
Universal Gaussian Elimination Hardware for Cryptographic Purposes

JINGWEI HU, Nanyang Technological University, Singapore

WENWANG, Yale University, USA

KRIS GAJ, George Mason University, USA

DONGLONG CHEN, BNU-HKBU United International College, China

HUAXIONG WANG, Nanyang Technological University, Singapore

In this paper, we investigate the possibility of performing Gaussian elimination for arbitrary binary matrices on hardware. In particular,

we presented a generic approach for hardware-based Gaussian elimination, which is able to process both non-singular and singular

matrices. Previous works on hardware-based Gaussian elimination can only process non-singular ones. However, a plethora of

cryptosystems, for instance, quantum-safe key encapsulation mechanisms based on rank-metric codes, ROLLO and RQC, which are

among NIST post-quantum cryptography standardization round-2 candidates, require performing Gaussian elimination for random

matrices regardless of the singularity. We accordingly implemented an optimized and parameterized Gaussian eliminator for (singular)

matrices over binary fields, making the intense computation of linear algebra feasible and efficient on hardware. To the best of our

knowledge, this work solves for the first time eliminating a singular matrix on reconfigurable hardware and also describes the a

generic hardware architecture for rank-code based cryptographic schemes. The experimental results suggest hardware-based Gaussian

elimination can be done in linear time regardless of the matrix type.

CCS Concepts: • Security and privacy→ Public key encryption; •Hardware→Application-specific VLSI designs; •Computer
systems organization→ Embedded systems.

Additional Key Words and Phrases: post-quantum cryptography, Gauassian elimination, FPGA

1 INTRODUCTION

From computational efficiency point of view, Gaussian elimination on an 𝑛 × 𝑛 matrix requires O(𝑛3) divisions, O(𝑛3)
multiplications, O(𝑛3) additions, and O(𝑛3) subtractions, for a total of O(𝑛3) arithmetic operations. There are numerous

applications of Gaussian elimination in nearly any area of computer science. Cryptology is no exception, with matrix

problems arising both in cryptanalysis and cryptography. In the introductory part, we briefly outline the areas where

our hardware-based Gaussian elimination is of the most relevance.

Algebraic cryptanalysis of symmetric-key ciphers. Cryptanalysis of symmetric-key ciphers frequently involves

systems of linear equations (SLEs), which can be efficiently solved using Gaussian elimination. This is because the

majority of deterministic symmetric ciphers can be represented as finite state machines whose output can be described

by a (sometimes rather complicated) boolean function of the initial internal state and input values (if any) giving rise to

SLEs over F2. For instance, linearization methods [3, 15] have gained lots of attention during the last decade and are

widely used nowadays. Here, the nonlinear system is first simplified, then linearized and solved as an SLE. To make

cryptanalysis with linearization methods feasible, one is reliant upon efficient SLE solvers.

Implementing asymmetric cryptography. Gaussian elimination also plays a central role in some cryptographic

applications. For example, the performance of digital signature schemes based on multivariate quadratic polynomials

highly depends on the efficiency of solving small SLEs over finite extension fields. This class of digital signature
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schemes is of special interest due to its resistance to quantum computer attacks. For the generation of a signature

using the Rainbow signature scheme [4] with recently recommended parameter sets, two SLEs of dimension 12 × 12
over F

2
8 need to be solved. In [2], a generic hardware architecture for this kind of signature schemes is proposed,

with an SLE solver being a major building block. Furthermore, Gaussian elimination is the most compute-intensive

and also a distinguishing operation in rank metric cryptography and particularly in the context of ROLLO [8]. For

example, ROLLO-II PKE.encrypt generates a random matrix over F2 to represent the error vector space 𝐸, which

requires performing Gaussian elimination to get its reduced-row-echelon form. ROLLO-II PKE.decrypt also requires

Gaussian elimination to intersect the secret syndrome spaces 𝑆𝑖 = 𝑓
−1
𝑖
𝑆 for finding the linearly independent bases of

the secret error vector space 𝐸.

Contributions. Based on the parallel nature of hardware, we propose a new approach that could Gaussian-eliminate

arbitrary matrices over a binary field in constant Θ(𝑛) steps, which remains unsolved prior to this work. Our work

differs from the previous work in two aspects:

• The new design presents a new mechanism called dual-mode switch to determine the pivot position on the fly

and thus can Gaussian-eliminate a singular matrix, whereas the previous designs assume the input matrix is

non-singular and cannot return a correct answer for a singular matrix.

• The new design is constant-time, fully parameterized and open-sourced
1
. The HDL codes for our hardware

design are auto-generated by a Python script and thus can be easily adapted for different matrix sizes used in

numerous cryptographic applications.

This paper is roughly structured as follows. We start with a brief discussion of previous work on hardware-based

Gaussian elimination. Then, we provide a high-level review of the ROLLO specification, which is later used as a case study

for our Gaussian elimination design. We then present our new algorithm, which guides the hardware implementation of

a Gaussian elimination design. The novel algorithm and the new hardware design can Gaussian-eliminate both singular

and non-singular matrices. After that, further applications of the hardware architecture are discussed, including how

to Gaussian-eliminate a medium-sized binary matrix using the proposed design and reuse this new module for any

large-sized matrices. We also showcase how to adapt our new Gaussian eliminatation module to ROLLO hardware

design. Finally, we show our proof-of-concept implementations on contemporary low-cost FPGAs.

2 RELATEDWORK

From a geometric point of view, the hardware architectures for Gaussian elimination over a finite field fall into two

groups: triangular and linear, each of which is subdivided into three types: systolic array, systolic network, and systolic

line.

2.0.1 Triangular-shaped array. A triangular-shaped array is a two-dimensional array, where all nodes in the array

shape a triangle. This array is triangular because Gaussian elimination causes all nodes except the pivot node to be zero

for each column of the matrix, and these zeros are unnecessary to be saved. In 1989, Hochet et. al described for the first

time the triangular systolic array for doing Gaussian elimination of a matrix over F𝑞 [6]. This work was further adapted

for faster processing using triangular systolic network (TSN) [12] and triangular systolic line (TSL) [9]. In general, a

triangular-shaped array sets the priority for time complexity while sacrificing space complexity. It typically completes

one Gaussian elimination for a 𝑘 × 𝑙 matrix in Θ(𝑘 + 𝑙) of time and Θ(𝑘𝑙) of space.

1
The automation tools and reference implementations can be found at https://github.com/davidhoo1988/gaussian-elimination-hardware
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2.0.2 Linear-shaped array. A linear-shaped array is a one-dimensional array, where all nodes in the array form a

horizontal line as described in [9]. It only preserves the first line of the triangular array while all intermediate results

are pushed to an array of shift registers waiting for the next round of processing. A linear systolic array is more

area-efficient than the triangular-shaped array if the Gaussian elimination is performed on a matrix over an extended

finite field F2𝑚 . It typically completes one Gaussian elimination for a 𝑘 × 𝑙 matrix in Θ(𝑘𝑙) of time and Θ(𝑙) of space.
In addition to the systolic architectures, a different hardware approach realizing Gaussian elimination including

backward-substitution over F
2
𝑘 , called GSMITH, is presented in [9]. It consists of a rectangular array of simple cells

exhibiting local as well as some global connections. The running time of GSMITH is non-constant-time, depending on

the probability distribution of the matrix entries. The implementation results suggest the timing performance is close to

that of TSL but uses more hardware resources.

For cryptographic purposes, Gaussian elimination hardware for 𝑛 × 𝑛 square matrices over F
2
𝑘 , also known as linear

system of equations (LSE) solver [1, 2, 11], is explored in multivariate cryptosystems. If the LSE solver encounters

under-determined equations, i.e., the matrix associated with the linear system of equations is not full-rank, the solver

throws out an exception and halts. Note that the LSE solver can identify the under-determined equations without fully

performing the Gaussian elimination. It suffices to make such a decision whenever one of the pivots along the diagonal

of the matrix is zero. In other words, the LSE solver in the open literature cannot eliminate singular matrices.

On the other hand, the only two hardware implementations of Gaussian elimination used in Hamming-metric-code-

based cryptography that are closely related to our work are presented in [10, 14]. They are used in the key generation

of the classic Niederretier code-based scheme. These designs are capable of eliminating a binary matrix of the size 𝑘 × 𝑙 ,
with 𝑘 ≠ 𝑙 , which removes the shape limit existing in the LSE solver mentioned above. The pre-requisite for successful

Gaussian elimination is that the input matrix must be full-rank. For rank-metric-code-based cryptography like ROLLO

and RQC, Gaussian elimination is the most computing-intensive and also a distinguishing operation. However, these

rank-code-based schemes require performing Gaussian elimination on medium-size and large-size matrices over a

binary field, and most importantly, these matrices can be rank-deficient. Unfortunately, the current state-of-the-art

designs cannot process such type of matrices.

3 PRELIMINARIES OF ROLLO

This section introduces the rank-metric code based cryptographic scheme — ROLLO [8] which heavily relies on a

universal Gaussian elimination utility. The requirement for universal Gaussian elimination utility posts a new challenge

for cryptographic hardware designers. ROLLO is a compilation of two cryptographic schemes, ROLLO-I and ROLLO-II,

which are among 26 round-2 candidates to the NIST’s process for post-quantum cryptography standardization. It is

worth mentioning that the actual implementation of ROLLO introduces a new challenge for hardware-based Gaussian-

elimination: the computation in ROLLO requires Gaussian-eliminating a matrix with an unknown rank, and it is most

likely that the matrix under operation is singular. Effective manipulation for such a matrix goes beyond the applicability

of the existing Gaussian elimination hardware.

Let S𝑛𝑤 (F𝑞𝑚 ) stand for the set of vectors of length 𝑛 and rank weight𝑤 over F𝑞𝑚 and S𝑛
1,𝑤
(F𝑞𝑚 ) stand for the set of

vectors of length 𝑛 and rank weight𝑤 , such that its support contains 1:

S𝑛𝑤 (F𝑞𝑚 ) = {x ∈ F𝑛𝑞𝑚 : dim Supp(x) = 𝑤}

S𝑛
1,𝑤 (F𝑞𝑚 ) = {x ∈ F

𝑛
𝑞𝑚 : dim Supp(x) = 𝑤, 1 ∈ Supp(x)}
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3.1 ROLLO-I

ROLLO-I, formerly known as LAKE, is a CPA-secure Key Encapsulation Mechanism (KEM) running in the category

“post-quantum key exchange”. A Key-Encapsulation scheme KEM = (KeyGen, Encap, Decap) is a triple of probabilistic

algorithms together with a key space K . The key generation algorithm KeyGen generates a pair of public and secret

key (pk, sk). The encapsulation algorithm Encap uses the public key pk to produce an encapsulation 𝑐 of a key 𝐾 ∈ K .
Finally Decap using the secret key sk and an encapsulation 𝑐 , recovers the key 𝐾 ∈ K or fails and returns ⊥.

ROLLO-I is formally described in Algorithm 1. The RSR algorithm is the rank support recover algorithm proposed

in [5] to recover the rank support of the error vector from the secret syndrome. 𝑃 is an irreducible polynomial of F𝑞 [𝑋 ]
of degree 𝑛 and constitutes a parameter of the cryptosystem.

1 KeyGen(1
𝜆
): Pick (𝑥,𝑦) $← S2𝑛

𝑑
(F𝑞𝑚 ). Set ℎ = 𝑥−1𝑦 mod 𝑃 , and return pk = ℎ, sk = (𝑥,𝑦).

2 Encap(pk): Pick (e1, e2)
$← S2𝑛𝑟 (F𝑞𝑚 ), set 𝐸 = Supp(e1, e2), c = e1 + e2h mod 𝑃 . Compute the shared secret key

𝐾 = Hash(𝐸) and return c.
3 Decap(c, sk): Set s = xc mod 𝑃 , 𝐹 = Supp(x, y) and 𝐸 ← RSR(𝐹, s, 𝑟 ). Recover 𝐾 = Hash(𝐸).

Algorithm 1: Formal Description of ROLLO-I

It is worthwhile to mention that in the encapsulation/encryption step, two random polynomials of degree 𝑛 over

F2𝑚 , i.e., 𝑒1 and 𝑒2 have rank support Supp(e1, e2) = 𝑟 . In other terms, 𝑒𝑖 (𝑖 = 1, 2) formulates a vector space represented

by a 𝑛 ×𝑚 matrix with small rank 𝑟 . This is where universal Gaussian elimination comes into play.

3.2 ROLLO-II

ROLLO-II, formerly known as LOCKER, is a CPA-secure Public Key Encryption (PKE) running in the category “post-

quantum public-key encryption” and can be adapted for CCA2 security via the HHK framework for the Fujisaki-

Okamoto transformation [7]. A PKE scheme is defined by three algorithms: the key generation algorithm KeyGen,

which takes on input the security parameter 𝜆 and outputs a pair of public and private keys (𝑝𝑘 ,𝑠𝑘); the encryption

algorithm Encrypt(𝑀 ,𝑝𝑘), which outputs the ciphertext𝐶 corresponding to the message𝑀 and the decryption algorithm

Decrypt(𝐶 ,𝑠𝑘), which outputs the plaintext𝑀 .

A formal description of ROLLO-II is given in Algorithm 2. 𝑃 is an irreducible polynomial in F𝑞 [𝑋 ] of degree 𝑛 and

constitutes a parameter of the cryptosystem. The symbol ⊕ denotes the bitwise XOR. It is worth noting that at the core

of the decapsulation/decryption step, the rank support recovery (RSR(·)) algorithm requires computing the intersection

of two vector spaces 𝐹 and 𝑠 , which is equivalent to Gauss-eliminating a large-sized matrix. This type of matrix is

inevitably singular and very large such that the previous designs in the open literature are inapplicable.

4 A NEW APPROACH FOR HARDWARE-BASED GAUSSIAN ELIMINATION

This section describes a new approach for Gaussian elimination on a systolic array. Based on this method, we design a

constant-time and flexible Gaussian elimination module to overcome the difficulty of implementing Guassian elimination

for arbitrary matrices which are useful for many cryptographic schemes, e.g., ROLLO, in which intensive linear-algebra-

related computations are required.
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1 KeyGen(1
𝜆
): Pick (𝑥,𝑦) $← S2𝑛

𝑑
(F𝑞𝑚 ). Set ℎ = 𝑥−1𝑦 mod 𝑃 , and return pk = ℎ, sk = (𝑥,𝑦).

2 Encrypt(M,pk): Pick (e1, e2)
$← S2𝑛𝑟 (F𝑞𝑚 ), set 𝐸 = Supp(e1, e2), c = e1 + e2h mod 𝑃 . Compute

𝑐𝑖𝑝ℎ𝑒𝑟 = 𝑀 ⊕ Hash(𝐸) and return the ciphertext 𝐶 = (c, 𝑐𝑖𝑝ℎ𝑒𝑟 ).
3 Decrypt(C,sk): Set s = xc mod 𝑃 , 𝐹 = Supp(x, y) and 𝐸 ← RSR(𝐹, s, 𝑟 ). Return𝑀 = 𝑐𝑖𝑝ℎ𝑒𝑟 ⊕ Hash(𝐸).

Algorithm 2: Formal Description of ROLLO-II
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Fig. 1. A versatile node proposed to solve non-fixed-pivot row exceptions in Gaussian elimination. The node can operate three types
of transformations including: 1. PASS: The node passes the input data data_in onto the output port data_out and retains the data
stored in the internal register r; 2. ADD: The node adds the input data data_in and the internal register data r, and then outputs sum
onto data_out. Meanwhile, the node retains the internal register data r; 3. SWAP: The node swaps the input data data_in and the
internal register data r, i.e., the node outputs r onto data_out and then updates r with data_in.

4.1 Gaussian Elimination on a Systolic Array

In this work, we use the terms ‘triangularization’ to denote the operation of putting the input matrix into its row-echelon

form, aka Gaussian elimination, and ‘systemization’ to denote the operation of putting a row-echelon formed matrix

into its reduced-row-echelon form. The combination of triangularization and systemization is also referred to as

Gauss-Jordan elimination. We are facing a new challenge in rank-code based cryptosystem, namely, triangularizing a

singular matrix in ROLLO/RQC. In this subsection, we will detail our generalized approach, which not only solves this

new problem but is also applicable to the Gaussian elimination cases used in the classic Niederreiter cryptosystem and

multi-variate cryptosystem.

4.1.1 Core idea — pivot/non-pivot mode switch. In our work, we focus on Gaussian elimination for matrices over F2.

As mentioned before, the most challenging part for universal Gaussian elimination hardware is that the position of

pivot nodes in our Gaussian elimination architecture is flexible. Our new idea of implementing Gaussian elimination

is to assign pivot-node functionality or non-pivot-node functionality on the fly: Each node is configured to have

dual functionalities for every iteration of Gaussian elimination. The node can be converted to either pivot node or

basic(non-pivot) node depending on the data input from the above node and the control input from the left-hand-side

node. The pivot node behaves actively as the pivot in that particular row and propagates the operational signal to its

right-hand-side basic nodes. The basic node behaves passively according to the operation signal, i.e., PASS, ADD, or SWAP

for performing elementary row operations.
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Fig. 2. Overview of the two dimensional array for Gaussian elimination. Each node is pipelined to reduce the critical path delay.

A systematic exposition of the proposed node is shown in Fig. 1. The node uses an internal register r for storage. It

also has 9 signals and 6 of them are identical to the ports of classic nodes presented in the literature [10, 14], including 3

input ports data_in, start_in, op_in and 3 output ports data_out, start_out, op_out. The difference is that a new

pair of signals, pivot_in and pivot_out is used to determine whether the current node is pivot or not and broadcast

this message to its right neighboring node. Also, an additional input signal mode_in is augmented to switch between

matrix triangularization process and matrix systemization process. All input signals drive a centralized control logic

module CTRL which outputs selector signals including r_sel, op_out_sel, pivot_out_sel, and data_out_sel. Then,

these selector signals accordingly select the output values of r, op_out, pivot_out, and data_out.

With this new mechanism of dual-mode switch, the node can dynamically switch between the pivot and non-pivot

functionality for each input data update, as shown in Fig. 3, to perform matrix triangularization: The entire process

can be split into two stages, initial phase and normal phase. In the initial phase, the input data flushes into the node

internal register r for the first time by asserting the signal start_in; In the normal phase, the node acts as either the

pivot node or the basic(non-pivot) node to update the value of r depending on the 2-bit signal {r, pivot_in}: if {r,

pivot_in}== 2
′𝑏10, it means that the internal register 𝑟 is for the first time updated to a nonzero value and thus the
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Fig. 3. Behavior description of the node used in the proposed systolic array for small/medium matrix triangularization, written in
Verilog-like pseudocode.

node acts as pivot. Otherwise, it means that the pivot has been found already (since pivot_in== 1
′𝑏1) and thus it acts

as basic node by executing passively the instruction (SWAP, ADD, or PASS) passed from the signal op_in.

4.1.2 Triangular systolic array design. With the new design of node for Gaussian elimination, the next decision we

need to make is the selection of systolic array. First, consider the triangular-shaped arrays. Triangular systolic line (TSL)

and triangular systolic network (TSN) have lower cycle latency and lower resource usage but they are not suitable

for our case: TSN only maintains its efficiency for small matrices as its critical path propagates throughout the whole

network. The critical path latency of TSL is a good candidate for the previous Gaussian elimination work but not for

ours. Specifically, the horizontal latency (i.e. the total delay along one row of the computation array) of previous work

is affected merely by wiring. However, the horizontal latency of the new node in the array is much longer and involves

propagating data from the leftmost node to the rightmost one. Therefore, TSL can only be useful for small matrices.
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Fig. 4. A toy example for the proposed Gaussian elimination hardware by triangularizing a 4 × 4 matrix over F2 using the node logic
shown in Fig. 3. Here triangularization means putting the input matrix into its row-echelon form. The signals ‘S’, ‘P’, and ‘A’ stand for
‘SWAP’, ‘PASS’ and ‘ADD’, respectively.

On the other hand, the clock frequency of triangular systolic array (TSA) remains as high as 200 MHz despite the

matrix dimension increasing from 20 to 90 [9]. Secondly, the linear-shaped arrays, linear systolic array (LSA), and linear

systolic line (LSL) are efficient for matrix over F2𝑚 but not for matrix over F2 [9]. Based on the above discussion, TSA

is chosen as the basic architecture for implementing Gaussian elimination in this work.

Fig. 2 presents an overview of the Gaussian elimination systolic array for any matrices over F2, including singular

and non-singular ones. The basic structure is arranged in a rectangular shape such that every signal of the node is

pipelined, allowing all data and control signals to be propagated in a systolic manner. It is worthwhile to mention that

in order to make this systolic array works correctly for matrix triangularization, in the initial phase as discussed in

Fig. 3, the signal op_in of the first node in every row of the systolic array must be de-asserted (indicating that the pivot

is not yet found). Moreover, an improvement of this architecture is that all 𝑟 registers in the nodes below the diagonal

of the systolic array are always zero independently of the input matrix after the Gaussian elimination. Therefore, these

nodes can be removed and are drawn with a dotted line.

4.2 Cryptographic Applications for the Proposed Gaussian Elimination

This subsection describes how to leverage the proposed Gaussian elimination method for accelerating Gaussian

elimination for any matrix size. The architectures presented in this subsection are two-fold: The Gaussian elimination

module for medium-sized matrices is based on the systolic array design and the new dual-mode switching node for

processing a (singular) matrix; the Gaussian elimination module for large-sized matrices reuses the former to process

any large-sized matrices while preserving constant resource utilization. The proposed method for Gaussian elimination
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is constant-time and thus is secure against timing attacks. This characteristic is important for security concerns since

the Gaussian elimination used in cryptographic context may directly operate on the secret sensitive information and

any vulnerability exploited from the timing information might endanger the cryptosystem. In addition, the proposed

systolic array for Gaussian elimination is fully parameterized at compile-time to support rapid configurations for

different sets of parameters without the need to re-write the hardware code. This is a great advantage for implementers

to sketch Gaussian elimination modules for different sizes of matrices used in different cryptographic applications.

4.2.1 Gaussian elimination for medium-sized matrices. We first consider how to Gaussian-eliminate a matrix of rel-

atively small size. For example, in the ROLLO encryption part, the matrix has relatively small dimension of 𝑟 ×𝑚,

e.g., 𝑟 = 7, 8, 9 and𝑚 = 67, 79, 97 are used in ROLLO-I. In this case, it is natural to realize the entire Gaussian trian-

gularization/systemization using a single systolic array. Note that not only matrix triangularization but also matrix

systemization is necessary to acquire a unique representation of error vector space E such that the subsequent hash

function always outputs a correct shared key. To better understand the mechanism of the proposed Gaussian elimination

architecture, Fig. 3 describes a flow chart of the behavior of the node in triangularization: The symbol ‘=’ indicates

blocking assignment, and the symbol ‘<=’ indicates nonblocking assignment in Verilog, respectively. The blue circle

shape denotes the start of the algorithm; the yellow diamond shape denotes branch condition, and the green rectangular

shape denotes the end of the algorithm.

Fig. 4 illustrates a step-by-step procedure for a single systolic array to transform a 4 × 4 matrix

[
0 0 0 0

0 1 0 0

0 0 0 1

0 1 0 1

]
to its

row echelon form

[
0 1 0 0

0 0 0 1

0 0 0 0

0 0 0 0

]
within 10 clock cycles. The data colored in red indicates the value stored in the r register

of the node. The data colored in blue indicates the buffered data_out signal in the pipeline register (i.e., the small

white-colored solid box) between two neighboring nodes. The circled value indicates it is the current pivot of that

particular row. Note that the input matrix must be fed into the array in a skewed form via pipeline buffering for systolic

processing, as shown in step-(0), i.e., at the first clock cycle, the systolic array takes one bit ‘0’ as input; at the second

clock cycle, the systolic array takes two bit ‘00’ as inputs, and so forth:

• In step-(0), the signal start_in attached to the upper-left node in the systolic array is assertive, and thus the

internal register r will be updated to ‘0’ in the next clock cycle;

• In step-(1), now ‘0’ has been updated to the node at the upper-left corner of the systolic array. Given the

input signals {r, pivot_in}==2’b00, this particular node executes the SWAP operation, which updates r by ‘0’,

outputs ‘0’ and also passes ‘SWAP’ signal and pivot_out = 0 (clearly, the node is currently not a pivot and hence

broadcasts ‘pivot not found’) to its right neighbor in the next cycle;

• In step-(2), consider the first row of the systolic array, the leftmost node has updated ‘0’ to the buffer register

(colored in blue) and executes SWAP again since {r, pivot_in} == 2’b00, and the second node executes ‘SWAP’,

which is passed from the leftmost node in step-(1). Consider the second row of the systolic array, the start_in

signal attached to the first node is assertive and thus ready to accept the value ‘0’ stored in the (blue) buffer

register in the next cycle;

• In step-(3), consider the first row, the second node in the first row acts as the pivot since {r, pivot_in} ==2’b10.

This pivot node (circled in the figure) ignores the ‘SWAP’ signal passed from step-(2) but performs ‘PASS’ as a

replacement. Consider the second row, the first node has been updated to ‘0’ and also outputs signal SWAP due

to {r, pivot_in} == 2’b00;
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• An analogous pattern can be found in step-(4), where the pivot node in the first row ignores ‘SWAP’ but executes

‘ADD’ since the input data is ‘1’.

Eventually, when all input data are flushed into the internal registers of all nodes distributed at four distinct rows as

shown in step-(10), the input matrix has been successfully eliminated in the desired row echelon form. Further, a careful

calculation shows the total delay for triangularizing a 𝑘 × 𝑙 binary matrix is:

2𝑘 + 𝑙 − 2

and the following proposition proves the correctness of the proposed method.

Proposition 4.1. The proposed Gaussian elimination systolic array can triangularize any 𝑘 × 𝑙 matrix over F2 correctly.

Proof. We prove here the correctness of matrix triangularization, by induction on the rows of the systolic array. Let𝑀

represent the input 𝑘 × 𝑙 matrix. Initially, consider the first row of the systolic array when the start_in signal is active.

At this time, the first row of𝑀 denoted as𝑀1 is loaded. In the subsequent clock cycles when start_in is inactive, the

logic specified in the systolic array nodes will update𝑀1 by 𝑗-th row of the matrix𝑀𝑗 whenever the pivot element in

𝑀𝑗 lays ahead of𝑀1. This logic guarantees that the first row of the systolic array will eventually find the matrix row

with the most significant ‘1’.

Next, consider the 𝑖-th row of the systolic array. Suppose at some time, the 𝑖-th row finds the matrix row with 𝑖-th

significant ‘1’. In this case, the 1-st significant, 2-nd, up to 𝑖 − 1-th significant matrix rows should reside in the above

𝑖 − 1 rows of the systolic array such that the data stored in the first 𝑖 rows of the systolic array are in a triangular shape.

This triangular shape filters every row of the target matrix𝑀 and let the 𝑖 + 1-th, 𝑖 + 2-th, up to 𝑘-th significant row

pass (note that the 𝑘-th significant row might be a null vector if𝑀 is not full-rank). Therefore, the logic specified in the

𝑖 + 1 row of the systolic array will eventually find the matrix row with the 𝑖 + 1-th significant ‘1’, which is equivalent to

finding the matrix row with the most significant ‘1’ in the remaining 𝑘 − 𝑖 unsorted rows of𝑀 . Following this induction,

the systolic array always re-arranges the matrix𝑀 in a triangular shape. □

On the other hand, the Gaussian systemization is required immediately after the triangularization process to shape

the matrix to the systematic form. Fig. 5 describes the behavior logic of the node for matrix systemization, and Fig. 6

illustrates a toy example of how to systemize a 4 × 4 binary matrix

[
1 1 0 0

0 1 0 1

0 0 1 0

0 0 0 1

]
within 7 clock cycles. Compared with the

triangularization process shown in Fig. 4, the node in the systemization process behaves in two different ways: First,

at the initial stage (step-(0)), the leftmost node in each of the four rows is triggered by the signals op_in=‘SWAP’ and

pivot_in=1’b0 where ‘SWAP’ here slightly differs from the previous one by retaining the value in the internal register,

meanwhile, outputing this value to data_out. Second, whenever the node cannot determine the pivot position, i.e., {r,

pivot_in}==2’b00, it always performs ‘PASS’. During step-(1) and step-(7), the systolic array gradually outputs the

result matrix

[
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

]
in reversed order and skewed format: it first outputs the last row [0001], then [0010] and [0100],

and finally the first row [1000].
The correctness of systemization can be proven using the similar arguments shown in Proposition 4.1 and we skip

the details in this paper. In summary, the total delay for 𝑘 × 𝑙 matrix systemization is a linear function of the matrix size

as:

𝑘 + 𝑙

4.2.2 Gaussian elimination for large-sized matrices. Some cryptographic applications require eliminating large matrices.

Processing large matrices is essential and performance-critical in these applications. For example, the ROLLO decryption
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Matrix Systemization

r <= r;

data_out = r;

op_out =‘SWAP’;

pivot_out = pivot_in ? 1'b1 : 

r ? 1'b1 : 1'b0;

{r,pivot_in} == 

2'b10 ?

r <= r;

pivot_out = 1'b1; 

data_in == 

1'b1 ?

data_out = data_in^r;

op_out = ‘ADD’;

data_out = data_in;

op_out = ‘PASS’;
{r,pivot_in} == 

2'b00 ?

YES

(init phase)

YES

NO

NO

(normal phase)

NO

r <= r;

pivot_out = 1'b0;

data_out = data_in;

op_out = ‘PASS’;

 

op_out = op_in;

pivot_out = pivot_in; 

op_in == 

‘ADD’ ?

op_in == 

‘PASS’ ?

data_out = data_in;

r <= r;

NO

op_in == 

‘SWAP’ ?

data_out = data_in^r;

r <= r;

YES

(pivot node, 

work actively)

YES

(pivot not found, 

perform‘PASS’)

NO

(basic node, 

work passively)

YES

YES

Fig. 5. Behavior description of the node used in the proposed systolic array for matrix systemization, written in Verilog-like pseudocode

requires to calculate the intersection of two vector spaces in the rank support recovery algorithm and later to systemize

the intersected vector space to reconstruct the secret shared key 𝐾 , which dominates the performance of ROLLO

decryption. Such intersection uses the Zassenhaus algorithm, in which the Gaussian elimination for a large 2𝑛 × 2𝑚
matrix over F2 is performed. In this case, it is infeasible to realize the large-scale elimination on a single systolic array

by the method we proposed for medium-size matrices since the resource utilization has exceeded the maximum capacity

of most Xilinx FPGAs. The new solution proposed for large matrices in this work is to divide the large matrix into

several smaller blocks and to conquer each submatrix using a relatively small systolic array. There exists a tradeoff

between hardware utilizaiton and processing time: we use a smaller Gaussian elimination hardware which can be

tolerated on most FPGA platforms to Gauss-eliminate a large matrix but the price we pay is the increase of processing

time of Gaussian elimination. In this work, we are particularly interested in such a tradeoff (or division) where our

Gaussian elimination hardware can directly process a smaller matrix which shares the same column width as the large

matrix does. This requirement removes the storage of intermediate operation codes (op_in signals from each Gaussian

elimination node).
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Fig. 6. A toy example for the proposed Gaussian elimination hardware by transforming a 4 × 4 matrix over F2 using the node logic
shown in Fig. 5. Systemization refers to transforming a row-echelon matrix into its reduced-row-echelon form.

Table 1. Gaussian elimination performance for square 𝑘 × 𝑘 binary matrix on Xilinx Virtex-5 FPGA, compared with the TSA, TSL,
TSN, LSA, LSL presented in [9, 13].

Instance 𝑘 × 𝑘 Device Freq[MHz] Cycle Slice Slice*Cycle/Freq

This work

20 × 20
Virtex-5

600 60 1228 122

50 × 50 500 150 6499 1949

90 × 90 500 270 21954 11855

TSA [9]

20 × 20
Virtex-5 600

80 363 58

50 × 50 200 1727 691

90 × 90 360 5804 4179

TSL [9]

20 × 20
Virtex-5 500

60 161 19

50 × 50 150 912 274

90 × 90 270 3082 1664

TSN [9]

20 × 20
Virtex-5 102

40 160 63

50 × 50 100 715 701

90 × 90 180 2045 17529

LSA [9]

20 × 20
Virtex-5 550

400 55 40

50 × 50 2500 171 777

90 × 90 8100 291 4286

LSL [9]

20 × 20
Virtex-5 550

400 33 24

50 × 50 2500 78 355

90 × 90 8100 116 1708

TSL [13] 50 × 50 Spartan-3 178 150 3129 2636
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Fig. 7. Behavior description of the node used in the proposed systolic array for large matrix triangularization, written in Verilog-like
pseudocode

Table 2. Gaussian elimination performance (triangularization + systemization) for a 𝑘 × 𝑙 matrix used in ROLLO-II.encrypt on Xilinx
Artix-7 FPGA

Instance 𝑘 × 𝑙 freq cycle slice slice*cycle/freq

ROLLO-II-128.encrypt 7 × 67 400 153 1149 440

ROLLO-II-192.encrypt 8 × 79 400 180 1575 709

ROLLO-II-256.encrypt 9 × 97 400 219 2131 1167



14 Jingwei Hu and Wen Wang, et al.

1
0 1

1 0 0
0 0 0 0
0 1 0
0 0
0

 

1
0 1

1 0 0
0 0 0 0
0 1 0
0 0

 

1
0 1

1 0 0
0 0 0 0
0 1 0

 1
0 1

1 0 0

 1
0 1

 

0

0

0 0 0 1 0

0

0

Swap

0

1 0

0 0

0

0
0

0

Swap

0

0 1 0

0

0

0

00

0
0 0

Add

0

0

Swap Swap

Pass

Pass

Add

Pass

Swap
Swap

Swap

Swap Swap

Swap Swap

SwapSwap

(0) (1) (2) (3) (4) (5)

1
0 1

1 0 0
0 0 0 0

 

Triangularize (small array without load-off)

1 

1 0

0

0

00

0
0

Add

0

1

0

0

1 0

0

0

0
0

1

0

0
Swap

0

1
Swap Swap

(6) (7)

Round-1

AddSwap

1 0

0

0

0 1

0

(8)

0

0

Round-2

0
0 0

0 0
0 0
0

 

(0)

0
0 0

0 0
0 0

 0
0 0

0 0

 0
0 0  0

 0
Swap

0 0
0

Swap Swap

Swap

Swap 0

0
0
0

Swap

Swap Swap
0 0

0

0 0

0Swap

Swap
0

0

Swap Swap

0

0

0

Swap

0

0

0

0

0

0

0

0 0

0

0

0 0

(1) (2) (3) (4) (5)

(6)

1
0 1

1 0 0
0 0 0 0
0 1 0
0 0
0

 

1
0 1

1 0 0
0 0 0 0
0 1 0
0 0

 

1
0 1

1 0 0
0 0 0 0
0 1 0

 1
0 1

1 0 0

 1
0 1

 

0

0

0 0 0 1 0

0

0

S

0

1 0

0 0

0

0
0

0

S

0

0 1 0

0

0

0

0X

0
0 0

A

0

0

S S
P

P
A

P

S S
S

S S
S S

SS

(0) (1) (2) (3) (4) (5)

1
0 1

1 0 0
0 0 0 0

 

Triangularize (2*4 small array with load-off)

1 

1

0

0

0

0X

0
0

A

0

1

0

0

X X

1

0

0
0

1

X

X
S

0

1
S S

(6) (7)

Round-1

AS

X

X

X

0 1

0

(8)

X

X

S S

S

X X

X
1

X

X

X

X

(9) (10)

S

S

S

S

S

0

Round-2

0
0 0

0 0
0 0
0

 

(0)

0
0 0

0 0
0 0

 0
0 0

0 0

 0
0 0  0

 0
S

0 0
0

S S
S

S X

0
0
0

S

S S0 X

0

X 0

0 S

S 0
0

S S
X

X

X

S

0

0

X

0

0

X

X

X X

X

X

0 0

(1) (2) (3) (4) (5)

(6)

S

S

S

S

S

S S

S

S S S

S

S

S

S

S

S

S

0

0

0 0

0 0

0

0 0

X

X

X X

X

X

X 0

(7)

S

S

S

S

S

S

S

S

0 0

X

X

X X

X

X

X X

S

S

S

S

S

S

0

(8)

Triangularize (1*4 small array without load-off)

1
0 1

1 0 0
0 0 0 0
0 1 0
0 0
0

 

1
0 1

1 0 0
0 0 0 0
0 1 0
0 0

 

1
0 1

1 0 0
0 0 0 0
0 1 0

 1
0 1

1 0 0

 1
0 1

 

0

0

0 0 0 1 0

0

Swap

0

1 0

0 0

0
Swap

0

0 1 0

0 0

00
Add

0

Swap Swap

Pass

Pass

Add

Pass
Swap Swap

Swap Swap

(0) (1) (2) (3) (4) (5)

1
0 1

1 0 0
0 0 0 0

 

Round-1

1 

1 0

0 1

Add

00 1 0

1

00

(6) (7)

Round-2

1
0 1

0 0 0
0 0 0
0 0
0

 
1

0 1
0 0 0

0 0 0
0 0

 
1

0 1
0 0 0

0 0 0

 
1

0 1
0 0 0  

1
0 1

 
1

 

(0) (1) (2) (3) (4) (5)

0
Swap

0
0

0
Swap

Swap

0 0 0
0 0

Swap Swap

0 0 0
0 0

Swap

0
Swap

0 0 0
0 0

1
Swap Add

0 0 0
0
1

(6)

Round-3

0
0 0

0 0
0 0
0

 0
0 0

0 0
0 0

 0
0 0

0 0

 0
0 0  0

 

(0) (1) (2) (3) (4) (5)

0
Swap

0 0
Swap

0 0 0
0

SwapSwap

0 0 0
0

0
Swap

0 0 0
0
0

0

Round-4

0
0

0
0

 

0
0

0

 

0
0

 

0  

(0) (1) (2) (3) (4)

0 0 0
Swap

0 0 0
Swap

0 0 0 0

Triangularize (1*4 small array with load-off)

1
0 1

1 0 0
0 0 0 0
0 1 0
0 0
0

 

1
0 1

1 0 0
0 0 0 0
0 1 0
0 0

 

1
0 1

1 0 0
0 0 0 0
0 1 0

 1
0 1

1 0 0

 1
0 1

 

0

0

0 0 0 1 0

0

Swap

0

1 0

0 0

0
Swap

0

0 1 0

0 0

0X
Add

0

Swap Swap

Pass

Pass

Add

Pass
Swap Swap

Swap Swap

(0) (1) (2) (3) (4) (5)

1
0 1

1 0 0
0 0 0 0

 

Round-1

1 

1

0

0 1

Add

0 X

1

0X

(6) (7)

Round-2

1
0 1

0 0 0
0 0 0
0 0
0

 
1

0 1
0 0 0

0 0 0
0 0

 
1

0 1
0 0 0

0 0 0

 
1

0 1
0 0 0  

1
0 1

 
1

 

(0) (1) (2) (3) (4) (5)

0
Swap

0
0

0
Swap

Swap

0 0 0
0 0

Swap Swap

X 0 0
0 0

Swap

0
Swap

X X 0
0 0

1
Swap Add

X X
0
1

(6)

Round-3

0
0 0

0 0
0 0
0

 0
0 0

0 0
0 0

 0
0 0

0 0

 0
0 0  0

 

(0) (1) (2) (3) (4) (5)

0
Swap

0 0
Swap

X 0 0
0

SwapSwap

X X 0
0

0
Swap

X X X
0
0

0

0
0

0
0

 

0
0

0

 

0
0

 

0  

(0) (1) (2) (3) (4)

0 X 0
Swap

X X 0
Swap

X X X 0

Round-4

Swap

X

(8)

Swap Swap Swap

0

X
Swap Swap Swap

X
Swap Swap Swap

0 0

XX
Swap Swap

X X

Swap Swap Swap Swap Swap Swap

0 0

Swap

X
Swap Swap Swap

0
X X

1

(7)

Swap

X
Swap Swap Swap

X

Swap Swap Swap Swap Swap Swap Swap Swap Swap Swap

0 0 0

(6)

X X X
Swap Swap Swap

0
X

Swap

Swap Swap Swap Swap Swap Swap Swap Swap

0 0

Swap

0

Swap

(5)

X X X
Swap

0

Swap

X

S S

S

S

S

S

S

S

S S

S

S

S

S

S

S

S

S

S

S

S

0

X

0 0

0

1 00

0

S

S S 0

X X X

X

X

X

S

S

S S

S S

0

S

S X

X

X

Systemize 2*2 matrix (3*4 small array with load-off)

0
0 0

1 0 0
0 1 0
0 1
1

 

(0) (1) (2)

Pass
Pass

(3)

Pass

0
0 0

1 0 0
0 1 0
0 1

 0
0 0

1 0 0
0 1 0

 0
0 0

1 0 0

 0
0 0

 

(4)

0
Pass

0

0

0

(6)

0 0

0 0

Pass

0

Pass Pass

1

0

Add

0 0
0

Add
0

(7)

0 0

0 0

0 0 0
0

(8)

Switch to 

Systemization 

Phase

0 0

0 0

0 0 0 0

Swap

Swap

Swap

(9)

0 0

0 0

0 0 0 0

Swap

Swap

Swap

0

(14)

0 0

0 0

0 0 0 0

Swap

Swap

Swap

(5)

0 0

0

0

0
0

0

Pass

0

 

Add

Pass

Pass

0

Pass

(10)

0 0

0 0

0 0 0 0

Swap

Swap

SwapPass

Add

Pass

0

0

0

Pass

Pass

(11)

0 0

0 0

0 0 0 0
0

0

0

0

0

Pass

Pass

Pass

(12)

0 0

0 0

0 0 0 0

0

0

0

Pass

(13)

0 0

0 0

0 0 0 0

0

1 1 

0 

1 

0 

1 1 

1 
1 

1 1 

0 

1 

1 1 

0 1 

1 1 

0 1 

1 1 

0 1 

1 1 

0 1 

1 1 

0 

1 

1 1 

0 1 

1 1 

0 1 

1 1 

0 1 

1 1 

0 1 

1 1 

0 

1 

0 

1 

0 

1 

 

1 

0 

1 1 0 

1
0 1

1 0 0
0 0 0 0
0 1 0
0 0
0

 

1
0 1

1 0 0
0 0 0 0
0 1 0
0 0

 

1
0 1

1 0 0
0 0 0 0
0 1 0

 1
0 1

1 0 0

 1
0 1

 

0

0

0 0 0 1 0

0

0

Swap

0

1 0

0 0

0

0
0

0

Swap

0

0 1 0

0

0

0

X

0
0 0

Add

0

0

Swap Swap

Pass

Pass

Add

Pass

Swap
Swap

Swap

Swap Swap

Swap Swap

SwapSwap

(0) (1) (2) (3) (4) (5)

1
0 1

1 0 0
0 0 0 0

 

Triangularize (2*4 small array with simplified load-off)

1 

1

0

0

0

0X

0
0

Add

0

1

0

0

X X

1

0

0
0

1

X

X
Swap

0

1
Swap Swap

(6) (7)

Round-1

AddSwap

X

X

X

0 1

0

(8)

X

X

Swap
X X

X
1

X

X

X

X

(9) (10)

0

Round-2

0
0 0

0 0
0 0
0

 

(0)

0
0 0

0 0
0 0

 0
0 0

0 0

 0
0 0  0

 0
Swap

0 0
0

Swap Swap

Swap

Swap X

0
0
0

Swap

Swap Swap
0 X

0

X 0

0Swap

Swap
0

0

Swap Swap

X

X

X

Swap

0

0

X

0

0

X X

X

X

0 0

(1) (2) (3) (4) (5)

(6)

Swap

Swap

Swap

Swap Swap

Swap

Swap Swap

Swap

Swap Swap

0

0

0 0

0 0

0

0 0

X

X

X X

X

X

X 0

(7)

Swap

0 0

X

X

X X

X

X

X X
0

(8)

Swap

Swap

Swap

Swap Swap

Swap

Swap Swap Swap Swap

0

X

0 0

0

1 00

0
Swap

0

X X X

X

X

X
0
X

X

X

X

X

S S S S S S

Triangularize (1*4 small array with simplified load-off)

1
0 1

1 0 0
0 0 0 0
0 1 0
0 0
0

 

1
0 1

1 0 0
0 0 0 0
0 1 0
0 0

 

1
0 1

1 0 0
0 0 0 0
0 1 0

 1
0 1

1 0 0

 1
0 1

 

0

0

0 0 0 1 0

0

Swap

0

1 0

0 0

0
Swap

0

0 1

0 0

X
Add

Swap Swap

Pass

Pass

Add
Swap Swap

Swap Swap

(0) (1) (2) (3) (4) (5)

1
0 1

1 0 0
0 0 0 0

 

1 

1

0

0 1

Add

0 X

1

0X

(6) (7)

1
0 1

0 0 0
0 0 0
0 0
0

 
1

0 1
0 0 0

0 0 0
0 0

 
1

0 1
0 0 0

0 0 0

 
1

0 1
0 0 0  

1
0 1

 
1

 

(0) (1) (2) (3) (4) (5)

0
Swap

0
0

0
Swap

Swap

0 0 0
0 0

Swap Swap

X 0 0
0 0

Swap

0
Swap

X X 0
0 0

1
Swap

X X
0
1

(6)

0
0 0

0 0
0 0
0

 0
0 0

0 0
0 0

 0
0 0

0 0

 0
0 0  0

 

(0) (1) (2) (3) (4) (5)

0
Swap

0 0
Swap

X 0 0
0

SwapSwap

X X 0
0

0
Swap

X X X
0
0

0

0
0

0
0

 

0
0

0

 

0
0

 

0  

(0) (1) (2) (3) (4)

0 X 0
Swap

X X 0
Swap

X X X 0

X

(8)

Swap Swap

0

X
Swap

X
Swap

0 0

XXX X

Swap Swap Swap

0 0

X
Swap

0
X X

1

(7)

X X

Swap Swap Swap Swap

0 0 0

(6)

X X X
0

X

Swap Swap

0 0

Swap

0

Swap

(5)

X X X
0

X

Round-4

Round-3

Round-2

Round-1

Swap

Swap Swap Swap

Swap Swap Swap

Swap

0

Round-II

(0)

0
1 1

0 0
0 0

 0
1 1

0 0

 0
1 1  0

 0
Swap

0 0
0

Swap Swap

Swap

Swap X

0
0
0

Swap

Swap Swap
0 X

0

X 1

0Swap

Swap
1

0

Swap

X

X

X

Swap

0

0

X

0

1

X X

X

X

1 1

(1) (2) (3) (4) (5)

(6)

Swap

Swap

Swap

Swap Swap

Swap

Swap Swap

Swap

Swap Swap

0

0

0 1

0 0

0

0 0

X

X

X X

X

X

X 0

(7)

Swap

1 1

X

X

X X

X

X

X X
0

(8)

X

X

Swap Swap Swap

Swap

0
1 1

0 0
0 0
0

 

Systemize 2*2 matrix (2*4 small array with load-off)

1
0 1

0 1
0 0
0

 

(0) (1) (2)

Swap

(3)

1
0 1

0 1
0 0

 
1

0 1
0 1

 

1
0 1

 

1

 

(4)

0 0 
0 

0 

0 

1 
Swap

0 0 
0 

1 
Pass

0 

0 0 1 
Pass

0 

(6)

Switch to 

Systemization 

Phase

(7) (8) (9)(5)

1

 1 

0 

0 0 1 

0 0 

1 

0 

0 0 1 

0 1 

Swap

Swap

1 

0 

0 0 1 

0 1 

1 

0 

0 0 1 

0 1 

1 

0 

0 0 1 

0 1 

Swap

Swap

Swap

Swap

Swap

Swap
0 

0 

Pass

0 

0 

0 

Pass 1 

0 0 

Pass

(14)(10) (11) (12) (13)

1 

0 

0 0 1 

0 1 
1 

1 1 

0 

0 0 0 0 

0 
Add

1 

0 

0 0 1 

0 1 
0 

0 

TRI_RD TRI_SWAP TRI_WR1 TRI_WR2 TRAN SYS_RD SYS_WRSYS_SWAP

Repeat    times 𝑘/𝑥  Perform once only

Delay+k-(i-1)x x l-1 x Delay+x1 l+d-1 l+d-1

0
1 0

0 0 1
0 0 0 1
1 1 0 0
0 0 0 0
0 1 0
0 0
0

 

0
1 0

0 0 1
0 0 0 1
1 1 0 0
0 0 0 0
0 1 0

 

0

0

0 0 0 1 0

0

0

Swap

0

Swap Swap

Pass

Swap

Swap Swap

Swap

(0) (1) (2) (3)

0
1 0

0 0 1
0 0 0 1
1 1 0 0
0 0 0 0

 

Triangularize (2*4 small array with simplified load-off)

Round-1

Round-3

0
0 0

0 0
0 0
0

 

(0)

0
0 0

0 0
0 0

 0
0 0

0 0

 0
0 0  0

 0
Swap

0 0
0

Swap Swap

Swap

Swap X

0
0
0

Swap

Swap Swap
0 X

0

X 0

0Swap

Swap
0

0

Swap Swap

X

X

X

Swap

0

0

X

0

0

X X

X

X

0 0

(1) (2) (3) (4) (5)

(6)

Swap

Swap

Swap

Swap Swap

Swap

Swap Swap

Swap

Swap Swap

0

0

0 0

0 0

0

0 0

X

X

X X

X

X

X 0

(7)

Swap

0 0

X

X

X X

X

X

X X
0

(8)

X

X

Swap Swap Swap

Swap

0
1 0

0 0 1
0 0 0 1
1 1 0 0
0 0 0 0
0 1 0
0 0

 
0

1 0
0 0 1

0 0 0 1
1 1 0 0

 

1 0

0 0

0

0
0

0

Swap

0

Pass

Add

Swap
Swap

Swap

(4)

0

0
1 0

0 0 1
0 0 0 1

 

1 0

0 0

0
0

Pass

0

Add

Swap

Swap

(5)

01

0

0

0
0

Swap

0
1 0

0 0 1

 

0 0

0 1

0
0

Add

0

Swap

Swap

Pass

(6)

01

0

1

0
0

Swap

PassSwap

Swap

0
0

Swap
Swap Swap

0
1 0

 

0 0

0

0
1

Swap

0

Pass

Swap

(7)

0

1

0

1

0
0

Swap
1

0

Swap
Pass

0

0 

0

1

Pass

1

(8)

0

0

0
0

Pass
1

0

Swap

00

(9)

0

0 0
1

Pass

1

(10)

0 0

0

Swap Swap

Swap

Swap

Swap Swap

Swap Swap Swap Swap

Swap Swap SwapSwap

X

1

X X

0 0

X X X

0

1

X

1

0

0

0

(11)

X 0

0

Swap

0

X X X X

X X

0

X X X X

X X

(12)

X X

0

Swap

X X X X

X X

Round-2

0
1 1

0 0 0
0 0 0 0
0 0 0
0 0
0

 

0
1 1

0 0 0
0 0 0 0
0 0 0
0 0

 

0
1 1

0 0 0
0 0 0 0
0 0 0

 0
1 1

0 0 0

 0
1 1

 

0

0

0 0 0 0

0

0

Swap

0

0

0 0

0

0
0

0

Swap

0

0 0

0

0

0

X

0
0 0

Swap

0

0

Swap Swap Swap Swap

Swap
Swap

Swap

Swap Swap

Swap Swap

SwapSwap

(0) (1) (2) (3) (4) (5)

0
1 1

0 0 0
0 0 0 0

 

0 

0

0

X

0
0

Swap

0

0

0

0

X X 0

0
0

X

X
0

1
Swap Swap

(6) (7)

Swap
Swap

X

X

X

1

0

(8)

X

X

Swap
X X

X
1

X

X

X

X

(9) (10)

Swap

Swap

Swap

Swap Swap

Swap

Swap Swap Swap Swap

0

X

0 0 00

0
Swap

0

X X X

X

X

X
0
X

X

X

Swap

Swap Swap Swap

00 0 0

Swap Swap

1 1

0

0

1

10

0 1

TRI_RD TRI_SWAP

TRI_WR1

TRI_WR2 TRAN SYS_RD SYS_WRSYS_SWAP

Repeat    times 𝑘/𝑥  Perform once only

Delay+k-(i-1)x

k-i*x x Delay+x1 l+d-1 l+d-1

Timing diagram for fat matrix intersection instances

Timing diagram for thin matrix intersection instances

S

S

Fig. 8. A toy example to transform 4 × 4 matrix over F2 by the proposed 2 × 4 systolic array using the node logic shown in Fig. 7.
Triangularization refers to putting the input matrix into its row-echelon form.
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Again, we describe our idea with the same example used in Fig. 4 to transform a 4 × 4 matrix

[
0 0 0 0

0 1 0 0

0 0 0 1

0 1 0 1

]
to its row

echelon form

[
0 1 0 0

0 0 0 1

0 0 0 0

0 0 0 0

]
. An additional function we add to the node is the signal swap_in, which permits to load the

sorted rows out of the systolic array to external memory at desired timing. We assume here the 4× 4matrix is too ‘large’

to process and the 2 × 4 systolic array is exploited to do this task. The triangularization is done within two rounds of

Gaussian elimination. In Round-1, the systolic array sorts (Gaussian-eliminates) the first two rows of the matrix into[
0 1 0 0

0 0 0 1

]
and then loads them out. In Round-2, the systolic array sorts the remaining unsorted two lines of the matrix

and then loads them out.

In more details, the node behavior mode must be modified such that the node can correctly load data in or load

data off to the external memory. Therefore, we add a new feature, called swap_in, to the input signal lists of the node

as shown in the red colored texts in Fig. 7. swap_in is triggered to output the data within the internal register r and,

meanwhile, update the register by the input data at the specific timing when the systolic array requires to load the

register data off to the memory. A simple example, i.e., to transform a 4 × 4 matrix

[
0 0 0 0

0 1 0 0

0 0 0 1

0 1 0 1

]
to its row echelon form[

0 1 0 0

0 0 0 1

0 0 0 0

0 0 0 0

]
on a 2 × 4 systolic array is depicted step-by-step in Fig. 8. The entire process requires two rounds of Gaussian

eliminations: The first round costs 10 steps which manipulate the entire four rows of the input matirx and eliminate the

first two rows, and finally load the four rows back to memory; The second round costs 8 steps which manipulate only

the last two rows of the input matrix and then load back to memory.

Specifically, in Round-1, initially at step-(0), the input matrix

[
0 0 0 0

0 1 0 0

0 0 0 1

0 1 0 1

]
is prepared in skewed form and fed to the

array; At step-(1), the upperleft node accepts ‘0’ to its internal register and {r, pivot_in}==2’b00 triggers ‘SWAP’

signal; At step-(2), on the one hand, the upperleft node outputs ‘0’ to the buffer register due to the ‘SWAP’ signal from

step-(1), and again performs ‘SWAP’ since {r, pivot}==2’b00. On the other hand, the second node in the first row of

the array receives ‘SWAP’ passed by the leftmost node in the previous step and therefore, executes ‘SWAP’ accordingly;

At step-(3), the second node in the first row acts as a pivot since {r, pivot_in}==2’b10; At step-(4), the swap_in

is externally triggered on the upperleft node for loading-off to external memory storage; Starting from step-(5), the

swap_in signals of the two leading nodes of the respective rows of the systolic array keep assertive until the array finally

loads all effective data out to the external memory at step-(10). It is worth mentioning that the systolic array outputs

the result matrix

[
0 1 0 0

0 0 0 1

0 0 0 0

0 0 0 0

]
in reversed order, i.e, firstly, it outputs the last row, then second last one, and eventually the

first one. It is easily seen that the first two rows of the result matrix has been sorted correctly at the end of Round-1.

The Round-2 process mostly repeats what has been described for Round-1 except that the input matrix has two rows

which are extracted from the last two rows of the result matrix mentioned in Round-1. In general, it costs 𝐷/𝑑 (assume

𝑑 | 𝐷 for simplicity) rounds for triangularizing a 𝐷 × 𝑙 matrix with a single 𝑑 × 𝑙 (𝑑 < 𝐷) systolic array within about

(𝐷+2𝑙 ) ·𝐷
2𝑑

cycles. The exact results are stated and proved in Proposition 4.2.

Proposition 4.2. The total number of rounds for one 𝑑 × 𝑙 (𝑑 < 𝐷) systolic array to triangularize a 𝐷 × 𝑙 matrix is 𝐷/𝑑 ;
A particular 𝑖-th round costs 𝐷 + 𝑙 − 2 + (3 − 𝑖)𝑑 cycles to complete. The total cycle count for one 𝑑 × 𝑙 (𝑑 < 𝐷) systolic
array to triangularize a 𝐷 × 𝑙 matrix is 𝐷

𝑑
(𝐷
2
+ 𝑙 + 5

2
𝑑 − 2).

Proof. Each round sorts 𝑑 rows of the 𝐷-rows matrix and thus the round complexity is 𝐷/𝑑 . At Round-𝑖 (𝑖 = 1, . . . , 𝐷/𝑑),
the first (𝑖 − 1)𝑑 rows have been sorted already and the systolic array needs to process the remaining 𝐷 − (𝑖 − 1)𝑑
rows. It takes 2𝑑 − 1 cycles for the first output of the systolic array to appear since the first column of the systolic
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array consists of 2𝑑 registers; Note that the first output of the systolic array belongs to the unsorted 𝐷 − 𝑖𝑑 rows

and it takes 𝑙 − 1 + 𝐷 − 𝑖𝑑 cycles to output the entire 𝐷 − 𝑖𝑑 unsorted rows; Finally, it takes 𝑑 cycles to load out

the sorted 𝑑 rows stored in the nodes of the systolic array. These three parts contribute to the total cycle count of

Round-𝑖: (2𝑑 − 1) + (𝑙 − 1 + 𝐷 − 𝑖𝑑) + 𝑑 . Therefore, the accumulation of all rounds gives the final cycle delay as∑
𝑖 𝐷 + 𝑙 − 2 + (3 − 𝑖)𝑑 = 𝐷

𝑑
(𝐷 + 𝑙 − 2 + 3𝑑 − 𝑑+𝐷

2
) ≈ 𝐷

𝑑
(𝐷 + 𝑙 − 𝐷

2
) = (𝐷+2𝑙 )𝐷

2𝑑
. □

4.3 High Level Description for Implementing ROLLO

This subsection describes the adaptation of the proposed Gaussian elimination module for the complete ROLLO

hardware at a higher level. It is worth mentioning that the CPA-secure ROLLO can be converted to a CCA2-secure

KEM when the HHK [7] framework for the Fujisaki-Okamoto transformation is applied. Therefore, we focus on the

CCA2-secure parameter sets and include the core functionalities, e.g., encryption and decryption in this work.

4.3.1 ROLLO Encapsulation/Encryption. In encryption part, Gaussian elimination is essential to generate a unique

symmetric key 𝐾 : The error space E, which is reprensented as a 𝑘 × 𝑙 binary matrix, must be converted to reduced

row-echelon form Erref , and thus hashing Erref eventually returns the key 𝐾 . Gaussian elimination on E includes two

phases: first triangularize and then systemize which costs 2𝑘 + 𝑙 − 2 and 𝑘 + 𝑙 cycles, respectively.
Hardware architecture Fig. 9 depicts the top-level architecture for the ROLLO encryption. In ROLLO-I, the RNG
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(b) Hardware architecture for ROLLO-II data encryption

Fig. 9. ROLLO encryption hardware

provides the necessary randomness to drive Low-Rank Polynomial Generator for generating the error space 𝐸 and
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subsequently the two ‘small’ error vectors 𝑒1, 𝑒2. Gaussian Systemizer transforms 𝐸 to its reduced row echelon

form 𝐸
rref

and then checks its rank value. Finally, the ciphertext 𝑐 is calculated via the polynomial multiplier (F2𝑚 [𝑧]
multiplier) and adder, and 𝐾 is calculated by hashing 𝐸

rref
through the SHA3 module. Likewise, the architecture for

ROLLO-II encryption is almost identical to that for ROLLO-I except for the way of manipulating the final ciphertext:

ROLLO-I outputs the hash value 𝐾 directly, whereas ROLLO-II encrypts the message 𝑀 by XORing 𝐾 . Moreover,

the circuit size for ROLLO-II is generally larger since ROLLO-II requires an extremely low decoding failure rate for

satisfying the security requirement and this results in increasing parameter values.

4.3.2 ROLLO Decapsulation/Decryption. In this subsection, we discuss the implementation details of ROLLO-I.Decap

and ROLLO-II.Decrypt. The most critical component in the decryption part, is called Rank Support Recovery (RSR).

When the two syndrome spaces, i.e., 𝑆1 and 𝑆2, are ready in memory, the module RSR will perform the RSR algorithm

(see Algorithm 3) to retrieve the intersection as the error vector space 𝐸 = 𝑆1 ∩ 𝑆2. The primary operation in RSR

algorithm is the Zaussenhaus algorithm which returns the intersection of two vector spaces (see Algorithm 4). The

most computational-intensive task of Zaussenhaus algorithm is essentially trianguarization on a relatively large block

matrix

[
𝑆1 𝑆1

𝑆2 0

]
. Note that the dimension of 𝐸 is upper bounded by 𝑟 · 𝑑 and therefore 𝐸 is always written back to

the first 𝑟 · 𝑑 rows of memory such that the first 𝑑𝑖𝑚(𝐸) rows store 𝐸 and the remaining 𝑟𝑑 − 𝑑𝑖𝑚(𝐸) rows store null

vector. Next, 𝑆𝑖 (𝑖 = 3, · · · , 𝑑) is written to the following 𝑛 rows of memory to formulate the large matrix as

[
𝐸 𝐸

𝑆𝑖 0

]
for Zassenhaus algorithm to update a new and further reduced 𝐸. The Zaussenhaus algorithm is repeatedly performed

𝑑 − 1 times to extract the correct 𝐸 after which a final matrix systemization of 𝐸 is required for hashing.

Input: s = (𝑠1, . . . , 𝑠𝑛) ∈ F𝑛𝑞𝑚 a syndrome of an error e of weight 𝑟 and of support 𝐸

Output: A candidate for the vector space 𝐸

// Compute the vector space 𝐸𝐹

1 Compute the syndrome vector space 𝑆 = ⟨𝑠1, . . . , 𝑠𝑛⟩
// Recover the vector space 𝐸 from 𝑆𝑖’s

2 Compute every 𝑆𝑖 = 𝑓
−1
𝑖
𝑆 for 𝑖 = 1 to 𝑑

3 𝐸 ← ∩𝑑
𝑖=1
𝑆𝑖 // Repeat 𝑑 times Zaussenhaus algorithm

4 return E

Algorithm 3: Constant-Time Rank Support Recover (RSR) algorithm

input :Vector space 𝑆1 = ( ®𝑠1,1, · · · , ®𝑠1,𝑛)𝑇 and Vector space 𝑆2 = ( ®𝑠2,1, · · · , ®𝑠2,𝑘 )𝑇
output : Intersection of vector space 𝑆1 and 𝑆2 as 𝑆1 ∩ 𝑆2

1 Create a block matrix as

[
𝑆1 𝑆1

𝑆2 0

]
.

2 Perform Gaussian elimination (triangularization) on the block matrix above and obtain an updated block matrix

as


𝑆1 ∪ 𝑆2

. . .

0 𝑆1 ∩ 𝑆2
0 0

 .
3 Return 𝑆1 ∩ 𝑆2.

Algorithm 4: Zaussenhaus algorithm
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(a) Hardware architecture for ROLLO-I key decapsulation
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(b) Hardware architecture for ROLLO-II data decryption

Fig. 10. ROLLO decryption hardware

Hardware architecture
Figs. 10a and 10b depict the hardware architecture for the ROLLO decryption/decapsulation. The critical components

include the F2𝑚 [𝑧] multiplier and the Gaussian Elimination systolic array, which contributes the majority of the

hardware utilization. ROLLO-I and ROLLO-II share almost an identical architecture though the ROLLO-II decryption is

relatively larger due to the larger system parameter 𝑛. The only difference at the top level is that ROLLO-I outputs the

hash value 𝐾 directly whereas ROLLO-I decrypts the cryptogram by XORing 𝐾 .

4.4 Performance and Comparisons

We show in Table 1 the scalability of our approach by implementing Gaussian eliminator for three different matrix sizes,

20 × 20, 50 × 50, and 90 × 90, on Xilinx Virtex-5 FPGA. This FPGA family is selected to enable fair comparison with

previous work presented in [9]. We choose [9] as the primary comparison target since this work implements various

systolic architectures for Gaussian elimination on the same device. We also include the experimental data on Xilinx

Spartan-3 FPGA, reported in [13], which is the most recent hardware-based Gaussian elimination implementation that

we are aware of.

Compared with the triangular architectures, including TSA, TSL, and TSN, our designmostly retains as high frequency

as theirs due to the full pipeline structure. It also uses almost the same number of clock cycles. The significant increase of

slice utilization is primarily due to the dual switching mode used in the node: The conventional triangular architectures

for 𝑘 × 𝑘 binary matrices consist of 𝑘 pivot nodes along the diagonal of the systolic array and 𝑘 (𝑘 − 1)/2 non-pivot
nodes at the remaining positions. Therefore, the area complexity is determined by the number of non-pivot nodes,

which is quadratic as a function of 𝑘 . On the contrary, our design consists of 𝑘 (𝑘 + 1)/2 dual-functional nodes, and the
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number of these nodes determines the slice count. The dual-functional node presented in this work can be roughly

interpreted as a combination of the pivot and non-pivot nodes, and the pivot utilization outweighs the non-pivot.

In terms of speed, compared with the linear architectures, our design is significantly faster, since it runs in Θ(𝑘) steps,
whereas linear architectures run in Θ(𝑘2) steps. The linear architectures are advantageous in lightweight applications

since the resource utilization increases linearly with the dimension 𝑘 . On top of that, when previous designs are used as

SLE solvers, they cannot return valid solutions for unsolvable under-determined equations, which are equivalent to

Gaussian-eliminating singular matrices. Our new design, however, overcomes this difficulty.

Finally, we test the performance of our systolic array for Gaussian elimination with parameters used in ROLLO-

II.encrypt. The implementation results are collected in Table 2. Three different sizes of matrices, 7 × 67, 8 × 79, and
9 × 97, are used, matching the parameters used in 128-bit, 192-bit, and 256-bit pre-quantum security, respectively.

ROLLO-II.encrypt requires the standard Gaussian-Jordan elimination, i.e. triangularization and systemization must be

performed. The previous hardware designs cannot be applied for this task due to the singularity of the matrices.

5 CONCLUSIONS

This paper explored the possibility of realizing Gaussian elimination for arbitrary binary matrices on hardware. The

idea stems from the proposed dynamical dual switching mode, which allows the hardware to determine the position of

pivot elements in each row of the matrix on the fly. The correctness of the universal Gaussian elimination using this

new type of switching mode is strictly proved. We showcased the usefulness of hardware-based Gaussian elimination

for medium-sized and large-sized binary matrices. It is the first available hardware architecture for Gaussian elimination

that supports quantum-resisting rank-code-based cryptography with varying security parameters.
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