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Abstract. In this paper, we study the decoding failure rate (DFR) of non-binary
QC-MDPC codes using theoretical tools, extending the results of previous binary
QC-MDPC code studies. The theoretical estimates of the DFR are particularly
significant for cryptographic applications of QC-MDPC codes. Specifically, in the
binary case, it is established that exploiting decoding failures makes it possible to
recover the secret key of a QC-MDPC cryptosystem. This implies that to attain
the desired security level against adversaries in the CCA2 model, the decoding
failure rate must be strictly upper-bounded to be negligibly small. In this paper,
we observe that this attack can also be extended to the non–binary case as well,
which underscores the importance of DFR estimation. Consequently, we study the
guaranteed error–correction capability of non–binary QC–MDPC codes under
one–step majority logic (OSML) decoder and provide a theoretical analysis of
the 1–iteration parallel symbol flipping decoder and its combination with OSML
decoder. Utilizing these results, we estimate the potential public-key sizes for
QC-MDPC cryptosystems over F4 for various security levels. We find that there
is no advantage in reducing key sizes when compared to the binary case.

Keywords: code–based cryptography · non–binary MDPC codes · symbol flip-
ping · decoding failure rate.

Introduction

With the advent of quantum computers, many traditional public–key cryptosystems
based on number–theoretic or elliptic curves primitives are to become vulnerable to
attacks using them [14, 42]. So, there is a strong need in developing post-quantum
cryptographic protocols that will remain secure against adversaries equipped with
quantum computers. One of the most prominent and well-established approach to
post-quantum cryptography is cryptography based on error-correcting codes.

The first code–based cryptosystem was proposed in 1978 by R. McEliece [31].
The main idea of the McEliece cryptosystem is to mask a generator matrix of a fast–
decodable code by permuting its columns and multiplying by a scrambling matrix on
the left. The encryption is performed by encoding a message using the public generator
matrix and adding an error. So, the security against message–recovery attacks is based
on NP–hard syndrome decoding problem [13]. The original proposal of R. McEliece
was based on binary Goppa codes, so the security against key–recovery attack relies on
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hardness of the problem of distinguishing permuted Goppa codes. It is worth mentioning
that the original McEliece cryptosystem with several improvements is one of three
Round 4 competitors in NIST-PQC [1]. Despite many advantages, the main drawback of
McEliece cryptosystem is large public–key size. There were many attempts to overcome
this by replacing Goppa codes with more efficient ones. The notable examples are
Generalized Reed–Solomon codes [35], Reed–Muller codes [43], algebraic geometry
codes [29], concatenated codes [40], rank–metric Gabidulin codes [22]. However, most
of this modifications were proven unsecure [15, 17, 32, 38, 40, 44]. In addition, several
modifications of protocol itself were proposed to avoid key–recovery attacks against
McEliece–like cryptosystems based on efficient algebraic codes (e.g. [7, 12, 28, 48]),
however most of them were also successfully cryptanalyzed [16, 18, 19, 30, 47, 50].

One of the most efficient approaches to reducing public-key size was proposed by
P. Gaborit [23] and is based on using quasi-cyclic codes (QC-codes). A code 𝐶 of length
𝑛 = 𝑛′𝑙 is said to be quasi-cyclic of order 𝑛′ and index 𝑙 if its permutation automorphism
group PAut(𝐶) has a cyclic subgroup of order 𝑛′ that acts freely on coordinates. The
quasi-cyclic structure implies the existence of generator and parity-check matrices of
𝐶 that admit a block-circulant representation, i.e.

©«
rot(ℎ1,1) . . . rot(ℎ1,𝑙 )

...
. . .

...

rot(ℎ𝑠,1) . . . rot(ℎ𝑠,𝑙 )

ª®®¬ , rot(𝑎1, 𝑎2, . . . , 𝑎𝑛′ ) =
©«
𝑎1 𝑎2 . . . 𝑎𝑛′

𝑎𝑛 𝑎1 . . . 𝑎𝑛′−1
...

...
. . .

...

𝑎2 𝑎3 . . . 𝑎1

ª®®®®¬
. (1)

This representation allows storing only the first row of each circulant block rot(ℎ𝑖, 𝑗 ),
thereby reducing storage and communication costs. Therefore, the public key sizes of
code-based encryption protocols that preserve quasi-cyclic structure can be significantly
reduced. Note that many encryption protocols based on algebraic QC–codes (e.g. [12,23])
have been successfully attacked [20, 36]. However, protocols based on random quasi–
cyclic moderate density parity–check (QC–MDPC) codes [33], which have no algebraic
structure except being quasi–cyclic, are still considered secure and efficient.

The concept of moderate-density parity-check (MDPC) codes extends the idea of
low-density parity-check codes (LDPC codes) initially introduced by R. Gallager [24].
In Gallager’s seminal work [24], it was shown that efficient decoding of binary codes
with a parity-check matrix containing a very small constant number of ones in each
row is feasible using iterative algorithms such as bit-flipping and belief propagation,
provided certain conditions are met (no two rows have two or more ones in the same
positions). In 2000, C. Monico et al. [34] considered replacing Goppa codes in the
McEliece cryptosystem with LDPC codes and pointed out that these codes can be easily
distinguished due to the existence of very low–weight codewords in the dual code. The
application of quasi-cyclic LDPC codes in constructing code-based cryptosystems was
initially proposed in [11] and further developed in [8, 10]. To mitigate key-recovery
attacks based on searching for low-weight dual codewords, it was suggested to replace
the permutation matrix in the protocol with a sparse non–singular matrix of a specific
form. However, this approach was found to introduce serious vulnerabilities [2, 36].
An alternative method to prevent key–recovery based on the search for low–weight
codewords was proposed in [33], where it was suggested to use random QC–MDPC
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codes instead of LDPC. The difference between MDPC and LDPC codes lies in the
slightly higher weight of the rows in the parity-check matrices, i.e., which is of order
𝑂 (
√
𝑛) for MDPC codes and 𝑂 (1) for LDPC.

We denote the finite field of size 𝑞 asF𝑞 . For a vector 𝑣 ∈ F𝑛
𝑞 , the notation supp(𝑣) =

{𝑖 ∈ ⟦1, 𝑛⟧ | 𝑣𝑖 ≠ 0} is used to represent the set of indices corresponding to the positions
where 𝑣 is nonzero. Here, ⟦𝑎, 𝑏⟧ = {𝑎, 𝑎 + 1, . . . , 𝑏} denotes set of all integers between 𝑎

and 𝑏. The Hamming weight of vector 𝑣 , denoted as wt(𝑣), is defined as the number of
nonzero positions in 𝑣 . A linear code𝐶 ∈ F𝑛

𝑞 of length 𝑛 and dimension 𝑘 is refereed as
[𝑛, 𝑘]𝑞–code. A generic description of a QC-MDPC cryptosystem [33] in the Niedderiter
form [35] is as follows:

– Key generation The secret key is the parity-check matrix 𝐻 of a random QC-
MDPC [𝑛 = 𝑙𝑛′, (𝑙 − 1)𝑛′]𝑞-code, represented as

𝐻 =
(
𝐻1 | 𝐻2 | . . . | 𝐻𝑙−1 | 𝐻𝑙

)
. (2)

The matrix 𝐻 consists of circulant (𝑛′ × 𝑛′)–blocks 𝐻𝑖 , where each 𝐻𝑖 has a row
weight of 𝛾 . Note that 𝑛′ is usually chosen to be a prime number 𝑝 . The public key
is the systematic form of 𝐻 , i.e.

�̃� = 𝐻−11 𝐻 =
(
𝐼𝑛′ | 𝐻−11 𝐻2 | . . . | 𝐻−11 𝐻𝑙 ,

)
which can be represented by the first rows of 𝐻−11 𝐻𝑖 , where 𝑖 ∈ ⟦2, 𝑙⟧, since the
product of circulant matrices is also a circulant matrix.

– Encryption The plaintext is an error vector 𝑒 ∈ F𝑛
𝑞 of weight 𝑡 , and the ciphertext

is its syndrome 𝑠 = �̃�𝑒T.
– Decryption To decrypt, the private syndrome 𝑠 = 𝐻𝑒T = 𝐻1𝑠

T is computed and
used as input for the MDPC decoder (bit-flipping or symbol flipping).

Note that in NIST-PQC, the QC–MDPC approach is represented by BIKE (bit-flipping
key encapsulation) protocol [3].

Due to probabilistic nature of decoding of LDPC and MDPC codes, there is a non–
zero probability of decryption failure. In [26] it was shown that decryption failures
can be used to recover the secret key in binary case. Hence in order to achieve indis-
tinguishability against chosen ciphertext attacks, where an adversary has an access to
a decryption oracle (IND–CCA2 security), the decoding failure rate (DFR) has to be
negligibly small, i.e. of order 2−𝜆 , where 𝜆 is a security level. In [46], an experimental–
based extrapolation framework for estimating DFR has been proposed. In this approach,
the DFR curve is assumed to be concave, so estimates for high DFR (> 10−9) can be
obtained via numerical simulations and then extrapolated to low DFRs providing an
upper bound. However, it is known that LDPC and MDPC codes exhibit error floor
phenomenon, resulting in violation of concavity assumption (see e.g. [4,6]). Hence DFR
estimates obtained by extrapolation could possibly be overly optimistic (see Figure 1).
Another approach is to estimate DFR using only theoretical tools. In [45] J. P. Tillich
studied guaranteed error–correction performance of binary QC–MDPC codes under
one–step majority logic decoder (OSML). In addition, in [45] the DFR of two–iteraion
decoder is studied under some reasonable assumptions, i.e. the probability that one
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Fig. 1. Approximate illustration of a situation where the use of extrapolation may lead to an
incorrect estimation of DFR due to the presence of an error floor.

iteration of parallel bit–flipping decoder reduces error weight enough to be corrected by
OSML decoder is computed. In [39], the estimate of the number of errors correctable by
OSML decoder was improved. Under the same assumptions as in [45], the worst–case
plausibility analysis of one and two iteration randomized serial bit–flipping decoder
was performed in [5]. In addition, in [5] a combination of one iteration of randomized
serial bit-flipping and OSML was studied, and recommended design parameters for
IND–CCA2 secure QC-MDPC cryptosystems were given.

In this paper, we study DFR of non–binary QC–MDPC codes using theoretical tools.
Namely, we extend the results of [39, 45] to the non–binary case, i.e. we show that
error–correcting performance of OSML decoder can also be estimated using similar
methods of [39, 45]. In addition, we propose a parallel symbol flipping decoder. Under
the same assumptions used in [5, 45], we give theoretical estimates of DFR for the
parallel symbol–flipping decoder and its combination with the OSML decoder. We also
note that the extension of the randomized serial approach, as considered in [5], in the
non-binary case seems to yield unreliable results due to a observed discrepancy between
the theoretical estimates and the worst-case simulations. Hence this approach is not
included in this paper. In addition, we experimentally demonstrate that slightly modified
attack of [26] can also recover secret key in non–binary case. Employing the obtained
results, recommended parameters and corresponding key sizes for IND-CCA2–secure
QC–MDPC cryptosystems over F𝑞 for various security levels are computed.

The paper is organized as follows. In Section 1, we present the basic principles
of decoding non-binary QC-MDPC codes and study the guaranteed error-correction
capability of the one-step majority logic decoder in an assumption-free setting. In
Section 2, we provide a plausibility analysis of error counters distribution and flipping
probability in the non-binary case. Subsequently, we propose a 1-iteration parallel
symbol flipping decoder and theoretically estimate the probability of reducing the error
weight to a certain value, allowing for further decoding by the OSML decoder. We
also provide experimental validation of the theoretical model. Finally, in Section 3, we
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consider the reaction attack against non–binary QC–MDPC cryptosystems and find
potential cryptosystem parameters and corresponding public-key sizes.

1 Analysis of guaranteed error–correction capability of
non–binary QC-MDPC codes

Recall that a code 𝐶 with a parity–check matrix 𝐻 ∈ F𝑚×𝑛
𝑞 is said to be a moderate–

density parity–check (MDPC) code if each row of the 𝐻 = (ℎ𝑖, 𝑗 ) is of weight 𝑂 (
√
𝑛).

In addition, 𝐶 is said to be (𝛾, 𝛿)–regular if the weight of each column of 𝐻 is 𝛾 and
the weight of each row is 𝛿 . Unless otherwise specified, we will focus exclusively on
regular MDPC codes.

Let 𝑧 = 𝑐 + 𝑒 ∈ F𝑛
𝑞 , where 𝑐 ∈ 𝐶 and wt(𝑒) ≤ 𝑡 , be a noisy codeword. By 𝑠 = 𝐻𝑧T =

𝐻𝑒T we denote the syndrome of 𝑒 . One can easily note that since 𝑖–th position of 𝑠 is
computed as

𝑠𝑖 = ⟨ℎ𝑖 , 𝑒⟩ =
∑︁

𝜔∈supp (ℎ𝑖 )
ℎ𝑖,𝜔𝑒𝜔 .

Hence, by selecting 𝛾 row indices 𝑖1, 𝑖2, . . . , 𝑖𝛾 for which ℎ𝑖1, 𝑗 , . . . , ℎ𝑖1, 𝑗 are non-zero, we
obtain the following 𝛾 equalities:

𝑠𝑖1ℎ
−1
𝑖1, 𝑗

= 𝑒 𝑗 + ℎ−1𝑖1, 𝑗

(∑
𝜔∈supp(ℎ𝑖1 )\{ 𝑗 } ℎ𝑖1,𝜔𝑒𝜔

)
,

. . .

𝑠𝑖𝛾ℎ
−1
𝑖𝛾 , 𝑗

= 𝑒 𝑗 + ℎ−1𝑖𝛾 , 𝑗

(∑
𝜔∈supp(ℎ𝑖𝛾 )\{ 𝑗 } ℎ𝑖𝛾 ,𝜔𝑒𝜔

)
.

(3)

Since 𝐶 is an MDPC code, the rows ℎ𝑖 of 𝐻 are sparse. Considering sparsity of 𝑒 , it
follows that 𝑠𝑖ℎ−1𝑖, 𝑗 equals 𝑒 𝑗 with high probability. Hence it is possible to use the values
𝑠𝑖ℎ
−1
𝑖, 𝑗 for estimating 𝑒 .
Let F𝑞 = {𝛼0 = 0, 𝛼1 = 1, 𝛼2, . . . , 𝛼𝑞−1} be a enumeration of elements of F𝑞 . Let us

define
𝜎 𝑗,𝑖 =

��{𝑤 | ℎ𝑤,𝑗 ≠ 0 and 𝑠𝑖ℎ
−1
𝑤,𝑗 = 𝛼𝑖

}�� (4)

as the number of rows ℎ𝑤 containing the position 𝑗 in supp(ℎ𝑤) and 𝑠𝑖ℎ
−1
𝑤,𝑗 = 𝛼𝑖 . The

values of 𝜎 𝑗,𝑖 will be referred to as error counters in position 𝑗 . Clearly, 𝜎 𝑗,𝑖 indicates
the likelihood that the error value 𝑒 𝑗 in position 𝑗 is equal to 𝛼𝑖 . In particular, a higher
value of 𝜎 𝑗,0 implies that position 𝑗 is less likely to be corrupted, while higher values of
𝜎 𝑗,𝑖 , 𝑖 ≠ 0, indicate a greater likelihood that 𝑒 𝑗 = 𝛼𝑖 ≠ 0.

Therefore, several decoding strategies are possible. For instance, it is possible to
choose an information set 𝐼 of 𝑘 positions with highest 𝜎 𝑗,0, indicating that these
positions less likely to be erroneous, and then use this 𝐼 for information set decoding
(ordered statistics decoding [21] and statistical decoding [37]).

Another straightforward decoding algorithm that uses counters is as follows:

1. compute the syndrome 𝑠 and the counters 𝜎 𝑗,𝑖 for all 𝑗 ∈ ⟦1, 𝑛⟧ and 𝑖 ∈ ⟦0, 𝑞 − 1⟧;
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2. update the position 𝑗 of the received word 𝑧 having the highest value of 𝜎∗𝑗 − 𝜎 𝑗,0,
where

𝜎∗𝑗 = max
𝑖∈⟦1,𝑞−1⟧

𝜎 𝑗,𝑖 , (5)

to the new value 𝑧 𝑗 − 𝛼𝑖∗ , where 𝑖∗ = argmax𝑖∈⟦1,𝑞−1⟧ 𝜎 𝑗,𝑖 ;
3. repeat from step 1 until either 𝑠 = 0 or maximum number of iterations is reached.

Remark 1. One can easily note that the syndrome weight after step 2 is decreased by
𝜎∗𝑗 − 𝜎 𝑗,0. Therefore, the error position and error value in step 2 are chosen to decrease
the syndrome weight the most. In this formulation the decoding approach described
above was proposed in [9] as a generalization of Gallager’s bit–flipping. In the binary
case, the Gallagher’s decoder is also a greedy algorithm that reduces the syndrome
weight the most in each step .

1.1 One–Step Majority Logic Decoding

In this subsection, we study guaranteed decoding performance of regular MDPC codes
under the OSML decoder (Algorithm 1) which can be considered as single iteration
version of parallel symbol flipping.

Algorithm 1: OSML

Input: syndrome 𝑠 = 𝐻𝑒T

Output: estimated error 𝑒
𝑒 ← 0𝑛, 𝑠 ← 𝐻𝑧T;
for 𝑗 ← 1 to 𝑛 do

using (4), (5) compute 𝜎 𝑗 = (𝜎 𝑗,0, . . . , 𝜎 𝑗,𝑞−1) and 𝜎∗𝑗 ;
if 𝜎∗𝑗 ≥ 𝑡ℎ 𝑗 then

𝑙 ← argmax𝑖∈⟦1,𝑞−1⟧ 𝜎 𝑗,𝑖 ;
𝑒 𝑗 ← 𝑒 𝑗 + 𝛼𝑙 ;

end
return 𝑒

Remark 2. Note that in the decoder description, instead of recovering the corrected
codeword 𝑐 ∈ 𝐶 from the noisy codeword 𝑧 = 𝑐 + 𝑒 by iteratively subtracting the
estimated error from 𝑧, we employ an equivalent formulation where we iteratively find
the estimated error 𝑒 itself.

Let 𝑋 ∈ F𝑚×𝑛
𝑞 be an (𝑚 × 𝑛)–matrix, and let 𝐼 ⊂ ⟦1,𝑚⟧ and 𝐽 ⊂ ⟦1, 𝑛⟧ be sets of

row and column indices, respectively. We denote the matrix composed of the elements
of 𝑋 with indices (𝑖, 𝑗) ∈ 𝐼 × 𝐽 as 𝑋𝐼 ,𝐽 = (𝑥𝑖, 𝑗 )𝑖∈𝐼 , 𝑗∈ 𝐽 . For convenience, we use the
notations 𝑋:,𝐽 and 𝑋𝐼 ,: to represent 𝑋⟦1,𝑚⟧,𝐽 and 𝑋𝐼 ,⟦1,𝑛⟧, respectively.

Proposition 1. Let 𝐻 = (ℎ𝑖, 𝑗 ) ∈ F𝑚×𝑛
𝑞 be a parity–check matrix of a MDPC code, and

let 𝑒 ∈ F𝑛
𝑞 be an error of weight 𝑡 . Define 𝐻 ( 𝑗 ) as the matrix consisting of rows from the

set {
ℎ−1𝑖, 𝑗 ·

(
𝐻𝑖, ⟦1,𝑛⟧\{ 𝑗 }

)
| 𝑖 ∈ ⟦1,𝑚⟧, ℎ𝑖, 𝑗 ≠ 0

}
.
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Let
𝑎𝑙 = wt(𝐻 ( 𝑗 ):,𝑙 ), 𝜇 (𝑠) =

∑︁
𝜔∈indicies of 𝑠 largest

values of 𝑎𝑙

𝑎𝜔 ,

If 𝑒 𝑗 = 𝛼𝑖 , then 𝜎 𝑗,𝑖 can be lower bounded as follows

𝜎 𝑗,𝑖 ≥
{
𝛾 − 𝜇 (𝑡), 𝑒 𝑗 = 𝛼𝑖 = 0,
𝛾 − 𝜇 (𝑡 − 1), 𝑒 𝑗 = 𝛼𝑖 ≠ 0.

Proof. Using (3), we obtain that 𝜎 𝑗,𝑖 denotes the frequency of occurrence of 𝛼𝑖 in the
vector

𝑣 =

©«
𝑠𝑖1ℎ

−1
𝑖1, 𝑗

...

𝑠𝑖𝛾ℎ
−1
𝑖𝛾 , 𝑗

ª®®®¬ =
©«
𝑒 𝑗
...

𝑒 𝑗

ª®®¬ + 𝐻 ( 𝑗 )𝑒′
T︸  ︷︷  ︸

𝑣′

, 𝑒′ = 𝑒⟦1,𝑛⟧\{ 𝑗 } .

Hence if 𝑒 𝑗 = 𝛼𝑖 then 𝜎 𝑗,𝑖 = 𝛾 − wt(𝑣 ′). Since 𝑣 ′ is a linear combination of wt(𝑒′)
columns of 𝐻 ( 𝑗 ) , its weight can be upper bounded by

wt(𝑣 ′) ≤ 𝜇 (wt(𝑒′)) =
{
𝜇 (𝑡), 𝑒 𝑗 = 0,
𝜇 (𝑡 − 1), 𝑒 𝑗 ≠ 0.

This concludes the proof of the proposition.

Remark 3. Note that the weight wt(𝐻 ( 𝑗 ):,𝑙 ) of 𝑙–th column 𝐻
( 𝑗 )
:,𝑙 of 𝐻 ( 𝑗 ) equals��supp (

𝐻:,𝑙
)
∩ supp

(
𝐻:, 𝑗

) �� .
Corollary 1. Let wt(𝑒) ≤ 𝑡 . If 𝜇 (𝑡) < 𝑡ℎ 𝑗 ≤ 𝛾 − 𝜇 (𝑡 − 1), then the OSML decoder
correctly estimates the 𝑗–th position of 𝑒 .

Proof. If 𝑒 𝑗 = 0, then 𝜎 𝑗,0 ≥ 𝛾 − 𝜇 (𝑡) and hence 𝜎∗𝑗 ≤ 𝛾 − 𝜎 𝑗,0 ≤ 𝜇 (𝑡). It follows that
setting 𝑡ℎ 𝑗 > 𝜇 (𝑡) in Algorithm 1 will ensure that no non–erroneous position will be
corrupted.

If 𝑒 𝑗 = 𝛼𝑖 ≠ 0, then 𝜎 𝑗,𝑖 ≥ 𝛾 − 𝜇 (𝑡 − 1). Since 𝜇 (𝑡) < 𝛾 − 𝜇 (𝑡 − 1) and 𝜇 (𝑡) ≥ 𝜇 (𝑡 − 1),
it follows that 𝜇 (𝑡 − 1) < 𝛾/2 and thereby 𝜎 𝑗,𝑖 ≥ 𝛾 − 𝜇 (𝑡 − 1) > 𝛾/2. This implies that a
clear majority of equalities in (3) vote for 𝛼𝑖 and hence 𝜎∗𝑗 = 𝜎 𝑗,𝑖 (see (5)). Therefore,
setting 𝑡ℎ 𝑗 < 𝛾 − 𝜇 (𝑡 − 1) will ensure that error value in a erroneous position will be
estimated correctly.

Corollary 2. The guaranteed error–correction capability of OSML decoder is 𝑡 if for all
𝑗 ∈ ⟦1, 𝑛⟧ it is possible to choose 𝑡ℎ 𝑗 according to Corollary 1.

Note that OSML is a very simple yet effective decoder that is capable of correcting
low–weight error patterns. However, it is particularly useful as a second decoding
iteration because it does not rely on probabilistic assumptions. It can effectively decode
errors of a certain weight that remain after previous iterations, even if they have a
harder–to–decode structure that would make plausibility analysis based on probabilistic
assumptions irrelevant.
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2 Plausibility analysis of 1–iteration parallel symbol flipping
decoder

In this section, we provide an analysis of the single-iteration parallel symbol flipping
algorithm. Namely, following the approach of [45], we estimate the probability of
correcting an error using this decoder under several probabilistic assumptions. Fur-
thermore, under the same assumptions, we estimate the probability of decreasing the
error weight to a value that allows correction by the OSML decoder. This provides an
upper bound on the decoding failure rate for the combination of a single iteration of
parallel symbol flipping followed by the OSML decoder.

2.1 Distribution of counters

Below we give necessary results on probabilistic distributions of syndrome values
and counters 𝜎 𝑗,𝑖 , 𝑗 ∈ ⟦1, 𝑛⟧, 𝑖 ∈ ⟦0, 𝑞 − 1⟧, required for further analysis of decoding
iteration of proposed parallel symbol–flipping decoder. Our analysis will rely on several
assumptions that are analogous to those used in [5, 45].

Assumption 1. Let 𝐻 be a parity–check of a random QC–MDPC code 𝐶 in block–
circulant form. It is assumed that each row of 𝐻 is well modeled as a sample from uniform
distribution over F𝑛

𝑞 .

Proposition 2. Let 𝑥 ∈ F𝑛
𝑞 , 𝑦 ∈ F𝑛

𝑞 be uniformly sampled. Let

𝐴𝑚 = Pr[⟨𝑥,𝑦⟩ ≠ 0 | |supp(𝑥) ∩ supp(𝑦) | =𝑚] .

Then 𝐴𝑚 can be found recursively using

𝐴𝑚 =

{
(1 −𝐴𝑚−1) + 𝑞−2

𝑞−1𝐴𝑚−1, 𝑚 ≥ 1

0, 𝑚 = 0.

Proof. Without loss of generality, we assume that supp(𝑥) ∩ supp(𝑦) = {1, . . . ,𝑚}. It
follows that

𝐴𝑚 = Pr

[(
𝑚−1∑︁
𝑖=1

𝑥𝑖𝑦𝑖 = 0

)
, 𝑥𝑚𝑦𝑚 ≠ 0

]
+ Pr

[(
𝑚−1∑︁
𝑖=1

𝑥𝑖𝑦𝑖 ≠ 0

)
, 𝑥𝑚𝑦𝑚 ≠ −

𝑚−1∑︁
𝑖=1

𝑥𝑖𝑦𝑖

]
=

= Pr

[(
𝑚−1∑︁
𝑖=1

𝑥𝑖𝑦𝑖 = 0

)]
· Pr

[
𝑥𝑚𝑦𝑚 ≠ 0 |

(
𝑚−1∑︁
𝑖=1

𝑥𝑖𝑦𝑖 = 0

)]
+

+ Pr
[(

𝑚−1∑︁
𝑖=1

𝑥𝑖𝑦𝑖 ≠ 0

)]
· Pr

[
𝑥𝑚𝑦𝑚 ≠ −𝛼 |

(
𝑚−1∑︁
𝑖=1

𝑥𝑖𝑦𝑖 = 𝛼 ≠ 0

)]
=

= (1 −𝐴𝑚−1) · 1 +𝐴𝑚−1
𝑞 − 2
𝑞 − 1 .
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Theorem 1. Let 𝐻 = (ℎ𝑖, 𝑗 ) be a parity–check matrix of (𝛾, 𝛿)–regular QC-MDPC code
𝐶 of length 𝑛. Let 𝑒 ∈ F𝑛

𝑞 be a random error of weight 𝑡 , and 𝑠 = 𝑒𝐻T be its syndrome.
Then for any row ℎ𝑖 of 𝐻 , such that 𝑗 ∈ supp(ℎ𝑖 )

Pr[𝑠𝑖ℎ−1𝑖, 𝑗 = 𝑒 𝑗 | 𝑒 𝑗 ≠ 0] =
min(𝛿−1,𝑡−1)∑︁

𝑖=0

(
𝛿−1
𝑖

) (
𝑛−𝛿
𝑡−𝑖−1

)(
𝑛−1
𝑡−1

) (1 −𝐴𝑖 ), (6)

Pr[𝑠𝑖ℎ−1𝑖, 𝑗 = 𝑒 𝑗 | 𝑒 𝑗 = 0] =
min(𝛿−1,𝑡 )∑︁

𝑖=0

(
𝛿−1
𝑖

) (
𝑛−𝛿
𝑡−𝑖

)(
𝑛−1
𝑡

) (1 −𝐴𝑖 ), (7)

Pr[𝑠𝑖ℎ−1𝑖, 𝑗 = 𝛼 ≠ 𝑒 𝑗 | 𝑒 𝑗 ≠ 0] = (𝑞 − 1)−1
(
1 − Pr[𝑠𝑖ℎ−1𝑖, 𝑗 = 𝑒 𝑗 | 𝑒 𝑗 ≠ 0]

)
, (8)

Pr[𝑠𝑖ℎ−1𝑖, 𝑗 = 𝛼 ≠ 0 | 𝑒 𝑗 = 0] = (𝑞 − 1)−1
(
1 − Pr[𝑠𝑖ℎ−1𝑖, 𝑗 = 𝑒 𝑗 | 𝑒 𝑗 = 0]

)
. (9)

Proof. Since 𝑗 ∈ supp(ℎ𝑖 ), Equation (3) implies that 𝑠𝑖ℎ−1𝑖, 𝑗 = 𝑒 𝑗 + ℎ−1𝑖, 𝑗 ⟨𝑒′, ℎ′⟩ , where

𝑒′ = 𝑒⟦1,𝑛⟧\{ 𝑗 }, ℎ′ = 𝐻𝑖,⟦1,𝑛⟧\{ 𝑗 } .

One can easily note that

wt(𝑒′) =
{
𝑡, 𝑒 𝑗 = 0
𝑡 − 1, 𝑒 𝑗 ≠ 0

, wt(ℎ′) = 𝛿 − 1. (10)

Since 𝑠𝑖ℎ−1𝑖, 𝑗 = 𝑒 𝑗 if and only if ⟨ℎ′, 𝑒′⟩ = 0, it follows that

Pr[𝑠𝑖ℎ−1𝑖, 𝑗 = 𝑒 𝑗 | 𝑒 𝑗 = 𝛼] = Pr[⟨𝑒′, ℎ′⟩ = 0] .

So, using Assumption 1, we obtain

Pr[⟨𝑒′, ℎ′⟩ = 0] =
min(wt(𝑒′ ),wt(ℎ′ ) )∑︁

𝑖=0

Pr[⟨𝑒′, ℎ′⟩ = 0, |supp(𝑒′) ∩ supp(ℎ′) | = 𝑖] =

=

min(wt(𝑒′ ),wt(ℎ′ ) )∑︁
𝑖=0

(1 −𝐴𝑖 ) · Pr[|supp(𝑒′) ∩ supp(ℎ′) | = 𝑖] =

=

min(wt(𝑒′ ),wt(ℎ′ ) )∑︁
𝑖=0

(wt(ℎ′ )
𝑖

) (𝑛−1−wt(ℎ′ )
wt(𝑒′ )−𝑖

)(
𝑛−1
wt(𝑒′ )

) (1 −𝐴𝑖 ).

Substituting (10) into this formula, we obtain (6) and (7). In addition, when ⟨𝑒′, ℎ′⟩ ≠ 0,
the product ⟨𝑒′, ℎ′⟩ can assume any non–zero element of F𝑞 with equal probabilities.
Consequently, we obtain (8) and (9).

In the parallel symbol flipping decoder (see Algorithm 2), we propose the following
flipping criterion based on counter values, using three decoding thresholds: 𝑡ℎ0, 𝑡ℎ𝐸 ,
and 𝑡ℎ𝐷 . Namely, the position 𝑗 of the received noisy codeword 𝑧 = 𝑐 +𝑒 will be updated
to 𝑧 𝑗 − 𝛼𝑖 if the following conditions are satisfied:



10 K. Vedenev, Yu. Kosolapov

1. 𝜎 𝑗,𝑖 > 𝜎 𝑗,𝜔 for all 𝜔 ∈ ⟦0, 𝑞 − 1⟧ \ {𝑖}, and thus 𝜎∗𝑗 = 𝜎 𝑗,𝑖 ,
2. 𝜎∗𝑗 ≥ 𝑡ℎ𝐸 ,
3. 𝜎 𝑗,0 < 𝑡ℎ0,
4. 𝜎∗𝑗 − 𝜎 𝑗,0 ≥ 𝑡ℎ𝐷 .

Note that conditions 1–4 can be replaced by the single condition

𝜎 𝑗 = (𝜎 𝑗,0, . . . , 𝜎 𝑗,𝑞−1) ∈ Δ𝑡ℎ0,𝑡ℎ𝐸 ,𝑡ℎ𝐷 (𝑖),

where Δ𝑡ℎ0,𝑡ℎ𝐸 ,𝑡ℎ𝐷 (𝑖) is defined as follows

Δ𝑡ℎ0,𝑡ℎ𝐸 ,𝑡ℎ𝐷 (𝑖) = Δ(𝑖) =
{
(𝑏0, . . . , 𝑏𝑞−1) ∈ Z𝑞 |

𝑞−1∑︁
𝜔=0

𝑏𝜔 = 𝛾, 𝑏𝑖 > max
𝜔≠𝑖

𝑏𝑧,

𝑏0 ≤ 𝑡ℎ0, 𝑏𝑖 ≥ 𝑡ℎ𝐸, 𝑏𝑖 − 𝑏0 ≥ 𝑡ℎ𝐷

}
.

In the following theorem, we will estimate the probability that the flipping criterion
accurately determines the positions and values of errors.

Assumption 2. We assume that the probability Pr[𝜎 𝑗 ∈ Δ(𝑖)] to flip position 𝑗 to value
𝑧 𝑗 − 𝛼𝑖 is a function only of error weight, i.e. it does not depend on error structure and the
location 𝑗 .

Theorem 2. Let𝐻 be a parity–check matrix of (𝛾, 𝛿)–regular QC-MDPC code𝐶 of length
𝑛 and dimension 𝑘 . Let 𝑒 ∈ F𝑛

𝑞 be a random error of weight 𝑡 . Define

𝑝1 = Pr[𝑠𝑖ℎ−1𝑖, 𝑗 = 𝑒 𝑗 | 𝑒 𝑗 ≠ 0], 𝑝2 = Pr[𝑠𝑖ℎ−1𝑖, 𝑗 = 𝛼 ≠ 𝑒 𝑗 | 𝑒 𝑗 ≠ 0],

𝑝3 = Pr[𝑠𝑖ℎ−1𝑖, 𝑗 = 𝑒 𝑗 | 𝑒 𝑗 = 0], 𝑝4 = Pr[𝑠𝑖ℎ−1𝑖, 𝑗 = 𝛼 ≠ 𝑒 𝑗 | 𝑒 𝑗 = 0] .

Then the probability that non–zero error value will be estimated correctly is

𝑝𝑒→𝑐 (𝑡) = Pr[𝜎 𝑗 ∈ Δ(𝑖) | 𝑒 𝑗 = 𝛼𝑖 ≠ 0] =
∑︁

(𝑏0,...,𝑏𝑞−1 ) ∈Δ(𝑖 )

𝛾 !
𝑏0! . . . , 𝑏𝑞−1!

𝑝
𝑏𝑖
1 𝑝

𝛾−𝑏𝑖
2 , (11)

and the probability of incorrect estimate in non–erroneous position is

𝑝𝑐→𝑒 (𝑡) = (𝑞 − 1) · Pr[𝜎 𝑗 ∈ Δ(𝑖) | 𝑒 𝑗 = 0], (12)

where

Pr[𝜎 𝑗 ∈ Δ(𝑖) | 𝑒 𝑗 = 0] =
∑︁

(𝑏0,...,𝑏𝑞−1 ) ∈Δ(𝑖 )

𝛾 !
𝑏0! . . . , 𝑏𝑞−1!

𝑝
𝑏0
3 𝑝

𝛾−𝑏0
4 , 𝑖 ≠ 0.

Proof. From Assumption 2 it follows that the probability

Pr
[
𝜎 𝑗 = (𝑏0, . . . , 𝑏𝑞−1) | 𝑒 𝑗 = 𝛼𝑖 ≠ 0

]
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can be modelled using multinomial distribution with parameters(
Pr[𝑠𝑖ℎ−1𝑖, 𝑗 = 0 | 𝑒 𝑗 ≠ 0], . . . , Pr[𝑠𝑖ℎ−1𝑖, 𝑗 = 𝛼𝑞−1 | 𝑒 𝑗 ≠ 0]

)
= (𝑝2, . . . , 𝑝2︸     ︷︷     ︸

𝑖−1

, 𝑝1, 𝑝2, . . . , 𝑝2︸     ︷︷     ︸
𝑞−𝑖

).

Hence
Pr

[
𝜎 𝑗 = (𝑏0, . . . , 𝑏𝑞−1) | 𝑒 𝑗 = 𝛼𝑖 ≠ 0

]
=

𝛾 !
𝑏0! . . . , 𝑏𝑞−1!

𝑝
𝑏𝑖
1 𝑝

𝛾−𝑏𝑖
2 ,

which implies (11). By similar reasoning, we can also obtain (12).

2.2 Analysis of parallel symbol-flipping decoder

In this subsection, we employ results of previous subsection to give an plausibility anal-
ysis of the one–step parallel symbol flipping decoder (Algorithm 2) and its combination
with OSML decoder (Algorithm 3).

Algorithm 2: 1–iteration parallel symbol flipping decoder

Input: syndrome 𝑠 = 𝐻𝑒T

Output: estimated error 𝑒
𝑒 ← 0𝑛 ∈ F𝑛

𝑞 ;
for 𝑗 ← 1 to 𝑛 do

using (4), (5) compute 𝜎 𝑗 = (𝜎 𝑗,0, . . . , 𝜎 𝑗,𝑞−1) and 𝜎∗𝑗 ;
if 𝜎 𝑗 ∈ Δ(𝑠) then

𝑒 𝑗 ← 𝑒 𝑗 + 𝛼𝑠
end
return 𝑒

Note that, after each iteration some error positions can be estimated correctly and
some non–erroneous positions can be estimated to be erroneous incorrectly. In the
following proposition, we provide an analysis of the probability that 1-iteration version
of this decoder transforms a random error 𝑒 of weight 𝑡 into some new error 𝑒′ of
weight 𝑡 ′.

Proposition 3. Let 𝑒 be a random error of weight 𝑡 , then after execution Algorithm 2

1. the probability to correctly estimate 𝑢 error positions from 𝑒 is

𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 (𝑡,𝑢) =
(
𝑡

𝑢

)
(𝑝𝑒→𝑐 (𝑡))𝑢 (1 − 𝑝𝑒→𝑐 (𝑡))𝑡−𝑢 ,

2. the probability to corrupt 𝑣 non–erroneous positions is

𝑃𝑐𝑜𝑟𝑟𝑢𝑝𝑡 (𝑡, 𝑣) =
(
𝑛 − 𝑡
𝑣

)
(𝑝𝑐→𝑒 (𝑡))𝑣 (1 − 𝑝𝑐→𝑒 )𝑛−𝑡−𝑣 ,

3. the probability to transform 𝑒 into an error 𝑒′ of weight 𝑡 ′ is

Pr(𝑡 → 𝑡 ′) =
∑︁

𝑡−𝑢+𝑣=𝑡 ′
𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 (𝑡,𝑢)𝑃𝑐𝑜𝑟𝑟𝑢𝑝𝑡 (𝑡, 𝑣).
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Proof. Assumption 2 implies that the flip decisions are statistically independent and
depend solely on the error weight. It follows that 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 (𝑡,𝑢) and 𝑃𝑐𝑜𝑟𝑟𝑢𝑝𝑡 (𝑡, 𝑣) can be
modeled as samples from binomial distributions with parameters 𝑝𝑒→𝑐 (𝑡) and 𝑝𝑐→𝑒 (𝑡)
described in Theorem 2, respectively. The last claim trivially follows from the first two.

Corollary 3. The decoding failure rate of 1-iteration parallel symbol-flipping decoder
can be estimated as follows

𝐷𝐹𝑅1 = 1 − Pr(𝑡 → 0).

Note that the new error 𝑒′ is not random anymore and, therefore, the same analysis
for further iteration is not possible. However, it is possible to decode 𝑒′ using OSML
decoder, which rely on no probabilistic assumptions.

Algorithm 3: PSF+OSML

Input: syndrome 𝑠 = 𝐻𝑒T

Output: estimated error 𝑒
𝑒 ← 0𝑛 ∈ F𝑛

𝑞 ;
for 𝑗 ← 1 to 𝑛 do

using (4), (5) compute 𝜎 𝑗 = (𝜎 𝑗,0, . . . , 𝜎 𝑗,𝑞−1) and 𝜎∗𝑗 ;
if 𝜎 𝑗 ∈ Δ(𝑠) then

𝑒 𝑗 ← 𝑒 𝑗 + 𝛼𝑠
end
𝑠 ← 𝐻𝑒T − 𝐻𝑒T;
𝑒 ← 𝑒 + OSML(𝑠);
return 𝑒

Thus, we obtain the following corollary:

Corollary 4. Let 𝑒 be a random error of weight 𝑡 , let 𝜏 be the number of errors which can
be corrected with certainty using OSML decoder. Then DFR of this combination is upper
bounded by

𝐷𝐹𝑅2 = 1 −
𝜏∑︁

𝑡 ′=0

Pr(𝑡 → 𝑡 ′).

In Figures 2, 3, 4, we present the results of numerical simulations and compare
them with the obtained theoretical estimates. Each experiment involved generating a
random key and decoding a random error. For each error weight, the experiments were
conducted until 100 decoding failures were detected or until 108 experiments were
performed, whichever occurred first.

We observe that the theoretical estimates of 𝐷𝐹𝑅1 and 𝐷𝐹𝑅2 closely match the
simulation results, substantiating the accuracy of the obtained theoretical model.

3 Choice of cryptosystem parameters

The choice of parameters of QC–MDPC cryptosystems is determined by the com-
plexity of potential attacks on such cryptosystems. Specifically, the parameters of the
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Fig. 2. Simulation results of 𝐷𝐹𝑅1 for random QC-MDPC [𝑛 = 2 · 2339, 𝑘 = 2339]4–codes over
F4 (𝑙 = 2, 𝑝 = 2339, 𝛾 = 37), with decoding thresholds (𝑡ℎ0, 𝑡ℎ𝐸 , 𝑡ℎ𝐷 ) = (18, 4, 4)
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Fig. 3. Simulation results of 𝐷𝐹𝑅2 for random QC-MDPC [𝑛 = 2 · 2339, 𝑘 = 2339]4–codes over
F4 (𝑙 = 2, 𝑝 = 2339, 𝛾 = 37, (𝑡ℎ0, 𝑡ℎ𝐸 , 𝑡ℎ𝐷 ) = (18, 4, 4), and 𝜏 = 4). For each experiment, we
generated a random code and then checked if its OSML bound (see Corollary 2) is ≥ 𝜏 . If a code
had a lower bound, it was rejected. We chose 𝜏 = 4 to reject no more than 50% of keys (the actual
rejection rate was 3%).

cryptosystem should be chosen in such a way that the best key-recovery attacks and
message-recovery attacks require a sufficiently large number of operations.

The most effective message–recovery attacks are a family of information set decod-
ing (ISD) algorithms, designed for decoding random codes. This family includes the
Prange algorithm, the Lee-Brickell algorithm, Stern algorithm, BJMM, ball–collision,
etc. An overview of ISD–algorithms can be found in [49]. The average complexity of
these algorithms can be directly estimated using a formula that depends on parameters
such as the field size 𝑞, code length 𝑛, code dimension 𝑘 , and the weight of the error
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Fig. 4. Simulation results of 𝐷𝐹𝑅1 and 𝐷𝐹𝑅2 for random QC–MDPC [𝑛 = 2 · 1583, 𝑘 = 1583]8–
codes over F8 (𝑙 = 2, 𝑝 = 1583, 𝛾 = 37, (𝑡ℎ0, 𝑡ℎ𝐸 , 𝑡ℎ𝐷 ) = (18, 4, 4), and 𝜏 = 4)

𝑤 that needs to be found. For non–binary code direct complexity estimates for the
Lee-Brickell and Stern algorithms can be found in [49], for BJMM in [25], and for
ball-collision in [27].

It should be noted that for quasi-cyclic codes of order 𝑛′, it has been shown [41]
that the complexity of ISD attacks can be reduced by a factor of

√
𝑛′ compared to

codes without any structure. One of the features of QC-MDPC cryptosystems is that
for key-recovery attacks, which involve finding low-weight dual codewords, the best
attacks are also based on ISD. This is because the same algorithms can easily be adapted
to search for codewords of a given weight instead of finding an error of a given weight.
For quasi-cyclic codes, in this case, it is also possible to reduce the complexity by a
factor of 𝑛′ compared to random codes.

Furthermore, we must consider the decoding failure rate since in [26], Q. Guo et al.
proposed a reaction attack that allows the recovery of secret keys in cryptosystems based
on binary QC-MDPC codes by exploiting decoding failures. The original description
assumes that 𝑙 = 2, i.e., 𝑛 = 2𝑛′, but it can be easily generalized to other cases. This
attack is based on the observation that certain error patterns are more easily decodable
than other ones. Namely, let E𝑟 be the set of error patterns of the following form:

E𝑟 = {(𝑒, 0) ∈ F2𝑝
2 | 𝑒 ∈ F

𝑝

2 , ∃ distinct 𝑠1, 𝑠2, . . . , 𝑠𝑡 , s.t. 𝑒𝑠𝑖 = 1 and

𝑠2𝑖 = (𝑠2𝑖−1 + 𝑟 ) mod 𝑛′ for 𝑖 ∈ ⟦1, 𝑡/2⟧}

Let h1 ∈ F𝑛′
𝑞 denote the first row of 𝐻1 (see (2)). Let𝜓 (𝑟 ) denote the number of pairs of

non-zero positions of h1 placed at distance 𝑑 . The distance between 𝑖 and 𝑗 is computed
asmin {(𝑖 − 𝑗) mod 𝑛′, ( 𝑗 − 𝑖) mod 𝑛′}. The set of values𝜓 (𝑖), 𝑖 ∈ ⟦1, ⌊𝑛′/2⌋⟧, is called
the distance spectrum of h1 ∈ R𝑛 . In [26], it was shown that there is a correlation
between the decoding failure rate on errors from E𝑟 and the value of𝜓 (𝑟 ). Specifically,
the larger𝜓 (𝑟 ) is, the lower the DFR for errors from E𝑟 .
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Therefore, computing the DFR on errors from E𝑟 for different 𝑟 allows for the
recovery of the distance spectrum of h1 and subsequently h1 itself. Consequently, it
becomes possible to reconstruct the secret key of binary QC-MDPC cryptosystems by
exploiting the decoding failures. Below, we demonstrate how this attack can be applied
to the non-binary case as well.

In our experiments, we observed a correlation between the DFR for errors from Ẽ𝑟
and the values of𝜓 (𝑟 ), where the set Ẽ𝑟 is defined as follows:

Ẽ𝑟 = {(𝑒, 0) ∈ F2𝑝
𝑞 | 𝑒 ∈ F

𝑝

2 , ∃ distinct 𝑠1, 𝑠2, . . . , 𝑠𝑡 , s.t. 𝑒𝑠𝑖 ≠ 0 and

𝑠2𝑖 = (𝑠2𝑖−1 + 𝑟 ) mod 𝑛′ for 𝑖 ∈ ⟦1, 𝑡/2⟧}

For instance, we conducted simulations to decode errors of weight 𝑡 = 84 from Ẽ𝑟
using Algorithm 4 for random QC-MDPC codes over F4 with parameters 𝑛′ = 2339,
𝑙 = 2, and 𝛾 = 37, which ensure a minimal cost of ISD-based key-recovery and message-
recovery attacks of 280 bit operations [9]. The results obtained from these simulations
are presented in Table 1. As shown in the table, a strong dependency between the
distance spectrum and the DFR for errors of this specific form can still be observed.

Table 1. Dependency between simulated DFR for random errors 𝑒 ∈ Ẽ𝑟 and the values 𝜓 (𝑟 ).
The results are averaged over 100 random QC–MDPC [4678, 2339]–codes.

𝜓 (𝑟 ) 0 1 2 3 4
simulated DFR 0.0203 0.0134 0.0085 0.0059 0.0039

Algorithm 4: Sorted Parallel Symbol Flipping

Input: syndrome 𝑠 = 𝐻𝑒T

Output: estimated error 𝑒
𝑒 ← 0𝑛 ;
for 𝑖𝑡 ← 1 to 5 do

using (4), (5) compute 𝜎 𝑗 = (𝜎 𝑗,0, . . . , 𝜎 𝑗,𝑞−1) and 𝜎∗𝑗 for all 𝑗 ∈ ⟦1, 𝑛⟧,
𝑖 ∈ ⟦0, 𝑞 − 1⟧ ;
𝑡ℎ ← 20th_largest(𝜎∗𝑗 − 𝜎 𝑗,0);
for 𝑗 ← 1 to 𝑛 do

if 𝜎 𝑗 − 𝜎 𝑗,0 ≥ max(𝑡ℎ, 1) then
𝑖∗ ← argmax𝑖∈⟦1,𝑞−1⟧ 𝜎𝑖, 𝑗 ;
𝑒 𝑗 ← 𝑒 𝑗 + 𝛼𝑖∗;

end
𝑠 ← 𝐻𝑒T − 𝐻𝑒T;
if 𝑠 = 0 then return 𝑒;

end
return fail;

Thus, it is possible to reconstruct the support of the secret vector h1 (up to a cyclic
shift) using the following steps:



16 K. Vedenev, Yu. Kosolapov

1. for each 𝑟 ∈ ⟦1, ⌊𝑛′/2⌋⟧ numerically estimate DFR for random errors from Ẽ𝑟 , and
then use the obtained results to recover the distance spectrum𝜓 of h1;

2. recover supp(ℎ1) using the procedure described in [26] for finding positions of
ones in h1 for the binary case

Once supp(h1) is recovered, it is possible to recover the whole secret key (h1, h2) in
the non-binary case as follows. Let 𝐼 be an information set such that

|𝐼 ∩ supp(h1 | h2) | = 1,

then the matrix �̃�−1:,𝐼 �̃� = 𝐻−1:,𝐼 𝐻 contains the row (h1, h2) or its quasi–circular shift.
When supp(h1) is known, 𝐼 can be constructed of one element from supp(h1), 𝑛′ − 𝛾
elements from ⟦1, 𝑛′⟧\supp(h1), and randomly guessed𝛾−1 elements from ⟦𝑛′+1, 2𝑛′⟧.
Therefore, the probability of finding a suitable 𝐼 can be estimated as follows:(

𝑛′ − 𝛾
𝛾 − 1

)
·
(
𝑛′

𝛾 − 1

)−1
.

So, the method described above in our experiments allowed reconstruction of secret key
with significantly lower complexity than claimed security level of 280 bit operations.

It follows that, when choosing the parameters of QC–MDPC cryptosystem that
can be converted into IND–CCA2 secure KEM in non–binary case the design criteria
are the complexity of ISD–based key–recovery, and message–recovery attacks and
small enough decoding failure rate making reaction attacks infeasible. Table 2 provides
potential parameters of QC-MDPC cryptosystems over F4, with 𝑙 = 2 and 𝑛′ = 𝑝

being a prime such that the polynomial 𝑥𝑝 − 1 has a low number of irreducible factors.
These parameters are given for three different security levels: 𝜆 ∈ {128, 192, 256},
which correspond to the complexity of breaking AES with the corresponding key
sizes. All the proposed instances are designed to have 𝐷𝐹𝑅2 ≤ 2−𝜆 (see Corollary 4).
Note that the resulting public key sizes (𝑝𝑘𝑠𝑖𝑧𝑒 ) are slightly larger than in the binary

Table 2. Cryptosystem parameters

𝑞 𝜆 𝑝 𝛾 𝑡 (𝑡ℎ0, 𝑡ℎ𝐸 , 𝑡ℎ𝐷 ) 𝜏 𝑝𝑘𝑠𝑖𝑧𝑒 (bits)
4 128 (2143 bit operations) 16 651 71 132 (𝛾, 5, 5) 9 33, 302
4 192 (2207 bit operations) 30 971 103 197 (𝛾, 6, 6) 12 61, 942
4 256 (2272 bit operations) 47 903 137 263 (𝛾, 6, 6) 16 95, 806

case (28, 277, 52, 667, 83, 579 respectively [5]). Moreover, increasing the field size to
𝑞 = 8 with security level 𝜆 = 128 yields an estimated public key size of 36, 321 bits
(𝑝 = 12, 107, 𝛾 = 69, 𝑡 = 130). Thus, for a fixed security level, public key size grows with
increasing field size. Indeed, to maintain the same or smaller 𝑝𝑘size when increasing 𝑞,
one must consider shorter MDPC codes. However, due to the complexity of ISD-based
key–recovery and message–recovery attacks, 𝛾 and 𝑡 are nearly the same across various
ranges of 𝑞, implying higher-density codes. So, the increased field size does not appear
to compensate for the negative impact of increased code density.
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Conclusion

In this paper, we have studied the guaranteed error-correction capability of the one-step
majority logic (OSML) decoder and provided a plausibility analysis of the 1-iteration
parallel symbol flipping decoder for non-binary QC-MDPC codes. Through this analysis,
we were able to estimate the decoding failure rate (DFR) of the combined use of these
decoders, where parallel symbol flipping is employed to reduce the error weight to
a level at which the OSML decoder can successfully correct any remaining errors.
Consequently, we have obtained worst-case estimates of the DFR, considering some
minimalistic and reasonable assumptions. The accuracy and validity of our theoretical
model have been verified through numerical simulations.

Furthermore, we have demonstrated the importance of considering key-recovery
reaction attacks when designing non-binary QC-MDPC cryptosystems. This implies
that such cryptosystems need to be constructed with an extremely low DFR in order to
achieve IND-CCA2 security with long-term keys. Finally, we have provided possible
parameters for different NIST security levels of non-binary QC-MDPC cryptosystems,
along with their theoretically estimated DFR.

It should be noted that the resulting key sizes are slightly larger than those in
the binary case. Therefore, it appears that using non-binary QC-MDPC codes does
not offer any benefits in terms of reducing the public-key sizes of IND-CCA2-secure
cryptosystems considering the reaction attack. However, there is a possibility that
replacing the quasi-cyclic structure with a more general (non-abelian) quasi-group
structure, specifically replacing circulant matrices with matrices of multiplication
operators in group algebras, could potentially hinder the reaction attack.

Additionally, by abandoning the requirement of key re-usage, it becomes possible
to consider more sophisticated decoders for cryptosystems resistant against chosen
plaintext attacks (CPA–secure). The study of such decoders can only be carried out
through experimental methods and may provide benefits in terms of reducing key sizes,
as previously explored in [9].

It is worth mentioning that the obtained in this paper theoretical models could
potentially be useful for providing conservative estimates of the DFR of non-binary
codes in telecommunications applications.
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