Dates are inconsistent

Dates are inconsistent

242 results sorted by ID

2024/1777 (PDF) Last updated: 2024-10-31
Masking Gaussian Elimination at Arbitrary Order, with Application to Multivariate- and Code-Based PQC
Quinten Norga, Suparna Kundu, Uttam Kumar Ojha, Anindya Ganguly, Angshuman Karmakar, Ingrid Verbauwhede
Implementation

Digital signature schemes based on multivariate- and code-based hard problems are promising alternatives for lattice-based signature schemes, due to their smaller signature size. Hence, several candidates in the ongoing additional standardization for quantum secure digital signature (DS) schemes by the National Institute of Standards and Technology (NIST) rely on such alternate hard problems. Gaussian Elimination (GE) is a critical component in the signing procedure of these schemes. In this...

2024/1759 (PDF) Last updated: 2024-10-28
A Forgery Attack on a Code-based Signature Scheme
Ali Babaei, Taraneh Eghlidos
Attacks and cryptanalysis

With the advent of quantum computers, the security of cryptographic primitives, including digital signature schemes, has been compromised. To deal with this issue, some signature schemes have been introduced to resist against these computers. These schemes are known as post-quantum signature schemes. One group of these schemes is based on the hard problems of coding theory, called code-based cryptographic schemes. Several code-based signature schemes are inspired by the McEliece encryption...

2024/1715 (PDF) Last updated: 2024-10-20
OT-PCA: New Key-Recovery Plaintext-Checking Oracle Based Side-Channel Attacks on HQC with Offline Templates
Haiyue Dong, Qian Guo
Attacks and cryptanalysis

In this paper, we introduce OT-PCA, a novel approach for conducting Plaintext-Checking (PC) oracle based side-channel attacks, specifically designed for Hamming Quasi-Cyclic (HQC). By calling the publicly accessible HQC decoder, we build offline templates that enable efficient extraction of soft information for hundreds of secret positions with just a single PC oracle call. Our method addresses critical challenges in optimizing key-related information extraction, including maximizing...

2024/1694 (PDF) Last updated: 2024-10-17
Full Key-Recovery Cubic-Time Template Attack on Classic McEliece Decapsulation
Vlad-Florin Drăgoi, Brice Colombier, Nicolas Vallet, Pierre-Louis Cayrel, Vincent Grosso
Attacks and cryptanalysis

Classic McEliece is one of the three code-based candidates in the fourth round of the NIST post-quantum cryptography standardization process in the Key Encapsulation Mechanism category. As such, its decapsulation algorithm is used to recover the session key associated with a ciphertext using the private key. In this article, we propose a new side-channel attack on the syndrome computation in the decapsulation algorithm that recovers the private key, which consists of the private Goppa...

2024/1495 (PDF) Last updated: 2024-10-15
Lattice-Based Vulnerabilities in Lee Metric Post-Quantum Cryptosystems
Anna-Lena Horlemann, Karan Khathuria, Marc Newman, Amin Sakzad, Carlos Vela Cabello
Public-key cryptography

Post-quantum cryptography has gained attention due to the need for secure cryptographic systems in the face of quantum computing. Code-based and lattice-based cryptography are two promi- nent approaches, both heavily studied within the NIST standardization project. Code-based cryptography—most prominently exemplified by the McEliece cryptosystem—is based on the hardness of decoding random linear error-correcting codes. Despite the McEliece cryptosystem having been unbroken for several...

2024/1422 (PDF) Last updated: 2024-09-11
ZKFault: Fault attack analysis on zero-knowledge based post-quantum digital signature schemes
Puja Mondal, Supriya Adhikary, Suparna Kundu, Angshuman Karmakar
Attacks and cryptanalysis

Computationally hard problems based on coding theory, such as the syndrome decoding problem, have been used for constructing secure cryptographic schemes for a long time. Schemes based on these problems are also assumed to be secure against quantum computers. However, these schemes are often considered impractical for real-world deployment due to large key sizes and inefficient computation time. In the recent call for standardization of additional post-quantum digital signatures by the...

2024/1414 (PDF) Last updated: 2024-09-12
Code-Based Zero-Knowledge from VOLE-in-the-Head and Their Applications: Simpler, Faster, and Smaller
Ying Ouyang, Deng Tang, Yanhong Xu
Cryptographic protocols

Zero-Knowledge (ZK) protocols allow a prover to demonstrate the truth of a statement without disclosing additional information about the underlying witness. Code-based cryptography has a long history but did suffer from periods of slow development. Recently, a prominent line of research have been contributing to designing efficient code-based ZK from MPC-in-the-head (Ishai et al., STOC 2007) and VOLE-in-the head (VOLEitH) (Baum et al., Crypto 2023) paradigms, resulting in quite efficient...

2024/1217 (PDF) Last updated: 2024-07-30
A Compact and Parallel Swap-Based Shuffler based on butterfly Network and its complexity against Side Channel Analysis
Jong-Yeon Park, Wonil Lee, Bo Gyeong Kang, Il-jong Song, Jaekeun Oh, Kouichi Sakurai
Foundations

A prominent countermeasure against side channel attacks, the hiding countermeasure, typically involves shuffling operations using a permutation algorithm. Especially in the era of Post-Quantum Cryptography, the importance of the hiding coun- termeasure is emphasized due to computational characteristics like those of lattice and code-based cryptography. In this context, swiftly and securely generating permutations has a critical impact on an algorithm’s security and efficiency. The widely...

2024/1134 (PDF) Last updated: 2024-07-12
Exploiting signature leakages: breaking Enhanced pqsigRM
Thomas Debris-Alazard, Pierre Loisel, Valentin Vasseur
Attacks and cryptanalysis

Enhanced pqsigRM is a code-based hash-and-sign scheme proposed to the second National Institute of Standards and Technology call for post-quantum signatures. The scheme is based on the $(U,U+V)$-construction and it enjoys remarkably small signature lengths, about $1$KBytes for a security level of $128$ bits. Unfortunately we show that signatures leak information about the underlying $(U,U+V)$-structure. It allows to retrieve the private-key with~$100, 000$ signatures.

2024/927 (PDF) Last updated: 2024-06-12
MATHEMATICAL SPECULATIONS ON CRYPTOGRAPHY
Anjali C B
Foundations

The current cryptographic frameworks like RSA, ECC, and AES are potentially under quantum threat. Quantum cryptographic and post-quantum cryptography are being extensively researched for securing future information. The quantum computer and quantum algorithms are still in the early developmental stage and thus lack scalability for practical application. As a result of these challenges, most researched PQC methods are lattice-based, code-based, ECC isogeny, hash-based, and multivariate...

2024/621 (PDF) Last updated: 2024-04-22
How to Lose Some Weight - A Practical Template Syndrome Decoding Attack
Sebastian Bitzer, Jeroen Delvaux, Elena Kirshanova, Sebastian Maaßen, Alexander May, Antonia Wachter-Zeh
Attacks and cryptanalysis

We study the hardness of the Syndrome Decoding problem, the base of most code-based cryptographic schemes, such as Classic McEliece, in the presence of side-channel information. We use ChipWhisperer equipment to perform a template attack on Classic McEliece running on an ARM Cortex-M4, and accurately classify the Hamming weights of consecutive 32-bit blocks of the secret error vector. With these weights at hand, we optimize Information Set Decoding algorithms. Technically, we show how to...

2024/611 (PDF) Last updated: 2024-04-21
A Security Analysis of Restricted Syndrome Decoding Problems
Ward Beullens, Pierre Briaud, Morten Øygarden
Attacks and cryptanalysis

Restricted syndrome decoding problems (R-SDP and R-SDP($G$)) provide an interesting basis for post-quantum cryptography. Indeed, they feature in CROSS, a submission in the ongoing process for standardizing post-quantum signatures. This work improves our understanding of the security of both problems. Firstly, we propose and implement a novel collision attack on R-SDP($G$) that provides the best attack under realistic restrictions on memory. Secondly, we derive precise complexity...

2024/609 (PDF) Last updated: 2024-04-20
New Security Proofs and Techniques for Hash-and-Sign with Retry Signature Schemes
Benoît Cogliati, Pierre-Alain Fouque, Louis Goubin, Brice Minaud
Public-key cryptography

Hash-and-Sign with Retry is a popular technique to design efficient signature schemes from code-based or multivariate assumptions. Contrary to Hash-and-Sign signatures based on preimage-sampleable functions as defined by Gentry, Peikert and Vaikuntanathan (STOC 2008), trapdoor functions in code-based and multivariate schemes are not surjective. Therefore, the standard approach uses random trials. Kosuge and Xagawa (PKC 2024) coined it the Hash-and-Sign with Retry paradigm. As many attacks...

2024/495 (PDF) Last updated: 2024-07-03
Reducing Signature Size of Matrix-code-based Signature Schemes
Tung Chou, Ruben Niederhagen, Lars Ran, Simona Samardjiska
Cryptographic protocols

This paper shows novel techniques to reduce the signature size of the code-based signature schemes MEDS and ALTEQ, by a large factor. For both schemes, the signature size is dominated by the responses for rounds with nonzero challenges, and we reduce the signature size by reducing the size of these responses. For MEDS, each of the responses consists of $m^2 + n^2$ field elements,while in our new protocol each response consists of only $2k$ ($k$ is usually chosen to be close to $m$ and $n$)...

2024/465 (PDF) Last updated: 2024-05-10
Shorter VOLEitH Signature from Multivariate Quadratic
Dung Bui
Cryptographic protocols

The VOLE-in-the-Head paradigm, recently introduced by Baum et al. (Crypto 2023), is a compiler that uses SoftspokenOT (Crypto 2022) to transfer any VOLE-based designated verifier zero-knowledge protocol into a publicly verifiable zero-knowledge protocol. Together with the Fiat-Shamir transformation, a new digital signature scheme FAEST (faest.info) is proposed, and it outperforms all MPC-in-the-Head signatures. We propose a new candidate post-quantum signature scheme from the Multivariate...

2024/393 (PDF) Last updated: 2024-08-07
Solving McEliece-1409 in One Day --- Cryptanalysis with the Improved BJMM Algorithm
Shintaro Narisada, Shusaku Uemura, Hiroki Okada, Hiroki Furue, Yusuke Aikawa, Kazuhide Fukushima
Attacks and cryptanalysis

Syndrome decoding problem (SDP) is the security assumption of the code-based cryptography. Three out of the four NIST-PQC round 4 candidates are code-based cryptography. Information set decoding (ISD) is known for the fastest existing algorithm to solve SDP instances with relatively high code rate. Security of code-based cryptography is often constructed on the asymptotic complexity of the ISD algorithm. However, the concrete complexity of the ISD algorithm has hardly ever been known....

2024/252 (PDF) Last updated: 2024-08-30
Faster Signatures from MPC-in-the-Head
Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, Antoine Joux
Cryptographic protocols

We revisit the construction of signature schemes using the MPC-in-the-head paradigm. We obtain two main contributions: – We observe that previous signatures in the MPC-in-the-head paradigm must rely on a salted version of the GGM puncturable pseudorandom function (PPRF) to avoid collision attacks. We design a new efficient PPRF construction that is provably secure in the multi-instance setting. The security analysis of our PPRF, in the ideal cipher model, is quite involved and forms a...

2024/244 (PDF) Last updated: 2024-09-24
Don’t Use It Twice! Solving Relaxed Linear Code Equivalence Problems
Alessandro Budroni, Jesús-Javier Chi-Domínguez, Giuseppe D'Alconzo, Antonio J. Di Scala, Mukul Kulkarni
Attacks and cryptanalysis

The Linear Code Equivalence (LCE) Problem has received increased attention in recent years due to its applicability in constructing efficient digital signatures. Notably, the LESS signature scheme based on LCE is under consideration for the NIST post-quantum standardization process, along with the MEDS signature scheme that relies on an extension of LCE to the rank metric, namely the Matrix Code Equivalence (MCE) Problem. Building upon these developments, a family of signatures with...

2024/230 (PDF) Last updated: 2024-05-10
Analysis of Layered ROLLO-I: A BII-LRPC code-based KEM
Seongtaek Chee, Kyung Chul Jeong, Tanja Lange, Nari Lee, Alex Pellegrini, Hansol Ryu
Attacks and cryptanalysis

We analyze Layered ROLLO-I, a code-based cryptosystem published in IEEE Communications Letters and submitted to the Korean post-quantum cryptography competition. Four versions of Layered ROLLO-I have been proposed in the competition. We show that the first two versions do not provide the claimed security against rank decoding attacks and give reductions to small instances of the original ROLLO-I scheme, which was a candidate in the NIST competition and eliminated there due to rank...

2024/175 (PDF) Last updated: 2024-08-08
Lossy Cryptography from Code-Based Assumptions
Quang Dao, Aayush Jain
Public-key cryptography

Over the past few decades, we have seen a proliferation of advanced cryptographic primitives with lossy or homomorphic properties built from various assumptions such as Quadratic Residuosity, Decisional Diffie-Hellman, and Learning with Errors. These primitives imply hard problems in the complexity class $\mathcal{SZK}$ (statistical zero-knowledge); as a consequence, they can only be based on assumptions that are broken in $\mathcal{BPP}^{\mathcal{SZK}}$. This poses a barrier for building...

2024/117 (PDF) Last updated: 2024-09-30
Breaking HWQCS: a code-based signature scheme from high weight QC-LDPC codes
Alex Pellegrini, Giovanni Tognolini
Attacks and cryptanalysis

We analyse HWQCS, a code based signature scheme presented at ICISC 2023, which uses quasi-cyclic low density parity check codes (QC-LDPC). The scheme introduces high Hamming weight errors and signs each message using a fresh ephemeral secret key rather than using only one secret key, so to avoid known attacks on QC-LDPC signature schemes. In this paper, we show that the signatures of HWQCS leak substantial information concerning the ephemeral keys and formally describe this behaviour....

2024/093 (PDF) Last updated: 2024-01-21
Short Code-based One-out-of-Many Proofs and Applications
Xindong Liu, Li-Ping Wang
Public-key cryptography

In this work, we propose two novel succinct one-out-of-many proofs from coding theory, which can be seen as extensions of the Stern's framework and Veron's framework from proving knowledge of a preimage to proving knowledge of a preimage for one element in a set, respectively. The size of each proof is short and scales better with the size of the public set than the code-based accumulator in \cite{nguyen2019new}. Based on our new constructions, we further present a logarithmic-size ring...

2024/069 (PDF) Last updated: 2024-01-16
SDitH in Hardware
Sanjay Deshpande, James Howe, Jakub Szefer, Dongze Yue
Implementation

This work presents the first hardware realisation of the Syndrome-Decoding-in-the-Head (SDitH) signature scheme, which is a candidate in the NIST PQC process for standardising post-quantum secure digital signature schemes. SDitH's hardness is based on conservative code-based assumptions, and it uses the Multi-Party-Computation-in-the-Head (MPCitH) construction. This is the first hardware design of a code-based signature scheme based on traditional decoding problems and only the second for...

2024/022 (PDF) Last updated: 2024-01-13
Fully Dynamic Attribute-Based Signatures for Circuits from Codes
San Ling, Khoa Nguyen, Duong Hieu Phan, Khai Hanh Tang, Huaxiong Wang, Yanhong Xu

Attribute-Based Signature (ABS), introduced by Maji et al. (CT-RSA'11), is an advanced privacy-preserving signature primitive that has gained a lot of attention. Research on ABS can be categorized into three main themes: expanding the expressiveness of signing policies, enabling new functionalities, and providing more diversity in terms of computational assumptions. We contribute to the development of ABS in all three dimensions, by providing a fully dynamic ABS scheme for arbitrary...

2023/1956 (PDF) Last updated: 2023-12-24
A Signature Scheme from Full-Distance Syndrome Decoding
Abdelhaliem Babiker
Public-key cryptography

In this paper we propose a new hash-and-sign digital signature scheme whose security against existential forgery under adaptive chosen message attack is based on the hardness of full-distance syndrome decoding. We propose parameter sets for three security levels (128-bits, 192-bits, and 256-bits) based on concrete estimations for hardness of the syndrome decoding problem and estimate the corresponding sizes of the keys and the signature for each level. The scheme has large public and private...

2023/1940 (PDF) Last updated: 2023-12-21
Concrete Time/Memory Trade-Offs in Generalised Stern’s ISD Algorithm
Sreyosi Bhattacharyya, Palash Sarkar
Public-key cryptography

The first contribution of this work is a generalisation of Stern's information set decoding (ISD) algorithm. Stern's algorithm, a variant of Stern's algorithm due to Dumer, as well as a recent generalisation of Stern's algorithm due to Bernstein and Chou are obtained as special cases of our generalisation. Our second contribution is to introduce the notion of a set of effective time/memory trade-off (TMTO) points for any ISD algorithm for given ranges of values of parameters of the...

2023/1875 (PDF) Last updated: 2023-12-07
The Blockwise Rank Syndrome Learning problem and its applications to cryptography
Nicolas Aragon, Pierre Briaud, Victor Dyseryn, Philippe Gaborit, Adrien Vinçotte
Cryptographic protocols

Recently the notion of blockwise error in a context of rank based cryptography has been introduced by Sont et al. at AsiaCrypt 2023 . This notion of error, very close to the notion sum-rank metric, permits, by decreasing the weight of the decoded error, to greatly improve parameters for the LRPC and RQC cryptographic schemes. A little before the multi-syndromes approach introduced for LRPC and RQC schemes had also allowed to considerably decrease parameters sizes for LRPC and RQC schemes,...

2023/1865 (PDF) Last updated: 2023-12-05
Projective Space Stern Decoding and Application to SDitH
Kevin Carrier, Valérian Hatey, Jean-Pierre Tillich

We show that here standard decoding algorithms for generic linear codes over a finite field can speeded up by a factor which is essentially the size of the finite field by reducing it to a low weight codeword problem and working in the relevant projective space. We apply this technique to SDitH and show that the parameters of both the original submission and the updated version fall short of meeting the security requirements asked by the NIST.

2023/1852 (PDF) Last updated: 2023-12-01
Reduction from sparse LPN to LPN, Dual Attack 3.0
Kévin Carrier, Thomas Debris-Alazard, Charles Meyer-Hilfiger, Jean-Pierre Tillich
Public-key cryptography

The security of code-based cryptography relies primarily on the hardness of decoding generic linear codes. Until very recently, all the best algorithms for solving the decoding problem were information set decoders ($\mathsf{ISD}$). However, recently a new algorithm called RLPN-decoding which relies on a completely different approach was introduced and it has been shown that RLPN outperforms significantly $\mathsf{ISD}$ decoders for a rather large range of rates. This RLPN decoder relies on...

2023/1823 (PDF) Last updated: 2023-11-27
PQC-NN: Post-Quantum Cryptography Neural Network
Abel C. H. Chen
Applications

In recent years, quantum computers and Shor’s quantum algorithm have been able to effectively solve NP (Non-deterministic Polynomial-time) problems such as prime factorization and discrete logarithm problems, posing a threat to current mainstream asymmetric cryptography, including RSA and Elliptic Curve Cryptography (ECC). As a result, the National Institute of Standards and Technology (NIST) in the United States call for Post-Quantum Cryptography (PQC) methods that include lattice-based...

2023/1798 (PDF) Last updated: 2023-11-21
Somewhat Homomorphic Encryption based on Random Codes
Carlos Aguilar-Melchor, Victor Dyseryn, Philippe Gaborit
Cryptographic protocols

We present a secret-key encryption scheme based on random rank metric ideal linear codes with a simple decryption circuit. It supports unlimited homomorphic additions and plaintext absorptions as well as a fixed arbitrary number of homomorphic multiplications. We study a candidate bootstrapping algorithm that requires no multiplication but additions and plaintext absorptions only. This latter operation is therefore very efficient in our scheme, whereas bootstrapping is usually the main...

2023/1657 (PDF) Last updated: 2023-10-26
PQCMC: Post-Quantum Cryptography McEliece-Chen Implicit Certificate Scheme
Abel C. H. Chen
Public-key cryptography

In recent years, the elliptic curve Qu-Vanstone (ECQV) implicit certificate scheme has found application in security credential management systems (SCMS) and secure vehicle-to-everything (V2X) communication to issue pseudonymous certificates. However, the vulnerability of elliptic-curve cryptography (ECC) to polynomial-time attacks posed by quantum computing raises concerns. In order to enhance resistance against quantum computing threats, various post-quantum cryptography methods have been...

2023/1626 (PDF) Last updated: 2024-11-06
Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts - A Case Study on HQC KEM
Thales Paiva, Prasanna Ravi, Dirmanto Jap, Shivam Bhasin, Sayan Das, Anupam Chattopadhyay
Attacks and cryptanalysis

HQC is a code-based key encapsulation mechanism (KEM) that was selected to move to the fourth round of the NIST post-quantum standardization process. While this scheme was previously targeted by side-channel assisted chosen-ciphertext attacks for key recovery, all these attacks have relied on malformed ciphertexts for key recovery. Thus, all these attacks can be easily prevented by deploying a detection based countermeasures for invalid ciphertexts, and refreshing the secret key upon...

2023/1590 (PDF) Last updated: 2024-03-18
Single trace HQC shared key recovery with SASCA
Guillaume Goy, Julien Maillard, Philippe Gaborit, Antoine Loiseau
Attacks and cryptanalysis

This paper presents practicable single trace attacks against the Hamming Quasi-Cyclic (HQC) Key Encapsulation Mechanism. These attacks are the first Soft Analytical Side-Channel Attacks (SASCA) against code-based cryptography. We mount SASCA based on Belief Propagation (BP) on several steps of HQC's decapsulation process. Firstly, we target the Reed-Solomon (RS) decoder involved in the HQC publicly known code. We perform simulated attacks under Hamming weight leakage model, and reach...

2023/1568 (PDF) Last updated: 2024-06-12
Not Just Regular Decoding: Asymptotics and Improvements of Regular Syndrome Decoding Attacks
Andre Esser, Paolo Santini
Attacks and cryptanalysis

Cryptographic constructions often base security on structured problem variants to enhance efficiency or to enable advanced functionalities. This led to the introduction of the Regular Syndrome Decoding (RSD) problem, which guarantees that a solution to the Syndrome Decoding (SD) problem follows a particular block-wise structure. Despite recent attacks exploiting that structure by Briaud and Øygarden (Eurocrypt ’23) and Carozza, Couteau and Joux (CCJ, Eurocrypt ’23), many questions about the...

2023/1460 (PDF) Last updated: 2023-09-23
Rigorous Foundations for Dual Attacks in Coding Theory
Charles Meyer-Hilfiger, Jean-Pierre Tillich
Attacks and cryptanalysis

Dual attacks aiming at decoding generic linear codes have been found recently to outperform for certain parameters information set decoding techniques which have been for $60$ years the dominant tool for solving this problem and choosing the parameters of code-based cryptosystems. However, the analysis of the complexity of these dual attacks relies on some unproven assumptions that are not even fully backed up with experimental evidence. These dual attacks can actually be viewed as the...

2023/1452 (PDF) Last updated: 2023-09-22
Commitments with Efficient Zero-Knowledge Arguments from Subset Sum Problems
Jules Maire, Damien Vergnaud
Cryptographic protocols

We present a cryptographic string commitment scheme that is computationally hiding and binding based on (modular) subset sum problems. It is believed that these NP-complete problems provide post-quantum security contrary to the number theory assumptions currently used in cryptography. Using techniques recently introduced by Feneuil, Maire, Rivain and Vergnaud, this simple commitment scheme enables an efficient zero-knowledge proof of knowledge for committed values as well as proofs...

2023/1411 (PDF) Last updated: 2023-09-19
zk-SNARKs from Codes with Rank Metrics
Xuan-Thanh Do, Dang-Truong Mac, Quoc-Huy Vu
Cryptographic protocols

Succinct non-interactive zero-knowledge arguments of knowledge (zk-SNARKs) are a type of non-interactive proof system enabling efficient privacy-preserving proofs of membership for NP languages. A great deal of works has studied candidate constructions that are secure against quantum attackers, which are based on either lattice assumptions, or post-quantum collision-resistant hash functions. In this paper, we propose a code-based zk-SNARK scheme, whose security is based on the rank support...

2023/1387 (PDF) Last updated: 2023-12-18
Blockwise Rank Decoding Problem and LRPC Codes: Cryptosystems with Smaller Sizes
Yongcheng Song, Jiang Zhang, Xinyi Huang, Wei Wu
Public-key cryptography

In this paper, we initiate the study of the Rank Decoding (RD) problem and LRPC codes with blockwise structures in rank-based cryptosystems. First, we introduce the blockwise errors ($\ell$-errors) where each error consists of $\ell$ blocks of coordinates with disjoint supports, and define the blockwise RD ($\ell$-RD) problem as a natural generalization of the RD problem whose solutions are $\ell$-errors (note that the standard RD problem is actually a special $\ell$-RD problem with...

2023/1263 (PDF) Last updated: 2023-08-30
Quantum security analysis of Wave
Johanna Loyer

Wave is a code-based digital signature scheme. Its hardness relies on the unforgeability of signature and the indistinguishability of its public key, a parity check matrix of a ternary $(U, U+V)$-code. The best known attacks involve solving the Decoding Problem using the Information Set Decoding algorithm (ISD) to defeat these two problems. Our main contribution is the description of a quantum smoothed Wagner's algorithm within the ISD, which improves the forgery attack on Wave in the...

2023/1224 (PDF) Last updated: 2023-08-12
Theoretical analysis of decoding failure rate of non-binary QC-MDPC codes
Kirill Vedenev, Yury Kosolapov
Public-key cryptography

In this paper, we study the decoding failure rate (DFR) of non-binary QC-MDPC codes using theoretical tools, extending the results of previous binary QC-MDPC code studies. The theoretical estimates of the DFR are particularly significant for cryptographic applications of QC-MDPC codes. Specifically, in the binary case, it is established that exploiting decoding failures makes it possible to recover the secret key of a QC-MDPC cryptosystem. This implies that to attain the desired security...

2023/1220 (PDF) Last updated: 2024-10-15
Quasilinear Masking to Protect ML-KEM Against Both SCA and FIA
Pierre-Augustin Berthet, Yoan Rougeolle, Cédric Tavernier, Jean-Luc Danger, Laurent Sauvage

The recent technological advances in Post-Quantum Cryptography (PQC) raise the questions of robust implementations of new asymmetric cryptography primitives in today's technology. This is the case for the lattice-based Module Lattice-Key Encapsulation Mechanism (ML-KEM) algorithm which is proposed by the National Institute of Standards and Technology (NIST) as the first standard for Key Encapsulation Mechanism (KEM), taking inspiration from CRYSTALS-Kyber. We must ensure that the ML-KEM...

2023/1205 (PDF) Last updated: 2023-11-15
On the security of REDOG
Tanja Lange, Alex Pellegrini, Alberto Ravagnani
Attacks and cryptanalysis

We analyze REDOG, a public-key encryption system submitted to the Korean competition on post-quantum cryptography. REDOG is based on rank-metric codes. We prove its incorrectness and attack its implementation, providing an efficient message recovery attack. Furthermore, we show that the security of REDOG is much lower than claimed. We then proceed to mitigate these issues and provide two approaches to fix the decryption issue, one of which also leads to better security.

2023/1117 (PDF) Last updated: 2023-07-18
Mask Compression: High-Order Masking on Memory-Constrained Devices
Markku-Juhani O. Saarinen, Mélissa Rossi
Implementation

Masking is a well-studied method for achieving provable security against side-channel attacks. In masking, each sensitive variable is split into $d$ randomized shares, and computations are performed with those shares. In addition to the computational overhead of masked arithmetic, masking also has a storage cost, increasing the requirements for working memory and secret key storage proportionally with $d$. In this work, we introduce mask compression. This conceptually simple technique is...

2023/1008 (PDF) Last updated: 2023-06-29
Cryptanalysis of rank-metric schemes based on distorted Gabidulin codes
Pierre Briaud, Pierre Loidreau
Public-key cryptography

In this work, we introduce a new attack for the Loidreau scheme [PQCrypto 2017] and its more recent variant LowMS. This attack is based on a constrained linear system for which we provide two solving approaches: - The first one is an enumeration algorithm inspired from combinatorial attacks on the Rank Decoding (RD) Problem. While the attack technique remains very simple, it allows us to obtain the best known structural attack on the parameters of these two schemes. - The second one is...

2023/997 (PDF) Last updated: 2023-06-26
An extension of Overbeck's attack with an application to cryptanalysis of Twisted Gabidulin-based schemes.
Alain Couvreur, Ilaria Zappatore
Attacks and cryptanalysis

In this article, we discuss the decoding of Gabidulin and related codes from a cryptographic point of view, and we observe that these codes can be decoded solely from the knowledge of a generator matrix. We then extend and revisit Gibson and Overbeck attacks on the generalized GPT encryption scheme (instantiated with the Gabidulin code) for different ranks of the distortion matrix. We apply our attack to the case of an instantiation with twisted Gabidulin codes.

2023/994 (PDF) Last updated: 2023-06-26
A proposal for quantum GRS algorithm and the cryptanalysis for ROLLO and RQC
Asuka Wakasugi, Mitsuru Tada
Attacks and cryptanalysis

Code-Based Cryptosystem, CBC, is one of the candidates for Post-Quantum Cryptosystems, PQCs. Its security primarily bases on the Syndrome Decoding Problem, SDP. In this paper, we focus on the rank CBC whose security relies on the rank SDP. The GRS (Gaborit-Ruatta-Schrek) algorithm is well known as the current best decoding algorithm for the rank SDP. We propose the quantum version of the GRS algorithm. Then, we introduce the attack strategy using that quantum algorithm for previous rank...

2023/950 (PDF) Last updated: 2023-08-24
A new approach based on quadratic forms to attack the McEliece cryptosystem
Alain Couvreur, Rocco Mora, Jean-Pierre Tillich
Attacks and cryptanalysis

We introduce a novel algebraic approach for attacking the McEliece cryptosystem which is currently at the $4$-th round of the NIST competition. The contributions of the article are twofold. (1) We present a new distinguisher on alternant and Goppa codes working in a much broader range of parameters than \cite{FGOPT11}. (2) With this approach we also provide a polynomial--time key recovery attack on alternant codes which are distinguishable with the distinguisher \cite{FGOPT11}. ...

2023/859 (PDF) Last updated: 2024-03-25
Cutting the GRASS: Threshold GRoup Action Signature Schemes
Michele Battagliola, Giacomo Borin, Alessio Meneghetti, Edoardo Persichetti
Public-key cryptography

Group actions are fundamental mathematical tools, with a long history of use in cryptography. Indeed, the action of finite groups at the basis of the discrete logarithm problem is behind a very large portion of modern cryptographic systems. With the advent of post-quantum cryptography, however, the method for building protocols shifted towards a different paradigm, centered on the difficulty of discerning 'noisy' objects, as is the case for lattices, codes, and multivariate systems. This...

2023/784 (PDF) Last updated: 2024-06-25
History-Free Sequential Aggregation of Hash-and-Sign Signatures
Alessio Meneghetti, Edoardo Signorini
Public-key cryptography

A sequential aggregate signature (SAS) scheme allows multiple users to sequentially combine their respective signatures in order to reduce communication costs. Historically, early proposals required the use of trapdoor permutation (e.g., RSA). In recent years, a number of attempts have been made to extend SAS schemes to post-quantum assumptions. Many post-quantum signatures have been proposed in the hash-and-sign paradigm, which requires the use of trapdoor functions and appears to be an...

2023/756 (PDF) Last updated: 2023-09-20
SDitH in the QROM
Carlos Aguilar-Melchor, Andreas Hülsing, David Joseph, Christian Majenz, Eyal Ronen, Dongze Yue
Public-key cryptography

The MPC in the Head (MPCitH) paradigm has recently led to significant improvements for signatures in the code-based setting. In this paper we consider some modifications to a recent twist of MPCitH, called Hypercube-MPCitH, that in the code-based setting provides the currently best known signature sizes. By compressing the Hypercube-MPCitH five-round code-based identification scheme into three-rounds we obtain two main benefits. On the one hand, it allows us to further develop recent...

2023/717 (PDF) Last updated: 2023-05-18
Generic Error SDP and Generic Error CVE
Felice Manganiello, Freeman Slaughter
Cryptographic protocols

This paper introduces a new family of CVE schemes built from generic errors (GE-CVE) and identifies a vulnerability therein. To introduce the problem, we generalize the concept of error sets beyond those defined by a metric, and use the set-theoretic difference operator to characterize when these error sets are detectable or correctable by codes. We prove the existence of a general, metric-less form of the Gilbert-Varshamov bound, and show that - like in the Hamming setting - a random code...

2023/659 (PDF) Last updated: 2023-10-30
Exploring Decryption Failures of BIKE: New Class of Weak Keys and Key Recovery Attacks
Tianrui Wang, Anyu Wang, Xiaoyun Wang
Attacks and cryptanalysis

Code-based cryptography has received a lot of attention recently because it is considered secure under quantum computing. Among them, the QC-MDPC based scheme is one of the most promising due to its excellent performance. QC-MDPC based scheme is usually subject to a small rate of decryption failure, which can leak information about the secret key. This raises two crucial problems: how to accurately estimate the decryption failure rate and how to use the failure information to recover the...

2023/588 (PDF) Last updated: 2023-04-25
Wave Parameter Selection
Nicolas Sendrier
Public-key cryptography

Wave is a provably EUF-CMA (existential unforgeability under adaptive chosen message attacks) digital signature scheme based on codes \cite{DST19a}. It is an hash-and-sign primitive and its security is built according to a GPV-like framework \cite{GPV08} under two assumptions related to coding theory: (i) the hardness of finding a word of prescribed Hamming weight and prescribed syndrome, and (ii) the pseudo-randomness of ternary generalized $(U|U+V)$ codes. Forgery attacks (i)---or message...

2023/546 (PDF) Last updated: 2023-04-17
Horizontal Correlation Attack on Classic McEliece
Brice Colombier, Vincent Grosso, Pierre-Louis Cayrel, Vlad-Florin Drăgoi
Attacks and cryptanalysis

As the technical feasibility of a quantum computer becomes more and more likely, post-quantum cryptography algorithms are receiving particular attention in recent years. Among them, code-based cryptosystems were first considered unsuited for hardware and embedded software implementations because of their very large key sizes. However, recent work has shown that such implementations are practical, which also makes them susceptible to physical attacks. In this article, we propose a horizontal...

2023/519 Last updated: 2023-05-10
Generalized Inverse Binary Matrix Construction with PKC Application
Farshid Haidary Makoui, Thomas Aaron Guliver
Public-key cryptography

The generalized inverses of systematic non-square binary matrices have applications in mathematics, channel coding and decoding, navigation signals, machine learning, data storage, and cryptography, such as the McEliece and Niederreiter public-key cryptosystems. A systematic non-square (n−k)×n matrix H, n > k, has 2 power k×(n−k) different generalized inverse matrices. This paper presents an algorithm for generating these matrices and compares it with two well-known methods, i.e....

2023/448 Last updated: 2023-06-05
Generalized Inverse Matrix Construction for Code Based Cryptography
Farshid Haidary Makoui, T. Aaron Gulliver
Public-key cryptography

The generalized inverses of systematic non-square binary matrices have applications in mathematics, channel coding and decoding, navigation signals, machine learning, data storage and cryptography such as the McEliece and Niederreiter public-key cryptosystems. A systematic non-square $(n-k) \times n$ matrix $H$, $n > k$, has $2^{k\times(n-k)}$ different generalized inverse matrices. This paper presents an algorithm for generating these matrices and compares it with two well-known methods,...

2023/428 (PDF) Last updated: 2024-02-29
Security analysis of the Classic McEliece, HQC and BIKE schemes in low memory
Yu Li, Li-Ping Wang
Public-key cryptography

With the advancement of NIST PQC standardization, three of the four candidates in Round 4 are code-based schemes, namely Classic McEliece, HQC and BIKE. Currently, one of the most important tasks is to further analyze their security levels for the suggested parameter sets. At PKC 2022 Esser and Bellini restated the major information set decoding (ISD) algorithms by using nearest neighbor search and then applied these ISD algorithms to estimate the bit security of Classic McEliece, HQC and...

2023/385 (PDF) Last updated: 2024-01-22
Zero Knowledge Protocols and Signatures from the Restricted Syndrome Decoding Problem
Marco Baldi, Sebastian Bitzer, Alessio Pavoni, Paolo Santini, Antonia Wachter-Zeh, Violetta Weger
Public-key cryptography

The Restricted Syndrome Decoding Problem (R-SDP) corresponds to the Syndrome Decoding Problem (SDP) with the additional constraint that all entries of the solution error vector must live in a fixed subset of the finite field. In this paper, we study how this problem can be applied to the construction of signatures derived from Zero-Knowledge (ZK) protocols. First, we show that R-SDP appears to be well-suited for this type of application: ZK protocols relying on SDP can easily be modified to...

2023/377 (PDF) Last updated: 2023-06-29
FuLeeca: A Lee-based Signature Scheme
Stefan Ritterhoff, Georg Maringer, Sebastian Bitzer, Violetta Weger, Patrick Karl, Thomas Schamberger, Jonas Schupp, Antonia Wachter-Zeh
Public-key cryptography

In this work we introduce a new code-based signature scheme, called \textsf{FuLeeca}, based on the NP-hard problem of finding codewords of given Lee-weight. The scheme follows the Hash-and-Sign approach applied to quasi-cyclic codes. Similar approaches in the Hamming metric have suffered statistical attacks, which revealed the small support of the secret basis. Using the Lee metric, we are able to thwart such attacks. We use existing hardness results on the underlying problem and study...

2023/360 Last updated: 2023-06-05
Fast and Efficient Code-Based Digital Signature with Dual Inverse Matrix
Farshid Haidary Makoui, T. Aaron Gulliver, Mohammad Dakhilalian

Digital signatures ensure legitimate access through identity authentication. It is also used to build blocks in blockchains and to authenticate transactions. The Courtois-Finiasz-Sendrier (CFS) digital signature is a well-known code-based digital signature scheme based on the Niederreiter cryptosystem. The CFS signature, however, is not widely used due to the long processing time required by its signing algorithm. Most code-based digital signature schemes are based on Niederreiter. The...

2023/358 Last updated: 2023-05-10
Efficient Code Based Cryptosystem with Dual Inverse Matrix
Farshid Haidary Makoui, T. Aaron Gulliver, Mohammad Dakhilalian
Public-key cryptography

The security of cryptographic primitives is an important issue. The Shor algorithm illustrates how quantum attacks threaten the security of these widely used primitives. Code-based cryptography is one of several approaches resistant to quantum attacks. To date, no attack has been able to break a code-based cryptosystem in polynomial time. Despite this level of security, these cryptosystems have not been considered for practical applications such as e-commerce, medical and industrial IoT,...

2023/308 (PDF) Last updated: 2023-03-02
Punctured Syndrome Decoding Problem Efficient Side-Channel Attacks Against Classic McEliece
Vincent Grosso, Pierre-Louis Cayrel, Brice Colombier, Vlad-Florin Dragoi
Attacks and cryptanalysis

Among the fourth round finalists of the NIST post-quantum cryptography standardization process for public-key encryption algorithms and key encapsulation mechanisms, three rely on hard problems from coding theory. Key encapsulation mechanisms are frequently used in hybrid cryptographic systems: a public-key algorithm for key exchange and a secret key algorithm for communication. A major point is thus the initial key exchange that is performed thanks to a key encapsulation mechanism. In this...

2023/294 (PDF) Last updated: 2023-02-27
SCA-LDPC: A Code-Based Framework for Key-Recovery Side-Channel Attacks on Post-Quantum Encryption Schemes
Qian Guo, Denis Nabokov, Alexander Nilsson, Thomas Johansson
Attacks and cryptanalysis

Whereas theoretical attacks on standardized crypto primitives rarely lead to actual practical attacks, the situation is different for side-channel attacks. Improvements in the performance of side-channel attacks are of utmost importance. In this paper, we propose a framework to be used in key-recovery side-channel attacks on CCA-secure post-quantum encryption schemes. The basic idea is to construct chosen ciphertext queries to a plaintext checking oracle that collects information on a...

2023/247 (PDF) Last updated: 2023-10-09
A New Sieving-Style Information-Set Decoding Algorithm
Qian Guo, Thomas Johansson, Vu Nguyen
Attacks and cryptanalysis

The problem of decoding random codes is a fundamental problem for code-based cryptography, including recent code-based candidates in the NIST post-quantum standardization process. In this paper, we present a novel sieving-style information-set decoding (ISD) algorithm, addressing the task of solving the syndrome decoding problem. Our approach involves maintaining a list of weight-$2p$ solution vectors to a partial syndrome decoding problem and then creating new vectors by identifying pairs...

2023/175 (PDF) Last updated: 2023-02-12
Linear codes of Schubert type and quadratic public keys of Multivariate Cryptography
Vasyl Ustimenko
Public-key cryptography

Studies of linear codes in terms of finite projective geometries form traditional direction in Coding Theory. Some applications of projective geometries are known. Noncommutative groups and semigroups defined in terms of projective geometries can serve as platforms of protocols of Post Quantum Cryptography. We introduce an idea of public keys of Multivariate Cryptography given by quadratic public rules generated via walks on incidence substructures of projective geometry with vertexes...

2023/102 (PDF) Last updated: 2023-04-14
Cache-timing attack against HQC
Senyang Huang, Rui Qi Sim, Chitchanok Chuengsatiansup, Qian Guo, Thomas Johansson
Attacks and cryptanalysis

In this paper, we present the first chosen-ciphertext (CC) cache-timing attacks on the reference implementation of HQC. We build a cache-timing based distinguisher for implementing a plaintext-checking (PC) oracle. The PC oracle uses side-channel information to check if a given ciphertext decrypts to a given message. This is done by identifying a vulnerability during the generating process of two vectors in the reference implementation of HQC. We also propose a new method of using PC...

2023/010 (PDF) Last updated: 2023-11-16
Verifying Classic McEliece: examining the role of formal methods in post-quantum cryptography standardisation
Martin Brain, Carlos Cid, Rachel Player, Wrenna Robson
Implementation

Developers of computer-aided cryptographic tools are optimistic that formal methods will become a vital part of developing new cryptographic systems. We study the use of such tools to specify and verify the implementation of Classic McEliece, one of the code-based cryptography candidates in the fourth round of the NIST Post-Quantum standardisation Process. From our case study we draw conclusions about the practical applicability of these methods to the development of novel cryptography.

2022/1771 (PDF) Last updated: 2022-12-28
Security analysis for BIKE, Classic McEliece and HQC against the quantum ISD algorithms
Asuka Wakasugi, Mitsuru Tada
Attacks and cryptanalysis

Since 2016, NIST has been standardrizing Post-Quantum Cryptosystems, PQCs. Code-Based Cryptosystem, CBC, which is considered to be one of PQCs, uses the Syndrome Decoding Problem as the basis for its security. NIST's PQC standardization project is currently in its 4th round and some CBC encryption schemes remain there. In this paper, we consider the quantum security for these cryptosystems.

2022/1751 (PDF) Last updated: 2023-10-27
Pseudorandomness of Decoding, Revisited: Adapting OHCP to Code-Based Cryptography
Maxime Bombar, Alain Couvreur, Thomas Debris-Alazard
Foundations

Recent code-based cryptosystems rely, among other things, on the hardness of the decisional decoding problem. If the search version is well understood, both from practical and theoretical standpoints, the decision version has been less studied in the literature, and little is known about its relationships with the search version, especially for structured variants. On the other hand, in the world of Euclidean lattices, the situation is rather different, and many reductions exist, both for...

2022/1749 (PDF) Last updated: 2023-11-07
Computational Hardness of the Permuted Kernel and Subcode Equivalence Problems
Paolo Santini, Marco Baldi, Franco Chiaraluce
Attacks and cryptanalysis

The Permuted Kernel Problem (PKP) asks to find a permutation which maps an input matrix into the kernel of some given vector space. The literature exhibits several works studying its hardness in the case of the input matrix being mono-dimensional (i.e., a vector), while the multi-dimensional case has received much less attention and, de facto, only the case of a binary ambient finite field has been studied. The Subcode Equivalence Problem (SEP), instead, asks to find a permutation so that a...

2022/1744 (PDF) Last updated: 2022-12-19
Worst and Average Case Hardness of Decoding via Smoothing Bounds
Thomas Debris-Alazard, Nicolas Resch
Foundations

In this work, we consider the worst and average case hardness of the decoding problems that are the basis for code-based cryptography. By a decoding problem, we consider inputs of the form $(\mathbf{G}, \mathbf{m} \mathbf{G} + \mathbf{t})$ for a matrix $\mathbf{G}$ that generates a code and a noise vector $\mathbf{t}$, and the algorithm's goal is to recover $\mathbf{m}$. We consider a natural strategy for creating a reduction to an average-case problem: from our input we simulate a...

2022/1706 (PDF) Last updated: 2022-12-09
Optimized Implementation of Encapsulation and Decapsulation of Classic McEliece on ARMv8
Minjoo Sim, Siwoo Eum, Hyeokdong Kwon, Hyunjun Kim, Hwajeong Seo
Implementation

Recently, the results of the NIST PQC contest were announced. Classic McEliece, one of the 3rd round candidates, was selected as the fourth round candidate. Classic McEliece is the only code-based cipher in the NIST PQC finalists in third round and the algorithm is regarded as secure. However, it has low efficiency. In this paper, we propose an efficient software implementation of Classic McEliece, a code-based cipher, on 64-bit ARMv8 processors. Classic McEliece can be divided into Key...

2022/1698 (PDF) Last updated: 2022-12-07
Digital Signature from Syndrome Decoding Problem
Abdelhaliem Babiker
Public-key cryptography

This paper introduces new digital signature scheme whose security against existential forgery under adaptive chosen message attack is based on hardness of the Syndrome Decoding Problem. The hardness assumption is quite simple and hence easy to analyze and investigate. The scheme as whole is neat with intuitive security definition and proof in addition to elegant and efficient signing and verifying algorithms. We propose parameter sets for three security levels (128-bits, 192-bits, and 256...

2022/1666 (PDF) Last updated: 2022-11-30
Cryptanalysis of Ivanov-Krouk-Zyablov cryptosystem
Kirill Vedenev, Yury Kosolapov
Public-key cryptography

Recently, F.Ivanov, E.Krouk and V.Zyablov proposed new cryptosystem based of Generalized Reed--Solomon (GRS) codes over field extensions. In their approach, the subfield images of GRS codes are masked by a special transform, so that the resulting public codes are not equivalent to subfield images of GRS code but burst errors still can be decoded. In this paper, we show that the complexity of message-recovery attack on this cryptosystem can be reduced due to using burst errors, and the secret...

2022/1663 (PDF) Last updated: 2023-02-20
REDOG and Its Performance Analysis
Jon-Lark Kim, Jihoon Hong, Terry Shue Chien Lau, YounJae Lim, Byung-Sun Won
Public-key cryptography

We propose a REinforced modified Dual-Ouroboros based on Gabidulin codes, shortly called REDOG. This is a code-based cryptosystem based on the well-known rank metric codes, Gabidulin codes. The public key sizes of REDOG are 14KB, 33KB, 63KB at the security levels of 128, 192, 256 bits respectively. There is no decoding failure in decryption. REDOG is IND-CPA. As a new result, we give the performance results of implementing REDOG including the time for Key generation, encryption, and...

2022/1645 (PDF) Last updated: 2023-02-27
The Return of the SDitH
Carlos Aguilar-Melchor, Nicolas Gama, James Howe, Andreas Hülsing, David Joseph, Dongze Yue
Public-key cryptography

This paper presents a code-based signature scheme based on the well-known syndrome decoding (SD) problem. The scheme builds upon a recent line of research which uses the Multi-Party-Computation-in-the-Head (MPCitH) approach to construct efficient zero-knowledge proofs, such as Syndrome Decoding in the Head (SDitH), and builds signature schemes from them using the Fiat-Shamir transform. At the heart of our proposal is a new approach, Hypercube-MPCitH, to amplify the soundness of any MPC...

2022/1613 (PDF) Last updated: 2022-11-19
Classic McEliece Key Generation on RAM constrained devices
Rainer Urian, Raphael Schermann
Public-key cryptography

Classic McEliece is a code based encryption scheme and candidate of the NIST post quantum contest. Implementing Classic McEliece on smart card chips is a challenge, because those chips have only a very limited amount of RAM. Decryption is not an issue because the cryptogram size is short and the decryption algorithm can be implemented using very few RAM. However key generation is a concern, because a large binary matrix must be inverted. In this paper, we show how key generation can be done...

2022/1610 (PDF) Last updated: 2023-08-24
ADMM and Reproducing Sum-Product Decoding Algorithm Applied to QC-MDPC Code-based McEliece Cryptosystems
Kohtaro Watanabe, Motonari Ohtsuka, Yuta Tsukie
Public-key cryptography

QC-MDPC (quasi cyclic moderate density parity check) code-based McEliece cryptosystems are considered to be one of the candidates for post-quantum cryptography. Decreasing DER (decoding error rate) is one of important factor for their security, since recent attacks to these cryptosystems effectively use DER information. In this paper, we pursue the possibility of optimization-base decoding, concretely we examine ADMM (alternating direction method of multipliers), a recent developing...

2022/1596 (PDF) Last updated: 2023-11-15
LowMS: a new rank metric code-based KEM without ideal structure
Nicolas Aragon, Victor Dyseryn, Philippe Gaborit, Pierre Loidreau, Julian Renner, Antonia Wachter-Zeh
Public-key cryptography

We propose and analyze LowMS, a new rank-based key encapsulation mechanism (KEM). The acronym stands for Loidreau with Multiple Syndromes, since our work combines the cryptosystem of Loidreau (presented at PQCrypto 2017) together with the multiple syndrome approach, that allows to reduce parameters by sending several syndromes with the same error support in one ciphertext. Our scheme is designed without using ideal structures. Considering cryptosystems without such an ideal structure,...

2022/1572 (PDF) Last updated: 2022-11-12
Layered ROLLO-I: Faster rank-metric code-based KEM using ideal LRPC codes
Chanki Kim, Young-Sik Kim, Jong-Seon No
Public-key cryptography

For the fast cryptographic operation, we newly propose a key encapsulation mechanism (KEM) called layered ROLLO-I by using block-wise interleaved ideal LRPC (BII-LRPC) codes. By multiplying random polynomials by small-sized ideal LRPC codes, faster operation can be obtained with an additional key size. Finally, some parameters of the proposed algorithm are suggested and compared with that of the existing ROLLO-I scheme.

2022/1559 (PDF) Last updated: 2023-04-20
Take your MEDS: Digital Signatures from Matrix Code Equivalence
Tung Chou, Ruben Niederhagen, Edoardo Persichetti, Tovohery Hajatiana Randrianarisoa, Krijn Reijnders, Simona Samardjiska, Monika Trimoska
Public-key cryptography

In this paper, we show how to use the Matrix Code Equivalence (MCE) problem as a new basis to construct signature schemes. This extends previous work on using isomorphism problems for signature schemes, a trend that has recently emerged in post-quantum cryptography. Our new formulation leverages a more general problem and allows for smaller data sizes, achieving competitive performance and great flexibility. Using MCE, we construct a zero-knowledge protocol which we turn into a signature...

2022/1493 (PDF) Last updated: 2023-06-02
Enhanced pqsigRM: Code-Based Digital Signature Scheme with Short Signature and Fast Verification for Post-Quantum Cryptography
Jinkyu Cho, Jong-Seon No, Yongwoo Lee, Zahyun Koo, Young-Sik Kim
Public-key cryptography

We present a novel code-based digital signature scheme, called Enhanced pqsigRM for post-quantum cryptography (PQC). This scheme is based on modified Reed–Muller (RM) codes, which modified RM codes with several security problems. Enhanced pqsigRM is a strengthened version of pqsigRM, which was submitted to NIST PQC standardization in round 1. The proposed scheme has the advantage of short signature size, fast verification cycles. For 128 bits of classical security, the signature size...

2022/1359 (PDF) Last updated: 2024-02-08
Probabilistic Hash-and-Sign with Retry in the Quantum Random Oracle Model
Haruhisa Kosuge, Keita Xagawa
Public-key cryptography

A hash-and-sign signature based on a preimage-sampleable function (Gentry et al., STOC 2008) is secure in the quantum random oracle model if the preimage-sampleable function is collision-resistant (Boneh et al., ASIACRYPT 2011) or one-way (Zhandry, CRYPTO 2012). However, trapdoor functions in code-based and multivariate-quadratic-based signatures are not preimage-sampleable functions; for example, underlying trapdoor functions of the Courtois-Finiasz-Sendrier, Unbalanced Oil and Vinegar...

2022/1329 (PDF) Last updated: 2022-10-06
New Time-Memory Trade-Offs for Subset Sum -- Improving ISD in Theory and Practice
Andre Esser, Floyd Zweydinger
Attacks and cryptanalysis

We propose new time-memory trade-offs for the random subset sum problem defined on $(a_1,\ldots,a_n,t)$ over $\mathbb{Z}_{2^n}$. Our trade-offs yield significant running time improvements for every fixed memory limit $M\geq2^{0.091n}$. Furthermore, we interpolate to the running times of the fastest known algorithms when memory is not limited. Technically, our design introduces a pruning strategy to the construction by Becker-Coron-Joux (BCJ) that allows for an exponentially small...

2022/1328 (PDF) Last updated: 2023-06-20
Revisiting Nearest-Neighbor-Based Information Set Decoding
Andre Esser
Attacks and cryptanalysis

The syndrome decoding problem lies at the heart of code-based cryptographic constructions. Information Set Decoding (ISD) algorithms are commonly used to assess the security of these systems. The most efficient ISD algorithms rely heavily on nearest neighbor search techniques. However, the runtime result of the fastest known ISD algorithm by Both-May (PQCrypto '17) was recently challenged by Carrier et al. (Asiacrypt '22), which introduce themselves a new technique called RLPN decoding which...

2022/1277 (PDF) Last updated: 2022-09-26
Compact GF(2) systemizer and optimized constant-time hardware sorters for Key Generation in Classic McEliece
Yihong Zhu, Wenping Zhu, Chen Chen, Min Zhu, Zhengdong Li, Shaojun Wei, Leibo Liu
Implementation

Classic McEliece is a code-based quantum-resistant public-key scheme characterized with relative high encapsulation/decapsulation speed and small cipher- texts, with an in-depth analysis on its security. However, slow key generation with large public key size make it hard for wider applications. Based on this observation, a high-throughput key generator in hardware, is proposed to accelerate the key generation in Classic McEliece based on algorithm-hardware co-design. Meanwhile the storage...

2022/1183 (PDF) Last updated: 2023-08-14
Fast and Efficient Hardware Implementation of HQC
Sanjay Deshpande, Chuanqi Xu, Mamuri Nawan, Kashif Nawaz, Jakub Szefer
Implementation

This work presents a hardware design for constant-time implementation of the HQC (Hamming Quasi-Cyclic) code-based key encapsulation mechanism. HQC has been selected for the fourth round of NIST's Post-Quantum Cryptography standardization process and this work presents the first, hand-optimized design of HQC key generation, encapsulation, and decapsulation written in Verilog targeting implementation on FPGAs. The three modules further share a common SHAKE256 hash module to reduce area...

2022/1166 (PDF) Last updated: 2022-09-07
McEliece-type encryption based on Gabidulin codes with no hidden structure
Wenshuo Guo, Fang-Wei Fu
Public-key cryptography

This paper presents a new McEliece-type encryption scheme based on Gabidulin codes, which uses linearized transformations to disguise the private key. When endowing this scheme with the partial cyclic structure, we obtain a public key of the form $GM^{-1}$, where $G$ is a partial circulant generator matrix of Gabidulin code and $M$ as well as $M^{-1}$ is a circulant matrix of large rank weight, even as large as the code length. Another difference from Loidreau's proposal at PQCrypto 2017 is...

2022/1031 (PDF) Last updated: 2023-06-14
Revisiting Algebraic Attacks on MinRank and on the Rank Decoding Problem
Magali Bardet, Pierre Briaud, Maxime Bros, Philippe Gaborit, Jean-Pierre Tillich
Attacks and cryptanalysis

The Rank Decoding problem (RD) is at the core of rank-based cryptography. Cryptosystems such as ROLLO and RQC, which made it to the second round of the NIST Post-Quantum Standardization Process, as well as the Durandal signature scheme, rely on it or its variants. This problem can also be seen as a structured version of MinRank, which is ubiquitous in multivariate cryptography. Recently, [1,2] proposed attacks based on two new algebraic modelings, namely the MaxMinors modeling which is...

2022/1000 (PDF) Last updated: 2022-10-17
Statistical Decoding 2.0: Reducing Decoding to LPN
Kevin Carrier, Thomas Debris-Alazard, Charles Meyer-Hilfiger, Jean-Pierre Tillich
Attacks and cryptanalysis

The security of code-based cryptography relies primarily on the hardness of generic decoding with linear codes. The best generic decoding algorithms are all improvements of an old algorithm due to Prange: they are known under the name of information set decoders (ISD). A while ago, a generic decoding algorithm which does not belong to this family was proposed: statistical decoding. It is a randomized algorithm that requires the computation of a large set of parity-checks of moderate...

2022/966 (PDF) Last updated: 2022-07-27
On Linear Complexity of Finite Sequences : Coding Theory and Applications to Cryptography
Edoardo Persichetti, Tovohery Randrianarisoa
Public-key cryptography

We define two metrics on vector spaces over a finite field using the linear complexity of finite sequences. We then develop coding theory notions for these metrics and study their properties. We give a Singleton-like bound as well as constructions of subspaces achieving this bound. We also provide an asymptotic Gilbert-Varshamov-like bound for random subspaces. We show how to reduce the problem of finding codewords with given Hamming weight into a problem of finding a vector of a given...

2022/964 (PDF) Last updated: 2022-07-26
Hybrid Decoding -- Classical-Quantum Trade-Offs for Information Set Decoding
Andre Esser, Sergi Ramos-Calderer, Emanuele Bellini, José Ignacio Latorre, Marc Manzano
Public-key cryptography

The security of code-based constructions is usually assessed by Information Set Decoding (ISD) algorithms. In the quantum setting, amplitude amplification yields an asymptotic square root gain over the classical analogue. However, already the most basic ISD algorithm by Prange suffers enormous width requirements caused by the quadratic description length of the underlying problem. Even if polynomial, this need for qubits is one of the biggest challenges considering the application of real...

2022/928 (PDF) Last updated: 2022-07-16
Universal Gaussian Elimination Hardware for Cryptographic Purposes
Jingwei Hu, Wen Wang, Kris Gaj, Donglong Chen, Huaxiong Wang
Implementation

In this paper, we investigate the possibility of performing Gaussian elimination for arbitrary binary matrices on hardware. In particular, we presented a generic approach for hardware-based Gaussian elimination, which is able to process both non-singular and singular matrices. Previous works on hardware-based Gaussian elimination can only process non-singular ones. However, a plethora of cryptosystems, for instance, quantum-safe key encapsulation mechanisms based on rank-metric codes, ROLLO...

2022/764 (PDF) Last updated: 2022-06-14
Efficient Proofs of Retrievability using Expander Codes
Françoise Levy-dit-Vehel, Maxime Roméas
Cryptographic protocols

Proofs of Retrievability (PoR) protocols ensure that a client can fully retrieve a large outsourced file from an untrusted server. Good PoRs should have low communication complexity, small storage overhead and clear security guarantees. We design a good PoR based on a family of graph codes called expander codes. We use expander codes based on graphs derived from point-line incidence relations of finite affine planes. Høholdt et al. showed that, when using Reed-Solomon codes as...

2022/724 (PDF) Last updated: 2022-10-04
A Power Side-Channel Attack on the Reed-Muller Reed-Solomon Version of the HQC Cryptosystem
Thomas Schamberger, Lukas Holzbaur, Julian Renner, Antonia Wachter-Zeh, Georg Sigl
Attacks and cryptanalysis

The code-based post-quantum algorithm Hamming Quasi-Cyclic (HQC) is a fourth round candidate in the NIST standardization project. Since their third round version the authors utilize a new combination of error correcting codes, namely a combination of a Reed-Muller and a Reed-Solomon code, which requires an adaption of published attacks. We identify that the power side-channel attack by Uneo et al. from CHES 2021 does not work in practice as they miss the fact that the implemented Reed-Muller...

2022/636 (PDF) Last updated: 2022-05-23
Integer Syndrome Decoding in the Presence of Noise
Vlad-Florin Dragoi, Brice Colombier, Pierre-Louis Cayrel, Vincent Grosso
Public-key cryptography

Code-based cryptography received attention after the NIST started the post-quantum cryptography standardization process in 2016. A central NP-hard problem is the binary syndrome decoding problem, on which the security of many code-based cryptosystems lies. The best known methods to solve this problem all stem from the information-set decoding strategy, first introduced by Prange in 1962. A recent line of work considers augmented versions of this strategy, with hints typically provided by...

2022/615 (PDF) Last updated: 2022-09-08
Smoothing Codes and Lattices: Systematic Study and New Bounds
Thomas Debris, Léo Ducas, Nicolas Resch, Jean-Pierre Tillich
Foundations

In this article we revisit smoothing bounds in parallel between lattices and codes. Initially introduced by Micciancio and Regev, these bounds were instantiated with Gaussian distributions and were crucial for arguing the security of many lattice-based cryptosystems. Unencumbered by direct application concerns, we provide a systematic study of how these bounds are obtained for both lattices and codes, transferring techniques between both areas. We also consider multiple choices of...

2022/514 (PDF) Last updated: 2022-05-02
A Key-Recovery Side-Channel Attack on Classic McEliece
Qian Guo, Andreas Johansson, Thomas Johansson
Public-key cryptography

In this paper, we propose the first key-recovery side-channel attack on Classic McEliece, a KEM finalist in the NIST Post-quantum Cryptography Standardization Project. Our novel idea is to design an attack algorithm where we submit special ciphertexts to the decryption oracle that correspond to cases of single errors. Decoding of such cipher-texts involves only a single entry in a large secret permutation, which is part of the secret key. Through an identified leakage in the additive...

2022/469 (PDF) Last updated: 2022-04-22
Efficient ASIC Architectures for Low Latency Niederreiter Decryption
Daniel Fallnich, Shutao Zhang, Tobias Gemmeke
Implementation

Post-quantum cryptography addresses the increasing threat that quantum computing poses to modern communication systems. Among the available "quantum-resistant" systems, the Niederreiter cryptosystem is positioned as a conservative choice with strong security guarantees. As a code-based cryptosystem, the Niederreiter system enables high performance operations and is thus ideally suited for applications such as the acceleration of server workloads. However, until now, no ASIC architecture is...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.