeny E0 → Ek.

In order to arithmetize, the authors express each step of the isogeny walk as an R1CS gadget,
which is then employed for each link in the chain. Two tricks are used to optimize:

• The values ji, j2i and j3i are computed for all i ∈ {0, . . . , k}, as well as ji ji+1 for each i < k. The
condition that Φ2(ji, ji+1) = 0 can then be expressed as a single R1CS constraint.

• To express the gadget overFp as well as overFp2 , the authors use arithmetizations for products
and squares that are more efficient than the naive approach of computing each cross term
individually. In particular, the product (x1 + x2α)(y1 + y1α), with x1, x2, y1, y2 ∈ Fp and α2 = d
some non-square residue in Fp, can be expressed in three products over Fp. Squarings can be
expressed in two products.

Our goal is now twofold: First, to further optimize the arithmetization for ℓ = 2. Second, to construct
efficient R1CS for more primes ℓ > 2, more specifically for the primes ℓ ∈ {2, 3, 5, 7, 13}, for which
we have developed a good understanding of canonical modular polynomials in the previous section.

By Lemma 3, for ℓ ∈ {2, 3, 5, 7, 13} the ℓth canonical modular polynomial has the form

Φc
ℓ(X, j) = Xℓ+1 + ∑ℓ

i=1 ciXi + ℓs − X · j.

In what follows we will write c0 = ℓs and cℓ+1 = 1. In view of the Multiplicity Theorem the proof of
knowledge with respect to relation Rℓk-MODROOT can be encoded step-wise via the system of equa-
tions (MT).

Multiplying the equation Φc
ℓ(ℓ

s/X, j1) = 0 by Xℓ+1/ℓs to obtain Θc
ℓ(X, j1) as before, we obtain

the equivalent system (where c′i = cℓ+1−i · ℓs(ℓ−i)):

∑ℓ+1
i=0 ciXi − j0 · X = 0 ∧ ∑ℓ+1

i=0 c′iX
i − j1 · Xℓ = 0. (4)

We will reformulate these equations as an R1CS in the upcoming subsection. In our applications
we consider supersingular j-invariants, which are known to be contained in Fp2 . It is crucial for
the effectivity of our method that in this situation the roots of the above equations still lie in the
quadratic extension Fp2 of Fp, rather than in a larger extension, as proven in Theorem 12.

4.2 Reformulation as an R1CS

Advantages of Canonical Modular Polynomials. Compared to the classical modular polynomi-
als, the canonical modular polynomials have a structure that lends itself better to arithmetization.
Concretely, as we will see, we can exploit their structure for the R1CS in three main ways:

• First, the total degree of the polynomials is lower, going from a single polynomial of total
degree 2ℓ to two polynomials of degree ℓ+ 1. This lowers the multiplicative complexity, which
enables us to use fewer constraints.
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• Second, whereas Φℓ is very dense, Φc
ℓ and Θc

ℓ are both polynomials in just X in addition to a
single term containing j. Hence there are fewer monomials to produce in the R1CS and the
computed terms can more often be reused.

• Lastly, the structure described in Lemma 7 allows us to factor part of this polynomial as a
square, improving arithmetization over Fp.

More efficient R1CS over Fp2 . We can compute the powers 1, X, X2, . . . , Xℓ together with the j-
invariants j and j′, and rewrite the equations as

X ·
(

ℓ

∑
i=0

ci+1Xi − j

)
+ c0 = 0, (5)

Xℓ ·
(

1

∑
i=0

c′ℓ+iX
i − j′

)
+

ℓ−1

∑
i=0

c′iX
i = 0. (6)

To reduce the amount of non-zero entries, we employ a change of variables and have the prover
supply y = j − c1 instead of j and y′ = j′ − c1 instead of j′. This eliminates the term X from the first
equation and the term Xℓ from the second equation, since c1 = c′ℓ. Clearly knowledge of a chain of
j-invariants is equivalent to knowledge of a chain of y’s.

These equations are expressed as an R1CS as follows. The assignment vector z has the form
z = (1 X X2 . . . Xℓ y y′)T , and the corresponding constraint matrices are given by

A =


0 1 0 · · · 0 0 0
0 1 0 · · · 0 0 0
...

...
...

0 1 0 · · · 0 0 0
0 0 0 · · · 1 0 0

 , B =


0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

0 c2 c3 · · · cℓ+1 −1 0
0 c′ℓ+1 0 · · · 0 0 −1

 ,

and

C =



0 0 1 0 · · · 0 0 0
0 0 0 1 · · · 0 0 0
...

...
...

0 0 0 0 · · · 1 0 0
−c0 0 0 0 · · · 0 0 0 0
−c′0 −c′1 −c′2 −c′3 · · · −c′ℓ−1 0 0 0


.

For an isogeny path of length k, each new step introduces a new value yi+1 together with the ℓ
powers of the current solution Xi. Moreover, we need ℓ− 1 more constraints for checking the powers
of the new variable Xi, together with two more constraints which encode the two equations (4).
There are ℓ+ 1, 2ℓ+ 2 and 2ℓ non-zero entries in A, B and C, respectively. This means that we can
arithmetize an ℓk-isogeny for ℓ ∈ {2, 3, 5, 7, 13} in (ℓ + 1)k + 1 variables, (ℓ + 1)k constraints and
(5ℓ+ 3)k non-zero entries in the R1CS.

In fact, we can do better for ℓ ∈ {7, 13}, in the following way. We let t = ℓ+1
2 and rewrite the two

equations as

Xt ·
(

t

∑
i=0

ci+tXi

)
+

t−1

∑
i=0,i ̸=1

ciXi − yX = 0, (7)

Xt ·
(

t

∑
i=0,i ̸=t−1

c′i+tX
i − y′Xt−1

)
+

t−1

∑
i=0

c′iX
i = 0. (8)

This way we need to compute the variables X2, . . . , Xt, yX, y′Xt−1, and we have t + 1 + 2 constraints
(t + 1 consistency checks, and the two above equations). We have t variables for the powers of X
and two for yX and y′Xt−1, as well as one per j-invariant, through y. This gives a total of (t+ 3)k + 1
variables. The t + 1 consistency checks can be computed in 3t + 3, while the two other equations
require 4t + 4 non-zero entries in the constraint matrices. In total, this means (t + 3)k + 1 variables,
(t + 3)k constraints and (7t + 7)k non-zero entries in the R1CS to arithmetize a walk of length k for
ℓ ∈ {3, 5, 7, 13}.
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4.3 Lifting to Fp ×Fp

So far, we have described efficient arithmetizations for proving isogenies that work over Fp2 . While
it is perfectly valid to use an R1CS over this field, this is not supported by all proof systems. Fortu-
nately, we can lift any arithmetization over Fp2 to Fp ×Fp.

We represent elements in Fp2 as x + yα with x, y ∈ Fp and α2 = d for some quadratic non-
residue d ∈ Fp. Linear operations over Fp2 translate directly to linear operations over Fp, whereas
a multiplication (x1 + x2α)(y1 + y2α) = z1 + z2α would naively induce four multiplications for all
cross terms x1y1, x1y2α, x2y1α and x2y2d. As noted in [CLL23], there exist well-known techniques to
do this more efficiently.

More precisely, multiplication can be performed using one auxiliary variable and three con-
straints:

u = x2y2,
z1 − du = x1y1,

z1 + z2 + (1 − d)u = (x1 + x2)(y1 + y2).

This immediately implies an upper bound for the cost of lifting: We can substitute this relation for
every row of the original R1CS to obtain a new system with m′ = 3m. The number of variables
becomes n′ = 2n + m, since variables now have two components and we add one intermediate
variable for every constraint. The number of non-zero entries for this new system is nnz′ ≤ 4 nnz
due to the doubling of the number of variables, and because all variables are used at most twice in
the above system of equations.

Squaring a variable can be performed more efficiently. For

z1 + z2α = (x1 + x2α)2,

the following system of equations suffices:

z2 = 2x1x2,
z1 + (d + 1)/2z2 = (x1 + x2)(x1 + dx2).

This uses just two constraints and nine non-zero entries, requiring no auxiliary variables.

Optimized embedding into Fp. The above gadgets for multiplication and squaring can be used
to reduce the number of constraints needed in the R1CS. However, we can actually achieve a fur-
ther improvement by changing how we represent elements from Fp2 in Fp × Fp. The basis change
(x1, x2) → (x1, x1 + x2) = (x1, xs) saves one non-zero entry in the last constraint for the general
product. This might seem minor, but since both coefficients of x can themselves be a linear combi-
nation of many variables, this may lead to significant savings.

For a square, instead of avoiding a non-zero entry, we need to instead add an entry to express
the output z2 = zs − z1. Fortunately, although clearly this gives a tradeoff between the two bases,
the embedding can be chosen separately per variable. In our case, this sum basis turns out to be at
least as efficient as the regular basis almost everywhere.

Exploiting Φc
ℓ’s structure. The above gadgets and the sum basis help us to express the canonical

modular polynomials efficiently in an R1CS over Fp × Fp. Furthermore, for some ℓ, the canonical
modular polynomial can be rewritten using the structure described in Lemma 7 such that it utilizes
more squares. This in turn minimizes the number of necessary constraints. For ℓ = 2 over Fp × Fp,
we can write the entire system using two squares and one product. First, define y = c1 − c2

2 ·
(4c3)

−1 − j (and y′ accordingly). Then

c3

(
c2 · (2c3)

−1 + X
)2

+ y + c0X−1 = 0,

c3ℓ
3s
(

c2ℓ
s · (2c3)

−1 + X−1
)2

+ ℓsy′ + c0X = 0,

captures both polynomials in two squaring relations. We only need to compute the inverse X−1 with
a single additional multiplication. Over Fp × Fp, the resulting system has 7k constraints and 7k + 2
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variables. In a similar fashion, for ℓ = 7, we can use the fact that Equation (7) can be written as
a square plus the term ỹ = 1728 − j. For ℓ = 13, we can express 9 coefficients correctly using the
square of a degree 7 polynomial, after which we only need to correct for the lowest degree terms.

Computing powers of X. To compute even powers, we can square directly. It is, however, also
possible to use a squaring for odd powers, through the relation

b
(

a · (2b)−1Xi + Xi+1
)2

= a2 · (4b)−1X2i + aX2i+1 + bX2i+2. (9)

We hence obtain a linear combination of three powers, where we can freely choose a ∈ Fp and
b ∈ F×

p . By subtracting away a2 · (4b)−1X2i and bX2i+2, we obtain a constraint for the odd power
X2i+1. Of course, this method cannot be used for the products with y or the highest power of X, i.e.
Xℓ or Xt, since here we cannot compensate for the even powers appearing on the right-hand side.

Change of variables. One disadvantage of the above method is that it increases the number of non-
zero entries in the constraint matrices. To remedy this, we note that some powers of X are only used
in linear combinations with other powers, i.e. in a polynomial where all three powers are already
present. As such, we make a change of variables and store the right-hand side of Eq. (9) directly
instead of X2i+1. We can then choose a and b appropriately such that they agree with the coefficients
of one of the polynomials. For example, for ℓ = 5 we define Z = c5(c4 · (2c5)

−1X + X2)2 and rewrite
Eq. (5) as

X ·
[
c2X +

(
c3 − c2

4 · (4c5)
−1
)

X2 + Z + X5 − y
]
+ c0 = 0. (10)

The advantage is twofold: We do not need to subtract powers from Eq. (9) when computing X3, and
we do not have to add an X4 term to Equation (10). We should only use this substitution for powers
that are not necessary to compute higher powers: the above would be inefficient if we also required
the value of X3 to express (X3)2 = X6. Concretely, we use this trick to replace X3 for ℓ ∈ {5, 7} and
X5 for ℓ = 13.

More generally, the number of non-zero entries can often be minimized through a change of
variables. For example, since jX and j′Xt−1 are both only used once, we can instead already add
the terms of the linear combinations in which they will be used later. This is advantageous, since a
linear combination uses fewer nnz in the outcome of a square than in its input, and is still cheaper
in the outcome of a multiplication. This way, the intermediate variables that are unavoidable can be
used as efficiently as possible.

4.4 Optimized Backtracking Prevention

In [CLL23, Appendix A], the authors briefly discuss a method of enforcing that an isogeny is cyclic,
which in our setting is equivalent to the condition that a walk is non-backtracking (cf. [CFL+19,
Corollary 4.5]).

To do this, it is checked that for all i ∈ {1, . . . , k − 1}, it holds that ji−1 ̸= ji+1. The authors
arithmetize this by testing that ji−1 − ji+1 ̸= 0. To this end, the prover is required to supply a b such
that

b ·
k−1

∏
i=1

(ji−1 − ji+1) = b(j0 − j2)(j1 − j3)(j2 − j4) · · · = 1.

If for any i, ji−1 = ji+1, then the polynomial will be 0 for any b, and otherwise the prover can solve
for b by taking an inverse. This method uses k − 1 constraints, k − 1 variables and 4k − 4 non-zero
entries over Fp2 . When this method is lifted to Fp × Fp, however, it uses 3(k − 1) constraints and
variables, and 18k − 19 non-zero entries. If we were to apply it to our system for ℓ = 2, this would
incur a 43% overhead on m and n, and a 44% overhead on nnz.

To remedy this, note that it is not actually necessary to compute a product over Fp2 to test that
every factor is non-zero. Instead, the polynomial

p(a, b) = b
k−1

∏
i=1

(ℜ(ji−1)−ℜ(ji+1) + a (ℑ(ji−1)−ℑ(ji+1)))
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has p(a, b) = 1 if and only if for all i ∈ {1, . . . , k − 1}, ji−1 − ji+1 ̸= 0. To see this, note that if
ji−1 = ji+1 for any i, p(a, b) = 0. On the other hand, if for all i, ji−1 ̸= ji+1, p(a, b) is a non-zero
polynomial with degree much lower than the field size. There must therefore exist a, b ∈ Fp for
which p(a, b) ̸= 0, after which b can be used to scale to p(a, b) = 1.

Though we can simply ask the prover for a and b, by the Schwartz–Zippel lemma, the probability
of hitting a root for an a ∈ Fp chosen uniformly at random is negligible. We can thus sample a as a
constant instead of a variable when fixing the circuit. Now the prover just has to supply b, and so
we save one constraint and variable per step. We incur no soundness loss, since no value of a helps
a cheating prover. On the other hand, we incur just a negligible completeness loss.

5 Evaluation

We provide constraints.sage, which expresses and verifies all arithmetizations and automatically
counts the number of constraints, variables and nnz. These results can be found in Table 2. We
achieve significant improvements everywhere, ranging between 25% − 45% for the number of con-
straints and 27%− 48% for nnz, making our arithmetizations suitable for ℓ-power isogenies for each
prime ℓ ∈ {2, 3, 5, 7, 13}, as well as mixed power isogenies. To additionally compare results for dis-
tinct ℓ, we normalize by considering a security level λ, such that ℓk > 2λ. By increasing ℓ we can
decrease k, reducing the number of constraints necessary for the relation RR1CS. These results can
be found in Table 3. We see that moving to higher ℓ further improves efficiency for walks of similar
degree.

ℓ Field m n nnz
[CLL23] Ours [CLL23] Ours [CLL23] Ours

2 Fp2 4k + 2 3k 4k + 3 3k + 1 21k + 6 13k
3 4k 4k + 1 18k
5 6k 6k + 1 28k
7 7k 7k + 1 35k

13 10k 10k + 1 56k
2 Fp 11k + 5 7k 11k + 7 7k + 2 79k + 23 41k
3 11k 11k + 2 65k
5 15k 15k + 2 97k
7 17k 17k + 2 123k

13 24k 24k + 2 194k

Table 2: Our results compared to [CLL23]. We consider the number of constraints m, the number of
variables n and the number of non-zero entries in the constraint matrices nnz.

ℓ Field m n nnz
[CLL23] Ours [CLL23] Ours [CLL23] Ours

2 Fp2 4λ + 2 3λ 4λ + 3 3λ + 1 21λ + 6 13λ

3 2.524λ 2.524λ + 1 11.357λ
5 2.584λ 2.584λ + 1 12.059λ
7 2.493λ 2.493λ + 1 12.467λ

13 2.702λ 2.702λ + 1 15.133λ
2 Fp 11λ + 5 7λ 11λ + 7 7λ + 2 79λ + 23 41λ
3 6.940λ 6.940λ + 2 41.010λ
5 6.460λ 6.460λ + 2 41.776λ
7 6.056λ 6.056λ + 2 43.813λ

13 6.486λ 6.486λ + 2 52.426λ

Table 3: Our results compared to those of [CLL23], normalized for security parameter λ.
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Field Aurora Ligero
[CLL23] Ours [CLL23] Ours

Fp2 Prover time (ms) 934 669 587 420
Verifier time (ms) 99 74 847 634
Proof size (kB) 194 178 1849 1599

Fp Prover time (ms) 1216 727 427 255
Verifier time (ms) 98 62 493 313
Proof size (kB) 166 147 1733 1381

Table 4: An evaluation of our results compared to [CLL23] for walks with ℓ = 2. The results from
Fp2 correspond to the identification protocol with parameter set p434, with path length k = 216 and
security level λ = 128, while Fp corresponds to p441+. The timings and proof sizes are projected
from m.

In Table 4 we provide concrete prover and verifier times as well as proof sizes for Aurora [BCR+19]
and Ligero [AHIV17]. We use the parameter sets p434 and p441+ from [CLL23].4 These results are
projected based on the number of constraints m, which appears to be a common and reliable basis
for comparison.5

Finally, our additional circuit to prevent backtracking with variable a, reduces m by one-third.
The approach with constant a and negligible completeness loss reduces m by two-thirds. The full
overview is found in Table 5.

Field Approach m n nnz
Fp2 [CLL23] k − 1 k − 1 4k − 4
Fp [CLL23] 3k − 3 3k − 3 18k − 19

Ours, variable a 2k − 2 2k − 1 9k − 9
Ours, constant a k − 1 k − 1 6k − 6

Table 5: The number of constraints m, variables n and number of non-zero entries nnz used to
prevent backtracking using the existing method from [CLL23] and our methods. For variables, we
do not include 1 and the j-invariants in the count.

6 Conclusion and Open Problems

In this paper we improved on the state-of-the-art of using general-purpose zero-knowledge proof
systems for proving knowledge of an isogeny via R1CS. We were able to generalize the approach of
Cong, Lai and Levin [CLL23] beyond ℓ = 2 to prime numbers ℓ ∈ {3, 5, 7, 13} via the use of canonical
modular polynomials. Moreover, we optimized the arithmetizations for the corresponding relation
both over Fp2 and over Fp ×Fp.

In the course of our work we encountered interesting mathematical questions, some of which
might hold in greater generality. For example, while Remark 4 argues that one can generalize Theo-
rem 9 to any prime ℓ with the looser bound pℓ < 4ℓ4, the growth trend displayed in Table 1 suggests
that tighter bounds on the prime pℓ could be achievable – in fact, experimental data up to ℓ = 31
suggests that the bound pℓ < 4ℓ3 might hold in general.

It might be even more interesting to study the canonical modular polynomials (or different,
equivalent polynomials) for primes ℓ such that κ > 1. In that case we do not know to what ex-
tent the Multiplicity Theorem still holds true. More precisely, we expect one inequality to still hold,
but the other to fail generally, as discussed in Remark 2.

Therefore the mathematical contributions in this paper might motivate deeper studies in the
future.

4Measurements were done on a desktop PC on a single thread and based on academic implementation libiop. Because
of this, we expect optimizations and multithreading to yield significant improvements.

5See e.g. [BCR+19], [GLS+23] and https://github.com/scipr-lab/libiop for independent benchmarks.
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A More on Elliptic Curves

A.1 Elliptic Curves and Isogenies

In this subsection we gather some well-known definitions and results on elliptic curves and isoge-
nies. We fix a perfect field K.

An elliptic curve E over K is a non-singular projective algebraic curve of genus 1 with a distin-
guished ‘point at infinity’, usually denoted by O. The set of K-rational points E(K) of such a curve
forms a group with neutral element O.

Let E0 and E1 be elliptic curves over K, and K ⊆ L ⊆ K a field extension of K. An isogeny (defined)
over L, or L-isogeny, is a morphism of the curves ϕ : E0 −→ E1 over L (in particular it can be expressed
by rational maps with coefficients in L) which induces also a surjective group homomorphism on
the sets of K-rational points.

Any isogeny ϕ has a finite kernel, and the cardinality of this kernel equals the degree deg(ϕ) of
ϕ as a morphism if ϕ is separable [Sil09, Theorem III.4.10]. Further, the degree is multiplicative: If
ϕ1 : E0 −→ E1 and ϕ2 : E1 −→ E2 are two isogenies, then deg(ϕ2 ◦ ϕ1) = deg(ϕ2) · deg(ϕ1).

Given an elliptic curve E0 over K and any finite subgroup G ⊆ E0(K), there exist a unique (up to
equivalence) elliptic curve E1 and a separable isogeny ϕG : E0 −→ E1 with kernel equal to G [Sil09,
Proposition III.4.12].

A classic example of an n2-isogeny is the multiplication-by-n endomorphism [n] of E, which maps
each K-rational point of an elliptic curve to its nth scalar multiple. The kernel of the induced map on
the K-rational points is called the n-torsion of E, denoted E[n].

Notably, each n-isogeny ϕ : E0 −→ E1 admits a dual isogeny of degree n, which is the unique
isogeny ϕ̂ : E1 −→ E0 such that ϕ ◦ ϕ̂ = ϕ̂ ◦ ϕ = [n] [Sil09, Theorem III.6.1-2].

A.2 Canonical Modular Polynomials for κ = 1

Below we list the canonical modular polynomials for the primes ℓ ∈ {2, 3, 5, 7, 13}, which are the
primes that satisfy κ = ℓ−1

gcd(12,ℓ−1) = 1.

Φc
2(X, j) = X3 + 48X2 + 768X + 4096 − X · j,

Φc
3(X, j) = X4 + 36X3 + 270X2 + 756X + 729 − X · j,

Φc
5(X, j) = X6 + 30X5 + 315X4 + 1300X3 + 1575X2 + 750X + 125 − X · j,

Φc
7(X, j) = X8 + 28X7 + 322X6 + 1904X5 + 5915X4 + 8624X3 + 4018X2

+ 748X + 49 − X · j,

Φc
13(X, j) = X14 + 26X13 + 325X12 + 2548X11 + 13832X10 + 54340X9

+ 157118X8 + 333580X7 + 509366X6 + 534820X5 + 354536X4

+ 124852X3 + 15145X2 + 746X + 13 − X · j.

A.3 The Polynomial Factors of Lemma 7

In this subsection we list the polynomials gj∗ and hj∗ ,± described in Lemma 7; for j∗ = 0 these
polynomials are given in Table 6, and for j∗ = 1728 in Table 7.

ℓ g0 h0,+ h0,−
2 1 X + 16 X + 256
3 X + 27 X + 3 X + 243
5 1 X2 + 10X + 5 X2 + 250X + 3125
7 X2 + 13X + 49 X2 + 5X + 1 X2 + 245X + 2401

13 X2 + 5X + 13 X4 + 7X3 + 20X2 + 19X + 1
X4 + 247X3 + 3380X2

+ 15379X + 28561

Table 6: The polynomials g0 and h0,±.
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ℓ gℓ,1728 hℓ,1728,+ hℓ,1728,−
2 X + 64 X − 8 X − 512
3 1 X2 + 18X − 27 X2 − 486X − 19683
5 X2 + 22X + 125 X2 + 4X − 1 X2 − 500X − 15625

7 1 X4 + 14X3 + 63X2 + 70X − 7
X4 − 490X3 − 21609X2

− 235298X − 823543

13 X2 + 6X + 13
X6 + 10X5 + 46X4 + 108X3

+ 122X2 + 38X − 1

X6 − 494X5 − 20618X4

− 237276X3 − 1313806X2

− 3712930X − 4826809

Table 7: The polynomials g1728 and h1728,±.

A.4 Rational Formulas for the Reconstruction Theorem

In this subsection we give, for the Reconstruction Theorem, the (ℓ-dependent) expressions of the
root f as a K-rational function in the coefficients of ϕℓ( f ). In these formulas we index f on the left
hand side by the prime ℓ for emphasis.

For ℓ = 3 we write ϕ3( f ) = x + C to obtain

f3 = − (2A2 + 7ACj0 + 3C3 j0)2

28 · 3 · A3 · j0
.

For ℓ ∈ {5, 7, 13} we can use char(K) /∈ {2, 3} to compute disc(ϕℓ( f )) by evaluating disc(ϕℓ(T))
at T = f according to Proposition 1(a). Thus computations in Z[T, T−1] show

f5 =
(−48A)3

disc(ϕ5( f ))3 · j0
and f7 =

(−48A)3

disc(ϕ7( f )) · j0
.

Lastly, for ℓ ∈ {2, 13} we see that the discriminant ∆ = 211 · 35 · f ℓ−1 · A · B ̸= 0 of the target
curve lies in K(s1, . . . , sn) by Kohel’s description of Vélu’s formulas [Koh96, §2.4], and

f2 =
∆

211 · 35 · A · B
and f13 =

2297 · 3135 · A27 · B27

disc(ϕ13( f ))5 · ∆2 .

B The Sylvester Matrix and the Resultant

In this section we discuss the theory of resultants, using [Bos18, §4.4] and [vzGG13, §6.3] as general
references, together with novel applications that will be important for our proofs. Throughout, we
fix R to be a commutative (as well as unital and associative) ring.

We briefly recall the adjugate matrix: Let n ∈ N and suppose that we have a square matrix
M = (mij) ∈ Rn×n. For any i, j ∈ [n] = {1, . . . , n} we let Mij denote the matrix obtained from M
by removing the ith row and the jth column. Then the adjugate matrix adj(M) of M is defined as the
square matrix adj(M) = (aij)

n
i,j=1 ∈ Rn×n with entries

aij = (−1)i+j det(Mji).

The following result gives the well known Laplace expansion formulas:

Lemma 14. We have
adj(M) · M = det(M)In = M · adj(M)

where In denotes the nth identity matrix. Equivalently, for any i ∈ [n] we can compute det(M) via
Laplace expansion along the ith row given by

det(M) =
n

∑
j=1

(−1)i+j · mij · det(Mij),
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or via Laplace expansion along the ith column given by

det(M) =
n

∑
j=1

(−1)j+i · mji · det(Mji).

For n ∈ N0 we now consider the free R-module

Pn := {s ∈ R[X] : deg(s) < n}

of rank n, equipped with the descending monomial basis (Xn−1, Xn−2, . . . , X, 1).

Definition 2. Let g, h ∈ R[X] be non-zero polynomials of respective degrees d, e ∈ N0 and define
the R-linear map

σ : Pe ×Pd → Pd+e, (s, t) 7→ s · g + t · h.

We call the representation matrix of σ with respect to the descending monomial bases of each Pn the
Sylvester matrix Syl(g, h) of g and h.

Remark 7. In the literature the transpose of the representation matrix of σ is sometimes referred to
as the Sylvester matrix instead – see, for example, [BPR06, Notation 4.12].

Example 3. For the polynomials g = a0X4 + a1X3 + a2X2 + a3X + a4 and h = b0X2 + b1X + b2 with
a0, b0 ̸= 0 we have

Syl(g, h) =


a0 b0
a1 a0 b1 b0
a2 a1 b2 b1 b0
a3 a2 b2 b1 b0
a4 a3 b2 b1

a4 b2

 ,

where empty entries are understood to be zero.

Working over a field R = K, the kernel of σ can be given explicitly, and the knowledge of its
codimension, i.e. of the rank of Syl(g, h), will be crucial later:

Lemma 15. Let K be a field and let g, h ∈ K[X] be non-zero polynomials. Then the kernel of σ is
given by

ker(σ) =
{(

h
gcd(g,h) · r,− g

gcd(g,h) · r
) ∣∣∣∣ r ∈ K[X] with deg(r) < deg gcd(g, h)

}
.

In particular, the rank of the Sylvester matrix of g and h satisfies

rk Syl(g, h) = deg(g) + deg(h)− deg gcd(g, h).

Proof. Let us write γ := gcd(g, h). For any r ∈ K[X] with deg(r) < deg(γ) we have

deg(h/γ · r) = deg(h)− deg(γ) + deg(r) < deg(h)

and similarly deg(−g/γ · r) < deg(g). Furthermore

σ(h/γ · r,−g/γ · r) = r · (h/γ · g − g/γ · h) = r · γ−1 · (hg − gh) = 0,

which shows that ker(σ) contains all elements of the form (h/γ · r,−g/γ · r).
Conversely consider an element (s, t) ∈ ker(σ), so that s · g = (−t) · h. Dividing by γ then yields

s · g/γ = (−t) · h/γ, and since g/γ and h/γ are coprime we find rs, rt ∈ K[X] with s = h/γ · rs and
t = g/γ · rt. Plugging these values into σ now gives

0 = σ(s, t) = h/γ · rs · g + g/γ · rt · h = (rs + rt) · gh · γ−1,

so we have rt = −rs, i.e. t = −g/γ · rs. Due to

deg(rs) = deg(s)− deg(h) + deg(γ) < deg(γ)

we thus get the other claimed inclusion by setting r := rs. Finally, the rank formula for Syl(g, h) now
follows directly from the rank-nullity theorem since ker(σ) has K-dimension deg gcd(g, h).
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The determinant of the Sylvester matrix also plays an important role:

Definition 3. Let g, h ∈ R[X] be non-zero polynomials. The resultant res(g, h) of g and h is defined
as

res(g, h) := det Syl(g, h).

For emphasis we sometimes indicate the variable X with respect to which the resultant is taken in
the index of res – for example, we would write resX(g, h) above.

By Lemma 15 the rank of the Sylvester matrix is maximal for coprime polynomials, and this can
alternatively be expressed via the resultant:

Corollary 16. Let K be a field and let g, h ∈ K[X] be non-zero polynomials. Then the following are
equivalent:

(i) g and h are coprime, i.e. gcd(g, h) = 1.

(ii) rk Syl(g, h) = deg(g) + deg(h).

(iii) res(g, h) ̸= 0.

Proof. By definition Syl(g, h) is a square matrix with deg(g) + deg(h) rows, so the equivalence of (ii)
and (iii) follows from linear algebra. Moreover, Lemma 15 shows that (i) and (ii) are equivalent.

Next we note an immediate but important compatibility result that we will use frequently in the
sequel:

Lemma 17. Let g, h ∈ R[X] be non-zero polynomials, and let φ : R → S be a ring homomorphism,
extended to a ring homomorphism φ : R[X] → S[X] via coefficient-wise application. If φ preserves
the degrees of g and h, then we have

φ(Syl(g, h)) = Syl(φ(g), φ(h)),

where on the left hand side φ is applied entry-wise. In particular, in this situation we have

φ(res(g, h)) = res(φ(g), φ(h)).

Proof. This follows from the definitions and the fact that the determinant is compatible with ring
homomorphisms as it is defined as a multivariate polynomial in the matrix entries.

This compatibility result also extends Corollary 16 to integral domains:

Corollary 18. Let R be an integral domain and let g, h ∈ R[X] be non-zero polynomials. Then g and
h share a common divisor of positive degree if and only if res(g, h) = 0.

Proof. We consider the embedding φ : R → K of R into its field of fractions K, and its extension to
R[X] → K[X] via coefficient-wise application. As this clearly preserves the degrees of g and h, we
see with Lemma 17 that res(g, h) is non-zero if and only if res(φ(g), φ(h)) is. Furthermore, g and
h share no common divisor of positive degree if and only if φ(g) and φ(h) are coprime, as both
statements are equivalent to the fact that φ(g) and φ(h) do not have a common root in an algebraic
closure of K. Therefore the claim follows from Corollary 16.

For our proofs we want to extend Corollary 18 to relate the number of common roots (i.e. the
maximal degree of a common divisor) to the resultant. While prior work in this direction using
subresultants dates far back (see [vzGL03, §1.1] for a historical overview), we want to keep our focus
on the resultant. To do so, we will instead consider the situation that R = A[Y] is itself a polynomial
ring, and we will be interested in deriving the resultant resX(g, h) ∈ R with respect to Y. To connect
for this analysis the derivatives to k-minors of Syl(g, h), i.e. to determinants of (k × k)-submatrices of
Syl(g, h), we will use Jacobi’s formula as our main tool:
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Lemma 19 (Jacobi). Let R = A[Y] be a polynomial ring over a commutative ring A, let n ∈ N and
let M = (mij) ∈ Rn×n be a square matrix. Furthermore let ∂

∂Y M denote the matrix obtained from M
via entry-wise derivation. Then

∂

∂Y
det(M) = tr

(
adj(M) · ∂

∂Y
M
)

.

In particular, for any k ∈ {0, . . . , n} we have

∂k

∂Yk det(M) ∈ R · {(n − k)-minors of M},

i.e. the kth derivative of det(M) with respect to Y is an R-linear combination of (n − k)-minors of M.

Proof. For ease of notation we index submatrices of M by indices in [n] × [n] where we disallow
indices of removed rows as the first index respectively of removed columns as the second index. We
proceed by induction on n: For n = 1 the matrix adj(M) has the single entry 1, so the formula clearly
holds. Assuming n ≥ 2, we apply the product rule to the Laplace expansion of det(M) along the
last column to obtain

∂

∂Y
det(M) =

n

∑
i=1

(−1)i+n det(Min)
∂

∂Y
min + (−1)i+nmin

∂

∂Y
det(Min). (11)

By the induction hypothesis we furthermore have

∂

∂Y
det(Min) = tr

(
adj(Min) ·

∂

∂Y
Min

)
=

n−1

∑
j=1

i−1

∑
l=1

(−1)j+l det((Min)l j)
∂

∂Y
ml j +

n−1

∑
j=1

n

∑
l=i+1

(−1)j+l−1 det((Min)l j)
∂

∂Y
ml j.

Therefore swapping the summation order of l and i yields

n

∑
i=1

(−1)i+nmin
∂

∂Y
det(Min)

=
n−1

∑
j=1

n

∑
l=1

n

∑
i=l+1

(−1)l+j(−1)(i−1)+(n−1)min det((Ml j)in)
∂

∂Y
ml j

+
n−1

∑
j=1

n

∑
l=1

l−1

∑
i=1

(−1)l+j(−1)i+(n−1)min det((Ml j)in)
∂

∂Y
ml j

=
n−1

∑
j=1

n

∑
l=1

(−1)l+j det(Ml j)
∂

∂Y
ml j

where we used Laplace expansion of det(Ml j) along the last column to get rid of the sum over i.
Now we see that the first summands in Equation (11) give precisely the nth outer sum above, so in
total we obtain:

∂

∂Y
det(M) =

n

∑
j=1

n

∑
i=1

(−1)i+j det(Mij)
∂

∂Y
mij = tr

(
adj(M) · ∂

∂Y
M
)

(12)

Finally we argue why the second claim follows from this formula by induction on k. For k = 0
the claim is immediate as det(M) is the unique (n − 0)-minor of M. Now expressing ∂k−1

∂Yk−1 det(M)

as an R-linear combination of (n − k + 1)-minors of M via the induction hypothesis, we see by
Jacobi’s formula (12) (applied to each (n − k + 1)-minor of M) and the product rule that ∂k

∂Yk det(M)

is an R-linear combination of (n − k + 1)-minors of M and their (n − k + 1 − 1)-minors; the latter
are (n − k)-minors of M, and the former are R-linear combinations of (n − k)-minors of M due to
Laplace expansion, hence yielding the claim.

33



The following consequence is tailored to our needs:

Corollary 20. Let R = K[Y] be a polynomial ring over a field K and fix an element y0 ∈ K. Addi-
tionally let g, h ∈ R[X] be non-zero polynomials and extend the K-linear evaluation homomorphism
φ : R → K given by Y 7→ y0 to a ring homomorphism φ : R[X] → K[X] via coefficient-wise applica-
tion. Further suppose that φ preserves the X-degrees of g and h, and write

m := deg gcd(φ(g), φ(h)).

Then
∂k

∂Yk

∣∣∣∣
Y=y0

resX(g, h) = 0 for k ∈ {0, . . . , m − 1}.

Proof. Let k ∈ {0, . . . , m − 1} and set n := deg(g) + deg(h). By Lemma 19 the kth Y-derivative of
resX(g, h) is an R-linear combination of (n − k)-minors of Syl(g, h). Moreover, by Lemma 17 we
have Syl(φ(g), φ(h)) = φ(Syl(g, h)), so the images of the (n − k)-minors of Syl(g, h) under φ are
(n − k)-minors of Syl(φ(g), φ(h)).

Hence

φ

(
∂k

∂Yk res(g, h)

)
=

∂k

∂Yk

∣∣∣∣
Y=y0

resX(g, h)

is a K-linear combination of (n − k)-minors of Syl(φ(g), φ(h)). Finally, by Lemma 15 we know that

rk Syl(φ(g), φ(h)) = deg(φ(g)) + deg(φ(h))− m = n − m < n − k,

so all (n − k)-minors of Syl(φ(g), φ(h)) are zero by linear algebra and the claim follows.

To turn our attention to the second application of resultants in this paper, we relate the resultant
res(g, h) back to g and h:

Lemma 21. Let R be an integral domain and let g, h ∈ R[X] be non-zero polynomials of respective
degrees d, e ∈ N0 such that d + e ≥ 1. Then there are polynomials (s, t) ∈ Pe ×Pd such that

res(g, h) = sg + th.

Proof. Recalling the definition of res(g, h) via the linear map σ : Pe ×Pd → Pd+e and translating the
existence of the adjugate matrix into linear maps, we obtain an R-linear map ϕ : Pd+e → Pe × Pd
such that

σ ◦ ϕ(r) = det(Syl(g, h)) · r = res(g, h) · r

for all r ∈ Pd+e. Applying this composition to r = 1, which is possible since d + e ≥ 1, hence shows
that ϕ(1) = (s, t) satisfies the required linear combination.

With this we can finish arguing the missing part of the proof of Theorem 9:

Proposition 22. Let ℓ ≤ 13 be a prime and let pℓ be given according to

(p2, p3, p5, p7, p11, p13) = (13, 53, 379, 1217, 5101, 8387).

Additionally let K be a field of characteristic char(K) /∈ [pℓ] and let j0 ∈ K× be a non-zero j-invariant.
Then Φℓ(j0, Y) does not have a triple root in K.

Proof. This proof is highly computational – the observational claims used along the way can be ver-
ified via the SageMath script maximal primes.sage. Using multiple resultant computations, we de-
rive a contradiction by considering the derivatives of the classical modular polynomial with respect
to the second variable and applying the ring homomorphism

ρ : Z[X][Y] → K[Y], X 7→ j0, Y 7→ Y.

For a ∈ {0, 1, 2} let us write

Ψa(X, Y) :=
∂a

∂Ya Φℓ(X, Y) ∈ Z[X][Y]

and note that ρ preserves the Y-degree of each Ψa since pℓ > ℓ.
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Suppose now that Φℓ(j0, Y) ∈ K[Y] has a triple root; then the three polynomials ρ(Ψ0) = Φℓ(j0, Y),
ρ(Ψ1) and ρ(Ψ2) all share a common root. Thus Lemma 17 and Corollary 16 show that the resultants

g1 := resY(Ψ0, Ψ1), g2 := resY(Ψ0, Ψ2), g3 := resY(Ψ1, Ψ2) ∈ Z[X]

satisfy ρ(gi) = 0. As powers of j0 and primes not larger than pℓ are invertible in K, we can divide
out powers of X and such prime factors from each gi to obtain new polynomials – which we will, to
simplify notation, again denote by gi – that still get sent to 0 by ρ.

Due to these modifications the three polynomials (g1, g2, g3) turn out to pairwise have no com-
mon factor of positive degree, i.e. the number

γℓ := gcd(resX(g1, g2), resX(g1, g3), resX(g2, g3)) ∈ Z

is non-zero by Corollary 18, and we can see that pℓ is its largest prime factor.
However, by Lemma 21 (noting that each gi is non-constant) we find for any i, j ∈ {1, 2, 3}, i < j,

polynomials sij, tij ∈ Z[X] with resX(gi, gj) = sijgi + tijgj and thus

ρ(resX(gi, gj)) = ρ(sij)ρ(gi) + ρ(tij)ρ(gj) = 0.

Hence each resX(gi, gj) is zero in K, so char(K) = p > 0 has to be a prime factor of γℓ. As pℓ is the
maximal prime factor of γℓ, we obtain a contradiction to our assumption on char(K).

An important special case of the resultant is the discriminant, which we will define now: Let R be
an integral domain and let g ∈ R[X] such that ∂

∂X g is non-zero. Then all entries in the first row of
Syl(g, ∂

∂X g) are divisible by the leading coefficient a0 of g; therefore the resultant res(g, ∂
∂X g) is also

divisible by a0 due to Laplace expansion along this first row, and one defines

disc(g) := (−1)(
deg(g)

2 ) · a−1
0 · res

(
g, ∂

∂X g
)
∈ R

to be the discriminant of g. We directly obtain the following from Lemma 17:

Corollary 23. Let R be an integral domain and g ∈ R[X] a polynomial such that ∂
∂X g is non-zero.

Furthermore let φ : R → S be a ring homomorphism of integral domains, extended to a ring homo-
morphism φ : R[X] → S[X] via coefficient-wise application. If we have deg(g) = deg(φ(g)) and
deg( ∂

∂X g) = deg( ∂
∂X φ(g)), then

φ(disc(g)) = disc(φ(g)).
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