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Abstract. Code-Based Cryptosystem, CBC, is one of the candidates
for Post-Quantum Cryptosystems, PQCs. Its security primarily bases on
the Syndrome Decoding Problem, SDP. In this paper, we focus on the
rank CBC whose security relies on the rank SDP. The GRS（Gaborit-
Ruatta-Schrek）algorithm is well known as the current best decoding
algorithm for the rank SDP. We propose the quantum version of the GRS
algorithm. Then, we introduce the attack strategy using that quantum
algorithm for previous rank CBCs remained at the 2nd Round of the
NIST’s PQC standardization project, and consider the quantum security
for those cryptosystems. We present a result that is effective for RQC by
our attack method, so give new RQC’s instances which is secure against
that attack.

Keywords: Rank code-based cryptography · GRS algorithm · Grover’s
algorithm · ROLLO · RQC

1 Introduction

A public-key cryptosystem is currently used for our secure communication. Its
security largely bases on number theory problems such as the integer factoriza-
tion problem or the discrete logarithm problem. The RSA cryptosystem relies
on the former problem. In 1994, Shor [25] showed polynomial-time quantum al-
gorithms to solve both problems, and therefore once a quantum computer of
an appropriate size is built, the RSA cryptosystems shall be vulnerable to the
Shor’s algorithm. Then, we need to think about Post-Quantum Cryptosystems,
PQCs, and code-based cryptosystem, CBC, is among the promising candidates
for PQC.

1.1 Rank-metric code

Let q be a prime power, and m and n be positive integers. For x ∈ Fn
qm , let φx

be the linear transformation such that φx : Fn
q 3 v 7→ vx ∈ Fqm , and rankFq

(x)
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denotes the rank of x, i.e. the dimension of the image of φx. Also, an Fqm-linear
code C of n-length and k-dimension is a sublinear space with k-dimension in
Fn
qm . Such a C is called an [n, k]qm -linear code. A rank-metric code C ⊆ Fn

qm is
an [n, k]qm -linear code with rank-metric. For example, the Gabidulin code [5] and
the LRPC code [6] are rank-metric codes. These codes correspond to the rank
version of the Reed-Solomon code [23] and the LDPC code [9] with Hamming
metric, respectively.

1.2 Rank Syndrome Decoding Problem(Rank SDP)

Definition 1 (Rank SDP). Let q,m, n, k and w be positive integers, H be
a matrix in F(n−k)×n

qm , and s be a vector in Fn−k
qm . Then, the rank SDP is the

problem to find an e ∈ Fn
qm such that HeT = s and rankFqm

(e) = w, on input
q,m, n, k, w,H and s.

The rank SDP is not known to be NP-complete, but it is known that there
is a UR reduction [12] between the rank SDP and the SDP with Hamming-
metric, which is NP-complete [8]. In this paper, we consider the rank code-
based cryptosystem, rank CBC, which uses the rank SDP as the basis for its
security. NIST has been standardrizing PQCs since 2016, and the project is
currently in its 4th Round. Two rank CBCs, ROLLO and RQC, remained in
PQC standardization project until its 2nd Round, but do not remain in its 4th
Round.

1.3 Attack method for rank CBC

The rank CBC is the McEliece cryptosystem [16] using the rank-metric code.
The GRS algorithm [7] is the best known decoding algorithm to solve the rank
SDP. Also, the algebraic attack is one of the attack methods which solve the
equations with multi-variate polynomials derived from the public key in the
multi-variate polynomial based public-key cryptosystem, and can be applied to
the rank CBC. Bardet et al. [2] proposed the algebraic attack for ROLLO and
RQC. In this paper, we focus on the GRS algorithm as the previous attack
method for the rank CBC. We review the abstract of the GRS algorithm in
Section 2.

1.4 Previous study

CBC is derived from the McEliece cryptosystem. Since the McEliece cryptosys-
tem appeared in 1978, there are some studies of security from a classical view.
For example, the Information Set Decoding(ISD) algorithm is the algorithm to
solve the Syndrome Decoding Problem with Hamming-metric. Prange [22] pro-
posed the ISD algorithm with its subsequent derivaration, for example, MMT
[15] and BJMM [3]. Also, Bernstein [4] proposed the quantum version of the
Prange algorithm, and Kachigar et al. [13] proposed the quantum version of the
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MMT/BJMM algorithms. Perriello et al. [21] introduced the analysis strategy
for the previous Hamming CBCs using the Bernstein algorithm. As seen in Sec-
tion 1.3, we can see some studies about the rank CBC from classical view, but
there are few ones from quantum view.

1.5 Our contribution and Organization

In this paper, we propose the quantum version of the GRS algorithm, and com-
pute the computational costs of the quantum GRS algorithm over the quantum
circuit. Then, we can find this quantum attack method is effective for RQC by
applying to the rank CBCs remained at NIST PQC project 2nd Round. One rea-
son why it is effective is that the value of a certain instance is small. Therefore,
we propose the value which RQC is secure against this attack method.

This paper is constructed as following. First, we have already seen the def-
inition of the rank-metric code and the rank SDP. In Section 2, we review the
abstract of the classical GRS algorithm. In Section 3, we introduce the quan-
tum computation and the Grover’s algorithm [10]. In Section 4, we propose the
quantum GRS algorithm based on the above preparations. In Section 5, we con-
sider the attack strategy using the quantum GRS algorithm and the results for
ROLLO and RQC. In Section 6, we conclude this paper.

2 Classical GRS algorithm [7]

Suppose that the rank SDP’s input q,m, n, k, w,H and s are as in Definition
1. Let r be a positive integer, and let Vm,r be an r-dimension entire subspace
over Fqm . For vm ∈ Vm,r, let bm be one of the basis which generates vm, and
Bm,r be such the whole bm, that is, Bm,r = {bm | vm ∈ Vm,r}. Also, let Vn,r
be an r-dimension entire subspace over Fn

q , and for vn ∈ Vn,r, let bn be one
of the basis which generates vn. Let Bn,r = {bn | vn ∈ Vn,r}. Furthermore, let
β = (β1, · · · , βm) be one of the basis over Fqm . For x ∈ Fqm and i ∈ [1,m], there

exists xi ∈ Fq such that x =

m∑
i=1

xiβi. Then, let pi : Fqm 3 x 7→ xi ∈ Fq. In the

following, we divide the case depending upon which is greater, m or n.
In the case n ≥ m, we randomly choose r from the closed interval [w,m −

dkm/ne], and randomly take F = (F1, · · · , Fr) from (Bm,r)
r without dupli-

cation. Then, we assume that, for ℓ′ ∈ [1, n] and j ∈ [1, r], there exists λℓ′ =

(λℓ′,1, · · · , λℓ′,r) ∈ Fr
q such that eℓ′ =

r∑
j=1

λℓ′,jFj , where eℓ′ represents the ℓ′-th el-
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Algorithm 1 Classical GRS algorithm（n ≥ m）
Input: q,m, n, k, w,H, s, β = (β1, · · · , βm), r, Bm,r
Output: e
1: e← 0n

2: if n ≥ m then
3: while rankFq (e)! = w do

4: F = (F1, · · · , Fr)
$←− (Bm,r)

r

5: for ℓ := 1 to n− k do
6: for ℓ′ := 1 to n do
7: Ĥ[ℓ][ℓ′]← () {// Ĥ[ℓ][ℓ′] : (m× r) matrix}
8: for j := 1 to r do
9: Hℓ,ℓ′,j ← Hℓ′,ℓ · Fr

10: Ĥ[ℓ][ℓ′]← Ĥ[ℓ][ℓ′] ∪ (p1(Hℓ,ℓ′,j), · · · , pm(Hℓ,ℓ′,j))
T

11: ŝ[ℓ]← (p1(sℓ), · · · , pm(sℓ))
12: (λℓ′,j)1≤ℓ′≤n,1≤j≤r ← GE(Ĥ, ŝ)
13: for ℓ′ := 1 to n do

14: eℓ′ ←
r∑
j=1

λℓ′,jFj

15: return e

ement of e = (e1, · · · , en). We define Ĥ ∈ Fm(n−k)×nr
q as following (ℓ ∈ [1, n−k]):

Ĥ =

 Ĥ[1][1] · · · Ĥ[1][n]
...

. . .
...

Ĥ[n− k][1] · · · Ĥ[n− k][n]

 ,

where Ĥ[ℓ][ℓ′] =

 p1(Hℓ,ℓ′F1) · · · p1(Hℓ,ℓ′Fr)
...

. . .
...

pm(Hℓ,ℓ′F1) · · · pm(Hℓ,ℓ′Fr)

 .

Also, let ŝ[ℓ] = (p1(sℓ), · · · , pm(sℓ)) ∈ Fm
q , and we define ŝ = (ŝ[1], · · · , ŝ[n−k]).

Then, there exists λ ∈ Fnr
q such that Ĥλ = sp, where λ[ℓ′] = (λℓ′,1, · · · , λℓ′,r)

and λ = (λ[1], · · · , λ[n]). Ĥλ = sp is equivalent to He = s in the rank SDP. It
is neccesary that nr ≥ m(n − k) holds for the size of Ĥ to have a solution at
least for this simultaneous equation with an unknown λ. We estimate the range
of r from this condition. We evaluate e from λ using the Gaussian Elimination
over Fq for Ĥ and ŝ. Hence, the classical GRS algorithm if n ≥ m is given

in Algorithm 1. F = (F1, · · · , Fr)
$←− (Bm,r)

r described in Line 4 refers to
randomly choosing r elements from Bm,r without duplication. GE describes in
Line 12 refers to the subroutine which receives (Ĥ, ŝ), executes the Gaussian
Elimination for those, and computes the solution for the simultaneous equation.

Also, in the case n < m, we randomly take r from [w, n − k] and F ′ =
(F ′

1, · · · , F ′
r) from (Bn,r)

r without duplication. We define e′ = (e′1, · · · , e′m) ∈
(Fn

q )
m as following. For ℓ′ ∈ [1, n], eℓ′ =

∑m
i=1 pi(eℓ′) · βi holds. Then, for i ∈
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[1,m], let e′i = (pi(e1), · · · , pi(en)). Then, for j ∈ [1, r], i ∈ [1,m], we assume

that there exists λ′i,j ∈ Fq such that e′i =

r∑
j=1

λ′i,jF
′
j , where e′i represents the

i-th element of e′ = (e′1, · · · , e′m). We define Ĥ ′ ∈ Fm(n−k)×mr
q as following(i ∈

[1,m], ℓ ∈ [1, n− k]):

Ĥ ′ =

 Ĥ ′[1][1] · · · Ĥ ′[1][m]
...

. . .
...

Ĥ ′[n− k][1] · · · Ĥ ′[n− k][m]

 ,

where

Ĥ[ℓ][i] =



∑m
i′=1 pi′(Hℓ,1)βi′ 0 · · · 0
p2(Hℓ,1)

∑m
i′=2 pi′(Hℓ,2)βi′ · · · 0

...
...

. . .
...

pn(Hℓ,1) pn(Hℓ,2) · · ·
∑m

i′=n pi′(Hℓ,n)βi′

pn+1(Hℓ,1) pn+1(Hℓ,2) · · ·
∑m

i′=n+1 pi′(Hℓ,n)βi′
...

...
. . .

...
pm(Hℓ,1) pm(Hℓ,2) · · · pm(Hℓ,n)βm


.

In detail, for î ∈ [1,m], let Ĥ[ℓ][i]̂i be the î-th row of Ĥ[ℓ][i] and for ℓ̂ ∈ [1, n],
let Ĥ[ℓ][i]̂i,ℓ̂ be the ℓ̂-th element of Ĥ[ℓ][i]̂i. Then, Ĥ[ℓ][i]̂i,ℓ̂ is represented as
following:

Ĥ[ℓ][i]̂i,ℓ̂ =


pî(Hℓ,ℓ̂) (1 ≤ ℓ̂ ≤ î− 1)∑m

i′=î pi′(Hℓ,min{î,n}) · βi′ (ℓ̂ = î)

0 (̂i+ 1 ≤ ℓ̂ ≤ n)

Also, let ŝ[ℓ] = (p1(sℓ), · · · , pm(sℓ)) ∈ Fm
q , and we define ŝ = (ŝ[1], · · · , ŝ[n−k]).

Then, there exists λ ∈ Fnr
q such that Ĥ ′λ′ = ŝ, where λ′[i] = (λ′i,1, · · · , λ′i,r) and

λ′ = (λ′[1], · · · , λ′[m]). Ĥ ′λ′ = ŝ is equivalent to He = s. It is neccesary that
mr ≥ m(n− k), that is r ≥ n− k, holds for the size of Ĥ ′ to have a solution at
least for this simultaneous equation with an unknown λ′. We estimate the range
of r from this condition. We evaluate e from λ′ using the Gaussian Elimination
over Fq for Ĥ ′ and ŝ′. Therefore, the classical GRS algorithm if n < m is given
in Algorithm 2.

Let q and x be positive integers, we define [x]q := 1 + q + · · · + qx−1 and

[x]q! =
∏x

k=1[k]q. And let y be a positive integer, and
(
x

y

)
q

=
[x]q!

[x− y]q![y]q!
.

Then, let ℓCGRS,n≥m be the expected number of loop times in while sentence in
in Algorithm 1, and ℓCGRS,n≥m is given in ℓCGRS,n≥m =

(
m
w

)
q
/
(
r
w

)
q

[1]. Also,
let ℓCGRS,n<m be the expected number of iteration times in while sentence in
Algorithm 2, and ℓCGRS,n<m is given in ℓCGRS,n<m =

(
n
w

)
q
/
(
r
w

)
q

[1]. Moreover,
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Algorithm 2 Classical GRS algorithm（n < m）
Input: q,m, n, k, w,H, s, β = (β1, · · · , βm), r, Bn,r
Output: e
1: e← 0n

2: if n ≥ m then
3: while rankFq (e)! = w do

4: F ′ = (F ′
1, · · · , F ′

r)
$←− (Bn,r)

r

5: for ℓ := 1 to n− k do
6: for ℓ′ := 1 to n do
7: for ℓ̂ := 1 to n do
8: for î := 1 to m do
9: Ĥ[ℓ][i]̂i,ℓ̂ ← 0

10: if ℓ̂ == î then
11: for i′ := î to m do
12: Ĥ[ℓ][i]̂i,ℓ̂ ← Ĥ[ℓ][i]̂i,ℓ̂ + pi′(Hℓ,min{î,n}) · βi′
13: else if ℓ̂ < î then
14: Ĥ[ℓ][i]̂i,ℓ̂ ← pî(Hℓ,ℓ̂)
15: ŝ[ℓ]← (p1(sℓ), · · · , pm(sℓ))
16: (λ′

i,j)1≤i≤m,1≤j≤r ← GE(Ĥ ′, ŝ)
17: for i := 1 to m do

18: e′i ←
r∑
j=1

λ′
i,jF

′
j

19: for ℓ′ := 1 to n do
20: eℓ′ ← eℓ′ + e′i,ℓ′βℓ′

21: return e
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the computational complexity of the Gaussian Elimination for the simultaneous
equation with m(n − k) unknowns is O(m3(n − k)3). So, the computational
complexity in the classical GRS algorithm is as following:O

(
(n− k)3m3

(
m
w

)
q
/
(
r
w

)
q

)
, n ≥ m

O
(
(n− k)3m3

(
n
w

)
q
/
(
r
w

)
q

)
, n < m

3 Grover’s algorithm

In this section, we explain simply the quantum gates used in this paper and the
Grover’s algorithm. First, Clifford gate is the set of the quantum gates, i.e., H
gate, S gate and CNOT gate, and each of them is represented as follows:

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


T gate is the quantum gate represented by T =

(
1 0
0 eiπ/4

)
, and Clifford+T

gate is Clifford gate plus T gate. Z gate is the quantum gate represented by

Z =

(
1 0
0 −1

)
, and it is written by two S gates as following:

Z =

(
1 0
0 −1

)
=

(
1 0
0 i

)(
1 0
0 i

)
= SS

We roughly explain about the Grover’s algorithm. Let n be a positive integer,
V be {0, 1}n and M be a non-empty subset of V . And let f : V → {0, 1} be the
function such that f(v) is 1 if v ∈M and 0 otherwise. The Grover’s algorithm is
the quantum algorithm to search x0 ∈M taking (V, f) as inputs. This algorithm

has the computational complexity of O

(√
|V |
|M |

)
. Let HV is the Hilbert space

associated with V . Uo and Ud are the unitary operators over HV and defined as
following:

Uo(|i〉) :=

{
−|i〉 i ∈M ;

|i〉 o.w.;

Ud(|i〉) := (2H⊗n|0〉〈0|H⊗n − In)|i〉.

H⊗n denotes H⊗ · · · ⊗ H︸ ︷︷ ︸
n

, that is, the Tensor products of n H gates. Uo is called

the oracle operator and Ud is the unitary operator called diffuser. Then, the
Grover’s algorithm is written by Algorithm 3.
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Algorithm 3 Grover’s algorithm
Input: V ⊂ {0, 1}n, f : V → {0, 1}
Output: x0 ∈ {0, 1}n s.t. f(x0) = 1
1: |ψ⟩ ← |0n⟩
2: |ψ⟩ ← H⊗n|ψ⟩

3: for i := 1 to

 π

4arcsin(
√

|M|
|V | )

 do

4: |ψ⟩ ← Uo|ψ⟩
5: |ψ⟩ ← Ud|ψ⟩
6: return |ψ⟩

4 Quantum GRS algorithm

In this section, we propose the quantum GRS algorithm by combining the clas-
sical GRS algorithm and the Grover’s algorithm. In quantum GRS algorithm,
by using the Grover’s algorithm, we can efficiently probe a set F of the basis.

Suppose n ≥ m. Denote, by Grovern≥m, the subroutine using the Grover’s
algorithm. Let Bm,r be V in the Grover’s algorithm. Then, |Bm,r| =

(
m
r

)
q

holds. Also, let Fm−w be a subspace over Fqm whose dimension is m − w,
and Vm−w be such a whole Fm−w. And let Vm−w,r−w be an (r − w)-dim en-
tire subspace included in Vm−w Then, let Fm−w,r−w be one of the subspaces in
Vm−w,r−w, and bm−w,r−w be one of the basis of Fm−w,r−w. That is, Bm−w,r−w =
{bm−w | Fm−w,r−w ∈ Vm−w,r−w}, and it implies |Bm−w,r−w| =

(
m−w
r−w

)
. Let M

in the Grover’s algorithm be Bm−w,r−w, and we take f as following. For v ∈ V ,
we construct Ĥ and ŝ from (H, s, β, v) and evaluate (λℓ′,j)ℓ′,j as in Line 5 in
Algorithm 1, and evaluate e as in Line 7. Then, if rankFq

(e) = w, f returns
1 which indicates v ∈ M , and returns 0 otherwise. Then, |M | is equal to the
number of r-dim subspaces including the subspace Fe, generated by e, whose
dimension is w. Such a number is equal to the number of (n − w)-dimension
subspaces in the subspace from Fm

qm minus Fe, so |M | =
(
m−w
r−w

)
. Here,(

m
r

)
q(

m−w
r−w

)
q

=

[m]q !
[m−r]q ![r]q !

[m−w]q !
[m−r]q ![r−w]q !

=

[m]q !
[r]q !

[m−w]q !
[r−w]q !

=

[m]q !
[m−w]q !

[r]q !
[r−w]q !

=

[m]q !
[m−w]q ![w]q !

[r]q !
[r−w]q ![w]q !

=

(
m
w

)
q(

r
w

)
q

.

Hence, by |V |/|M | =
(
m
w

)
q
/
(
r
w

)
q
, |V |/|M | coincides with the number of iter-

ation in while sentence in Algorithm 1. That is, in Grovern≥m, the opera-
tions corresponding to the while sentence in Algorithm 1 are executed in
ℓQGRS,n≥m(=

√
ℓCGRS,n≥m) times. Thus, Grovern≥m can be constructed with

V,M and f shown above, and given by Algorithm 4.
QRA appearing in Line 6 refers to the quantum random access [11]. Let

A = (a1, · · · , an) be an n element array each of whose element is m-bits. For A,
1 ≤ i ≤ m and b ∈ Fm

2 , we think about the quantum circuit to compute b⊕′ ai,
where ⊕′ means the addition in Fm

2 . That is, the quantum circuit which returns
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Algorithm 4 Grovern≥m

Input: w,H, s, β,Bm,r
Output: F
1: |ψ⟩ ← |0|Bm,r|⟩
2: |ψ⟩ ← H⊗|Bm,r||ψ⟩

3: for x := 1 to

√√√√(
m
w

)
q(

r
w

)
q

do

4: |e⟩ = |e1⟩ · · · |er⟩ ← |0log q⟩ · · · |0log q⟩
5: for j := 1 to r do
6: |Fψ,j⟩ ← QRA((QRA(|Bm,r⟩, |ψ⟩)), |j⟩)
7: for ℓ := 1 to n− k do
8: for ℓ′ := 1 to n do
9: for j := 1 to r do

10: |Ĥℓ,ℓ′,j⟩ ← |p1(|Hℓ′,ℓ⟩ · |Fψ,j⟩)⟩ · · · |pm(|Hℓ′,ℓ⟩ · |Fψ,j⟩)⟩
11: for ℓ := 1 to n− k do
12: |ŝℓ⟩ ← |p1(|sℓ⟩)⟩ · · · |pm(|sℓ⟩)⟩
13: (|λℓ′,j⟩)1≤ℓ′≤n,1≤j≤r ← GE(|Ĥ⟩, |ŝ⟩)
14: for ℓ′ := 1 to n do

15: |eℓ′⟩ ←
r∑
j=1

|λℓ′,j⟩ · |Fψ,j⟩

16: if rankFq (|e⟩)! = w then
17: |ψ⟩ ← −|ψ⟩
18: |ψ⟩ ← Ud|ψ⟩
19: return QRA(|Bm,r⟩, |ψ⟩)
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Algorithm 5 Quantum GRS algorithm（n ≥ m）
Input: q,m, n, k, w,H, s, β = (β1, · · · , βm), r, Bm,r
Output: |e⟩
1: |e⟩ = |e1⟩ · · · |er⟩ ← |0log q⟩ · · · |0log q⟩
2: |F ⟩ = |F1⟩ · · · |Fr⟩ ← Grovern≥m(w,H, s, β,Bm,r)
3: for ℓ := 1 to n− k do
4: for ℓ′ := 1 to n do
5: for j := 1 to r do
6: |Ĥℓ,ℓ′,j⟩ ← |p1(|Hℓ′,ℓ⟩ · |Fj⟩)⟩ · · · |pm(|Hℓ′,ℓ⟩ · |Fj⟩)⟩
7: for ℓ := 1 to n− k do
8: |ŝℓ⟩ ← |p1(|sℓ⟩)⟩ · · · |pm(|sℓ⟩)⟩
9: (|λℓ′,j⟩)1≤ℓ′≤n,1≤j≤r ← GE(|Ĥ⟩, |ŝ⟩)

10: for ℓ′ := 1 to n do
11: for j := 1 to r do
12: |eℓ′⟩ ← |eℓ′⟩+ |λℓ′,j⟩ · |Fj⟩
13: return |e⟩

(|i〉, |b⊕′ ai〉, |A〉) for an input (|i〉, |b〉, |A〉). Such a quantum circuit is called the
quantum random access. Especially, when b = 0m, we define QRA(|A〉, |i〉) =
|ai〉 using (|i〉, |0m〉, |A〉) 7→ (|i〉, |ai〉, |A〉). Also, |p1(|sℓ〉)〉 in Line 10 represents
the quantum state corresponding to p1(sℓ). Moreover, GE in Line 13 refers to
the subroutine which obtains the solution λℓ′,j for the simultaneous equation
derived from |H〉 and |s〉 applying the Gaussian Elimination. The quantum GRS
algorithm in the case n ≥ m is given in Algorithm 5 by using this subroutine.

Similarly, we can construct the subroutine Grovern<m for n < m. That is,
let V and M in the Grover’s algorithm be Bn,r and Bn−w,r−w, respectively, and
we have only to define f to be the same with that for n ≥ m. Therefore, the
number of iterations, Grovern>m, in Algorithm 6 is ℓQGRS,n<m =

√
ℓCGRS,n<m.

Thus, we construct V,M and f , and the algorithm for Grovern<m is given in
Algorithm 6. Therefore, the quantum GRS algorithm when n < m is written
in Algorithm 7 based on the above subroutine.

The arguments in the quantum GRS algorithm are the same as those in
the classical one. Hence, the computational complexity in the quantum GRS
algorithm is as following:O

(
(n− k)3m3

√(
m
w

)
q
/
(
r
w

)
q

)
, n ≥ m;

O
(
(n− k)3m3

√(
n
w

)
q
/
(
r
w

)
q

)
, n < m.

In the following, we propose the improved quantum GRS algorithm which
can be more efficient by the improvement for the quantum GRS algorithm. When
n ≥ m, let B′

m,r be a set of |Bm,r|/|Bm−w,r−w|-element basis randomly selected
from Bm,r without duplication. Let V in the Grover’s algorithm be B′

m,r. Define
M and f to be the same in Algorithm 5, and we can get the expected value
of |M | is 1. Define Improved_Grovern≥m as the above subroutine, and we can
describe Improved_Grovern≥m as in Algorithm 8.
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Algorithm 6 Grovern<m

Input: w,H, s, β,Bn,r
Output: F ′

1: |ψ⟩ ← |0|Bn,r|⟩
2: |ψ⟩ ← H⊗|Bn,r||ψ⟩

3: for x := 1 to

√√√√(
n
w

)
q(

r
w

)
q

do

4: |e⟩ = |e1⟩ · · · |er⟩ ← |0log q⟩ · · · |0log q⟩
5: for j := 1 to r do
6: |F ′

ψ,j⟩ ← QRA((QRA(|Bn,r⟩, |ψ⟩)), |j⟩)
7: for ℓ := 1 to n− k do
8: for i := 1 to m do
9: for i′ := 1 to m do

10: for j := 1 to r do
11: |(Ĥ ′

ℓ,i)j,i′⟩ ← |0⟩⌈log2 q⌉
12: for ℓ′ := 1 to n do
13: if î <= n then
14: |(Ĥ ′

ℓ,i)j,i′⟩ ← |(Ĥ ′
ℓ,i)j,i′⟩+ pi′(|Hℓ,̂i⟩) · |βi′⟩

15: else
16: |(Ĥ ′

ℓ,i)j,i′⟩ ← |(Ĥ ′
ℓ,i)j,i′⟩+ pi′(|Hℓ,n⟩) · |βi′⟩

17: for ℓ := 1 to n− k do
18: |ŝℓ⟩ ← |p1(|sℓ⟩)⟩ · · · |pm(|sℓ⟩)⟩
19: (|λℓ′,j⟩)1≤ℓ′≤n,1≤j≤r ← GE(|Ĥ ′⟩, |ŝ⟩)
20: for i := 1 to m do
21: |e′i⟩ ← |0log q⟩
22: for j := 1 to r do
23: |e′i⟩ ← |e′i⟩+ |λ′

ℓ′,j⟩ · |F ′
ψ,j⟩

24: for ℓ′ := 1 to n do
25: |eℓ′⟩ ← |eℓ′⟩+ |e′i,ℓ′⟩|βℓ′⟩
26: if rankFq (|e⟩)! = w then
27: |ψ⟩ ← −|ψ⟩
28: |ψ⟩ ← Ud|ψ⟩
29: return QRA(|Bn,r⟩, |ψ⟩)
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Algorithm 7 Quantum GRS algorithm（n < m）
Input: q,m, n, k, w,H, s, β = (β1, · · · , βm), r, Bn,r
Output: e
1: |e⟩ = |e1⟩ · · · |er⟩ ← |0log q⟩ · · · |0log q⟩
2: |F ′⟩ = |F ′

1⟩ · · · |F ′
r⟩ ← Grovern<m(w,H, s, β,Bn,r)

3: for ℓ := 1 to n− k do
4: for i := 1 to m do
5: for i′ := 1 to m do
6: for j := 1 to r do
7: |(Ĥ ′

ℓ,i)j,i′⟩ ← |0⟩⌈log2 q⌉
8: for ℓ′ := 1 to n do
9: if î <= n then

10: |(Ĥ ′
ℓ,i)j,i′⟩ ← |(Ĥ ′

ℓ,i)j,i′⟩+ pi′(|Hℓ,̂i⟩) · |βi′⟩
11: else
12: |(Ĥ ′

ℓ,i)j,i′⟩ ← |(Ĥ ′
ℓ,i)j,i′⟩+ pi′(|Hℓ,n⟩) · |βi′⟩

13: for ℓ := 1 to n− k do
14: |ŝℓ⟩ ← |p1(|sℓ⟩)⟩ · · · |pm(|sℓ⟩)⟩
15: (|λℓ′,j⟩)1≤ℓ′≤n,1≤j≤r ← GE(|Ĥ ′⟩, |ŝ⟩)
16: for i := 1 to m do
17: |e′i⟩ ← |0log q⟩
18: for j := 1 to r do
19: |e′i⟩ ← |e′i⟩+ |λ′

ℓ′,j⟩ · |F ′
j⟩

20: for ℓ′ := 1 to n do
21: |eℓ′⟩ ← |eℓ′⟩+ |e′i,ℓ′⟩|βℓ′⟩
22: return |e⟩
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Algorithm 8 Improved_Grovern≥m

Input: w,H, s, β,B′
m,r

Output: F
1: |ψ⟩ ← |0|Bm,r|′⟩
2: |ψ⟩ ← H⊗|Bm,r|′ |ψ⟩

3: for x := 1 to

√√√√(
m
w

)
q(

r
w

)
q

do

4: |e⟩ = |e1⟩ · · · |er⟩ ← |0log q⟩ · · · |0log q⟩
5: for j := 1 to r do
6: |Fψ,j⟩ ← QRA((QRA(|B′

m,r⟩, |ψ⟩)), |j⟩)
7: for ℓ := 1 to n− k do
8: for ℓ′ := 1 to n do
9: for j := 1 to r do

10: |Ĥℓ,ℓ′,j⟩ ← |p1(|Hℓ′,ℓ⟩ · |Fψ,j⟩)⟩ · · · |pm(|Hℓ′,ℓ⟩ · |Fψ,j⟩)⟩
11: for ℓ := 1 to n− k do
12: |ŝℓ⟩ ← |p1(|sℓ⟩)⟩ · · · |pm(|sℓ⟩)⟩
13: (|λℓ′,j⟩)1≤ℓ′≤n,1≤j≤r ← GE(|Ĥ⟩, |ŝ⟩)
14: for ℓ′ := 1 to n do

15: |eℓ′⟩ ←
r∑
j=1

|λℓ′,j⟩ · |Fψ,j⟩

16: if rankFq (|e⟩)! = w then
17: |ψ⟩ ← −|ψ⟩
18: |ψ⟩ ← Ud|ψ⟩
19: return QRA(|Bm,r⟩, |ψ⟩)
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Algorithm 9 Improved quantum GRS algorithm（n ≥ m）
Input: q,m, n, k, w,H, s, β = (β1, · · · , βm), r, B′

m,r

Output: e
1: |e⟩ = |e1⟩ · · · |er⟩ ← |0log q⟩ · · · |0log q⟩
2: |F ⟩ = |F1⟩ · · · |Fr⟩ ← Improved_Grovern≥m(w,H, s, β,B′

m,r)
3: for ℓ := 1 to n− k do
4: for ℓ′ := 1 to n do
5: for j := 1 to r do
6: |Ĥℓ,ℓ′,j⟩ ← |p1(|Hℓ′,ℓ⟩ · |Fj⟩)⟩ · · · |pm(|Hℓ′,ℓ⟩ · |Fj⟩)⟩
7: for ℓ := 1 to n− k do
8: |ŝℓ⟩ ← |p1(|sℓ⟩)⟩ · · · |pm(|sℓ⟩)⟩
9: (|λℓ′,j⟩)1≤ℓ′≤n,1≤j≤r ← GE(|Ĥ⟩, |ŝ⟩)

10: for ℓ′ := 1 to n do
11: for j := 1 to r do
12: |eℓ′⟩ ← |eℓ′⟩+ |λℓ′,j⟩ · |Fj⟩
13: return |e⟩

The improved quantum GRS algorithm is given in Algorithm 9 by using
this subroutine.

Similarly for n < m, let B′
n,r be a |Bn,r|/|Bn−w,r−w| element subset taking

randomly from Bn,r. The improved quantum GRS algorithm in the case n < m
is given in APPENDIX B.2. The asymptotic computational complexity of
the improved quantum GRS algorithm is equal to that of the quantum GRS
algorithm. The improved quantum GRS algorithm has the advantage that the
number of H gate used in the superposition can be reduced because the size of
V in the Grover’s algorithm can be smaller.

5 Analysis

We discuss the attack method using the quantum GRS algorithm and its result
for the rank SDP with the parameters given in Table 1. Suppose q = 2 and β be
the standard basis over Fqm , that is, β = (β0, β1, · · · , βm−1) = (1, 2, · · · , 2m−1).
Also, Table 1 shows the rank SDP instances which correspond to the ROLLO
and RQC, the cryptosystems remained at the 2nd Round of the NIST PQC
standardization project, with the security levels of 128, 192 and 256.

In this section, we introduce the G-cost, D-cost and W-cost to estimate the
computational costs for the quantum GRS algorithm and the improved quantum
GRS algorithm. Then, we think of quantum circuits that execute the various op-
erations in those quantum algorithms. We can combine these circuits to form
quantum circuits that execute quantum GRS algorithms. Therefore, we can eval-
uate the computational costs for the quantum GRS algorithm and the improved
version of that algorithm by finding the various operations used in the quantum
GRS algorithms and the number of times each is executed. Also, we can com-
pute the computational costs of the attack algorithms, that is quantum GRS
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cryptosystem security bit m n k w

128 67 166 83 7

ROLLO 192 79 194 97 8

256 97 226 113 9

128 127 113 3 7

RQC 192 151 149 5 8

256 181 179 3 9
Table 1. targeted cryptosystem and security bit

algorithm and improved quantum GRS algorithm, for each cryptosystem by us-
ing the instances (m,n, k, w) in Table 1. Hence, we can determine whether the
cryptosystem in Table 1 is secure or not, by comparing the computational costs
of the attack algorithms for each cryptosystem with each security level with the
computational costs for the circuit corresponding to that security bit.

5.1 Introducing the new computational costs

We introduce the computational costs explained in [11]. Let C be a quantum
circuit that consists of Clifford+T gates. The G-cost means the number of all
the quantum gates appearing in C. The D-cost represents the depth of C, and
the W-cost refers to the number of qubits in C. These computational costs are
evaluated by log2. In this paper, we mainly compare the G-cost for a circuit
corresponding to the security bit with the G-cost obtained by our strategy from
the parameters (m,n, k, w) in Table 1. We can estimate the computational
costs (G, D and W) of the quantum GRS algorithms that simulate over classical
circuits or quantum circuits. The latter ones are the computational costs of
quantum circuits which are consisting of the Clifford+T gate, and which execute
the quantum GRS algorithms. The former ones are the computational costs
restricted to the classical PRAM operations for the latter quantum circuit. As
seen in [11], also in this paper, in the case estimating the computational costs
of the quantum GRS algorithms over classical circuits, we do not think about a
superposition of the quantum states. This is because a superposition which can
be executed in quantum RAM operations cannot be simulated in classical ones.
Therefore, we do not take account of the computational costs of the Grover’s
algorithm itself. Then, in the improved quantum GRS algorithm, since we alter
only the part concerned with the quantum RAM operations, the computational
costs of the classical circuit for the quantum GRS algorithm remain the same
with those of the classical circuit for the improved version of that algorithm. We
consider the G-cost, D-cost and W-cost about the operations in the quantum
GRS algorithms. Also, we think the numbers of the input qubits and the ancilla
bits to estimate the W-cost. In the following, let m and n be positive integers,
and let a, b ∈ F2m and e ∈ Fn

2m . Also, let β be the standard basis over F2m .
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Algorithm 10 3 adder for classical bits
Input: a, b, c
Output: s, d
1: s, d← 0
2: if a⊙ b = 1 then
3: s← s⊕ 1
4: d← a⊕ b
5: if c⊙ d = 1 then
6: s← s⊕ 1
7: d← c⊕ d
8: return s, d

Here, we introduce the computational costs for the quantum circuits that
execute the Gaussian Elimination and the 3 adder. 3 adder is an operation
that, for a, b, c ∈ F2, evaluates s, d ∈ F2 such that |a ⊕ b ⊕ c〉 = |s〉|d〉 with
a+ b+ c = 2s+ d ∈ N, where ⊕ means the addition in F2. In the following, let
x and y be positive integers, for a matrix A ∈ Fx×y

2 , let |A〉 be a quantum state
corresponding to A. For Ĥ ∈ Fx×y

2 , let U ∈ Fx×x
2 and Q = UĤ ∈ Fx×y

2 , where
U is a matrix to execute the Gaussian Elimination for Ĥ. Then, we consider
the quantum circuit to take |Ĥ〉 and return |U〉 and |Q〉. Perriello et al. [21]
introduced the quantum circuit which executes the Gaussian Elimination, and
such a quantum circuit has xy input qubits, 3

2 (x− 1)x ancilla qubits, the G-cost
of (x− 1){x(36y − 20x+ 43

2 ) + 8} and the D-cost of 8
3 (x− 1)x(9y − 4x+ 5).

Let a, b, c, s, d ∈ F2, in a classical circuit, the 3 adder is given in Algo-
rithm 10, where � means the multiplication in F2. The quantum circuit which
executes � for two quantum states can be realized with one Toffoli gate. Here,
Toffoli gate is the quantum gate expressed as following:

Toffoli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


.

The construction for Toffoli gate by Clifford+T gates is given in [24] by Shende.
That quantum circuit which executes the Toffoli gate has 3 input qubits, no
ancilla bit, the G-cost of 24 and the D-cost of 16. Then, that quantum circuit
which executes the 3 adder is given in Fig. 1 and has 3 input qubits, 2 ancilla
bits, the G-cost of 51 and the D-cost of 32.
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|a⟩ • • |a⟩

|b⟩ • • |b⟩

|c⟩ • • |c⟩

|0⟩ • |d⟩

|0⟩ |s⟩

Fig. 1. 3 adder

Algorithm 11 the addition for classical bits
Input: a = a1 · · · am, b = b1 · · · bm
Output: c = c1 · · · cm
1: for i := m downto 1 do
2: if i == m then
3: sm, cm ←3-adder(0, am, bm)
4: else
5: si, ci ←3-adder(si+1, ai, bi)
6: return c

5.2 The computational costs for the addition of quantum bits over
F2m

For a, b ∈ F2m , we define |a + b〉 as the addition for a and b, where + means
the addition over F2m . In the following, we expand a and b with β, and consider
a = a1 · · · am, b = b1 · · · bm ∈ F2m . In a classical circuit, the algorithm that takes
a and b and outputs c = c1 · · · cm such that c = a + b mod 2m is described
in Algorithm 11. Fig. 2 shows the quantum circuit which outputs c1, c2 ∈ F2

such that |a1a2〉+|b1b2〉 = |a1a2+b1b2〉 = |c1c2〉 for inputs |a〉 = |a1a2〉 and |b〉 =
|b1b2〉 using three ancilla bits including |c1〉 and |c2〉. Fig. 2 can be constructed
from a Toffoli gate and 5 CNOT gates. Therefore, for a, b ∈ F2m , the quantum
circuit which executes |a〉 + |b〉 can be realized with (m − 1) Toffoli gates and
(2m + 1) CNOT gates. Hence, such a quantum circuit has 2m input qubits,
(2m− 1) ancilla bits, the G-cost of 26m− 23 and the D-cost of 16, respectively.

5.3 The computational costs for the product of quantum bits over
F2m

For a, b ∈ F2m , we define |a · b〉 as the product for a and b, where · means the
multiplication over F2m . As in Section 5.2, let a = a1 · · · am, b = b1 · · · bm, and
a = a1 · 2m−1 + · · · am−1 · 21 + am · 20 holds in F2m . For 1 ≤ i ≤ m, we think to
compute each ci ∈ F2 such that a ·b = c1 ·2m−1+ · · ·+cm−12

1+cm20 mod 2m. In
a classical circuit, such a multiplier can be realized with Full-Adders, and that
algorithm is written in Algorithm 12. For example, if m = 3, the variables are
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|a1⟩ • |a1⟩

|a2⟩ • • |a2⟩

|b1⟩ • |b1⟩

|b2⟩ • • |b2⟩

|0⟩ • |s⟩

|0⟩ |c1⟩

|0⟩ |c2⟩

Fig. 2. The addition for qubits

determined as following:

c3 ← a3 � b3
c5,1, s5,1 ← 3-adder(0, a2 � b3, a3 � b2)

c2 ← c5,1

c4,1, s4,1 ← 3-adder(s5,1, a1 � b3, a2 � b2)
c4,2, s4,2 ← 3-adder(0, c4,1, a3 � b1)

c1 ← c4,2

Fig. 3 shows the quantum circuit which outputs c1, c2 and c3 ∈ F2 such that
|a1a2a3〉·|b1b2b3〉 = |a1a2a3 ·b1b2b3〉 = |c1c2c3〉 for the input of |a〉 = |a1a2a3〉 and
|b〉 = |b1b2b3〉. In Fig. 3, the qubits |s23,32〉, |s31,22〉 and |s1〉 denote the carry of
digit in the 3 adder. Also, the qubit |c31,22〉 satisfies |s23,32〉+ |a3 ·b1〉+ |a2 ·b2〉 =
|s31,22c31,22〉. In addition, in each rectangle representing the 3 adder in Fig. 3,
three ‘→’ crossing the left vertical edge and two ‘→’ crossing the right one
express the inputs and the outputs for the 3 adder, respectively. For example,
the left-most 3 adder can realize the operation |0〉+ |a3 ·b2〉+ |a2 ·b3〉 = |s23,32c2〉.
Fig. 3 can be realized with 6 Toffoli gates and 3 ‘3 adders’. Therefore, in general,
for a, b ∈ F2m , the quantum circuit which executes |a〉 · |b〉 can be constructed
from m(m+ 1)/2 Toffoli gates and (m− 1)/2 ‘3 adders’. That quantum circuit
has 2m input qubits, m2 +m+1 ancilla bits, the G-cost of 9m(25m− 9)/2 and
the D-cost of 16m.

5.4 The computational costs for estimating rankF2(e)

For e = (e1, · · · , en) ∈ Fn
2m and 1 ≤ ℓ′ ≤ n, by expanding eℓ′ with β, we see eℓ′ as

eℓ′ = (eℓ′,1, · · · , eℓ′,m) ∈ Fm
2 and e as e ∈ Fn×m

2 . By the definition of rankF2
(e),

rankF2
(e) is dim(Im(φe)), and dim(Im(φe)) for e ∈ Fn

2m coincides with rank(e),
the rank of the matrix e ∈ Fn×m

2 . From the above, for e ∈ Fn
2m , to compute
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|a1⟩ • |a1⟩

|a2⟩ • • |a2⟩

|a3⟩ • • • |a3⟩

|b1⟩ • |b1⟩

|b2⟩ • • |b2⟩

|b3⟩ • • • |b3⟩

|0⟩ →

3A

→

3A

|0⟩

|0⟩ |c3⟩

|0⟩ → |a3 · b2⟩

|0⟩ → |a2 · b3⟩

|0⟩ → →

3A

|s5,1⟩

|0⟩ → |c2⟩

|0⟩ → |a3 · b1⟩

|0⟩ → |a2 · b2⟩

|0⟩ → |a1 · b3⟩

|0⟩ → |s4,1⟩

|0⟩ → → |c4,1⟩

|0⟩ → |s4,2⟩

|0⟩ → |c1⟩

Fig. 3. The multiplication for qubits
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Algorithm 12 the multiplication for classical bits
Input: a = a1 · · · am, b = b1 · · · bm
Output: c = c1 · · · cm
1: cm ← am ⊙ bm
2: for i := m− 1 downto 1 do
3: for 3A_i := 1 to m− i do
4: if 3A_i == m− 1 then
5: cm+i,3A_i, sm+i,3A_i ← 3-adder(0, cm+i,3A_i−1, am−i+1 ⊙ bm−1)
6: else if 3A_i == 1 then
7: cm+i,3A_i, sm+i,3A_i ← 3-adder(sm+i+1,3A_i, am−i ⊙ bm, am−i+1 ⊙ bm−1)
8: else
9: cm+i,3A_i, sm+i,3A_i ← 3-adder(sm+i+1,3A_i, cm+i,3A_i−1, am−i+1 ⊙ bm−1)

10: ci ← cm+i,m−i
11: return c

rankF2
(e), we consider e as the n×m matrix over F2, and execute the Gaussian

Elimination for e ∈ Fn×m
2 . We need nm ancilla bits and nm CNOT gates as the

copy of the input qubits because the value of the input qubits are altered during
the execution of the Gaussian Elimination. Therefore, that quantum circuit has
nm input qubits, nm ancilla bits, the G-cost of GE(n,m) + nm and the D-cost
of 16(m+ 1).

5.5 The computational costs for quantum random access

For i ∈ [1, n] and A = (a1, · · · , an) ∈ (Fm
2 )n, we think the quantum circuit

that executes the quantum random access. By [11], such a quantum circuit has
log n+m+mn input qubits, nm+n log n ancilla bits, the G-cost of nm+n log n
and the D-cost of logm+ log n.

5.6 The computational costs for a superposition

5.6.1 In the case n ≥ m
A superposition can be realized with |Bm,r| =

(
m
r

)
q
-H gates. That is, the quan-

tum circuit which executes the superposition has |Bm,r| input qubits, no ancilla
bits, the G-cost of |Bm,r| and the D-cost of 1.

5.6.2 In the case n < m
In this case as well, a superposition can be constructed with |Bn,r| =

(
n
r

)
q
-H

gates. Then, such a quantum circuit has |Bn,r| input qubits, no ancilla bits, the
G-cost of |Bn,r| and the D-cost of 1.

5.7 The computational costs for oracle phase flipping

In the Grover’s algorithm, V and M denote the set of all elements and targeted
elements, respectively. Then, Uo can be constructed with some X gates. There-
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Operation Abbreviation Argument Denotion
Gaussian Elimination GE (x, y) GGE(x, y)

3 adder 3A () G3A()

addition add (m) Gadd(m)

product pro (m,n) Gpro(m,n)

rank rank (m,n) Grank(m,n)

Quantum random access QRA (m,n) GQRA()

Superposition（n ≥ m） spm (Bm,r) Gspm
(Bm,r)

Superposition（n < m） spn (Bn,r) Gspn
(Bn,r)

oracle phase flip OPF (V,M) GOPF(V,M)

diffuser dif (V ) Gdif(V )

Table 2. abbreviation, argument and denotion for each operation

fore, the quantum circuit that executes Uo has log |V | input qubits, no ancilla
bit, the G-cost of 4 log |M | and the D-cost of 4.

5.8 The computational costs for diffuser

For the quantum state |ψ〉 ∈ H⊗|V |, let x = log |V |, the diffuser can be con-
structed with one Cx−1(Z) gate3. Therefore, the quantum circuit that performs
Ud can be realized with 2(x − 1) Toffoli gates and one Z gate. Hence, that
quantum circuit has log |V | input qubits, (log |V | − 1) ancilla bit, the G-cost of
48(log |V | − 1)− 46 = 48 log |V | − 94 and the D-cost of 32.

5.9 The computational costs of quantum GRS algorithm

We discuss the computational costs of the quantum GRS algorithm and the
improved version over the classical circuit and the quantum one. A detailed
explanation is provided in APPENDIX B. Table 2 shows the abbreviation, the
argument and the denotion of the G-cost for each operation up to Section 5.8.
That is, for each operation op, let arg be the argument of op, the most-right
column in Table 2 represents Gop(arg). Similarly, Dop(arg), Iop(arg) and
Aop(arg) denote the D-cost, the number of the input qubits and the number
of the ancilla bits for op. Also, Table 3 shows the result up to the previous
subsection. Here, GGE(x, y) = (x− 1){x(36y − 20x+ 43

2 ) + 8} and DGE(x, y) =
8
3 (x−1)x(9y−4x+5). Also, ‘—’ in Table 3 denotes that there is no such qubits.

3 For a positive integer x, Cx(Z) gate means the quantum gate which makes Z gate
on the target bit if x-controlled bits are |1x⟩. Also, Cx(Z) gate can be realized with
2(x− 1) Toffoli gates and one Z gate.
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Operation G-cost D-cost input ancilla

GE GGE(x, y) DGE(x, y) xy 3
2
(x− 1)x

3A 51 32 3 2

add 26m− 23 16 2m 2m− 1

pro 9
2
m(25m− 9) 16m 2m m2 +m+ 1

rank GGE(x, y) + xy 16(y + 1) xy xy

QRA nm+ n log n logm+ log n log n+m+mn nm+ n log n

spm |Bm,r| 1 |Bm,r| —

spn |Bn,r| 1 |Bn,r| —

OPF 4 log |M | 4 log |V | —

dif 48 log |V | − 94 32 log |V | log |V | − 1

Table 3. computational cost for each operation

5.9.1 The computational costs over the classical circuit
In estimating the computational costs of the classical circuit to simulate quantum
GRS algorithm, we do not take account of the costs for the Grover’s algorithm.
Suppose n ≥ m. We think about realizing the while sentence in Algorithm 1
over the quantum circuit. In one iteration, rankFq

(e) is evaluated once, the mul-
tiplication of Hℓ,ℓ′Fj over F2m is (n− k)nr times, the Gaussian Elimination for
the nr×m(n− k) matrix over F2 is once, the multiplication of λℓ′,jFj over F2m

is (n−k)nr times, and the addition over F2m is (n−1)r times. These operations
are repeated in ℓQGRS times.

5.9.2 The computational costs over the quantum circuit
To estimate the computational costs over the quantum circuit, we have to take
account of four extra operations, the quantum random access, the superposition,
the oracle process and the diffuser per one iteration in Algorithm 5, besides
the computational costs in what we have just mentioned above.

5.10 Evaluation criteria and Parallelizing the quantum algorithm

NIST [20] states that the classical circuit corresponding to the 128, 192 and 256
security bits is equivalent to the classical circuit having the 2143, 2207 and 2272

classical gates respectively. Also, the quantum circuit having the 128, 192 and
256 security level is equivalent to the quantum circuit whose the sum of the
G-cost and the D-cost is 170, 233 and 298. Therefore, by considering a classical
gate as a RAM operation by a classical computer, we can directly compare the
G-cost with the above numbers. Table 4 shows the security evaluation criteria
simulated over classical and quantum circuits. For example, for a cryptosystem
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security bit classical circuit quantum circuit
128 G-cost ≥ 143 G-cost + D-cost ≥ 170
192 G-cost ≥ 207 G-cost + D-cost ≥ 233
256 G-cost ≥ 272 G-cost + D-cost ≥ 298

Table 4. security criteria

with 128 security level, if its G-cost is greater than 143, it is secure against this
attack.

Also, the D-cost is limited to 96 or less under the condition from NIST [20].
If the D-cost exceeds 96, we use the parallel Grover in [11]. This is the technique
parallelizing Algorithm 3. Let G,D and W be the G-cost, D-cost and W-cost,
respectively, for the entire statement with one processor. Then G-cost, D-cost
and W-cost for the entire statement with p processors are √pG, 1√

pD and pW .
Therefore, if D-cost exceeds 96 with one processor, D-cost can be reduced to less
than 96 by using an appropriate number of processors for parallelizing.

5.11 Result

Table 5 lists the computational costs for each encryption scheme and security
level. The upper row for each security level in the table shows the computational
costs of the quantum GRS algorithm over the classical circuit. The middle row
shows the computational costs of the quantum GRS algorithm over the quantum
circuit. The lower row shows the computational costs of the improved quantum
GRS algorithm over the quantum circuit. By the upper and middle rows, in
the quantum GRS algorithm, we find the computational costs over the classical
circuit are less than those over the quantum one. There is the difference between
the middle row and the lower row because the size of |V | is small in the improved
quantum GRS algorithm. Also, Table 5 shows that this attack method using
the improved quantum GRS algorithm is effective for RQC. In addition, in RQC,
the computational costs in security level 256 are less than those in security leve
192. One of the factors contributing to this is that the value of the parameter
k in 256 security level is less than that in 192 security level. In general, for
r ∈ [w, n−k],

(
n
r

)
q
=
(

n
n−r

)
q

holds. So, in Table 1,
(

n
n−k

)
q
=
(
n
k

)
q
<
(
n
w

)
q

holds.

Therefore,
(
n
r

)
q
=
(
n
k

)
q
=
(
179
3

)
2
≈ 2530 in 256 security level is smaller than(

n
r

)
q
=
(
149
5

)
2
≈ 2722. Based on the above discussion, one reason why our attack

method is effective for RQC is that the value of the parameter k is small. Then,
Table 6 shows the parameter k and the computational costs that RQC can be
secure against this attack by the improved quantum GRS algorithm when the
instances except for k are the same in Table 1.
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Cryptosystem Security bit G-cost D-cost W-cost

128
478

1344

448

95

95

95

658

1413

258

ROLLO 192
647

1868

616

95

95

95

913

1980

341

256
894

2784

862

95

95

95

1202

2958

464

128
84

492

83

74

60

60

77

492

83

RQC 192
107

926

116

95

72

72

101

926

116

256
96

764

99

85

67

67

89

764

99
Table 5. Computational costs for each cryptosystem and security bit

Security bit k G-cost D-cost W-cost

128 5 104 67 104

192 8 152 84 152

256 11 215 95 223
Table 6. The proposal for RQC’s parameter k
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6 Conclusion

In this paper, for the rank CBC, we have proposed the quantum GRS algorithm,
the best known algorithm for the rank SDP, and the improved version of that.
Also, we have proposed the attack method with the quantum GRS algorithm
for the rank CBCs remained at the 2nd Round of the NIST PQC standardiza-
tion project. As a result, this attack method is effective for RQC, so we have
recommended the value of k for RQC which is secure against this attack.
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A The details for the computational costs of RQC

In moving only the parameter k, we show the tables（Table 7-Table 9） for
the computational costs of 128, 192 and 256 security level RQC, respectively. In
each table, if the value of k is in the lower row, the sum of the corresponding
the G-cost and D-cost exceeds the criteria given in Table 4.

k G-cost D-cost G-cost + D-cost

3 83 60 143

4 94 63 157

5 104 67 171
Table 7. The computational costs for 128 security level RQC

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects
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k G-cost D-cost G-cost + D-cost

5 116 72 188

6 128 76 204

7 140 80 220

8 152 84 236
Table 8. The computational costs for 192 security level RQC

k G-cost D-cost G-cost + D-cost

3 99 67 166

4 113 72 185

5 126 76 202

6 140 81 221

7 153 85 238

8 167 90 257

9 180 94 274

10 198 95 293

11 215 95 310
Table 9. The computational costs for 256 security level RQC

B Deriving the computational costs for the improved
quantum GRS algorithm

We estimate the computational costs for the improved quantum GRS algorithm.
We use the denotion of the computational costs given in Table 2.

B.1 In the case n ≥ m

The operations from Line 4 to Line 18 in Algorithm 8 are shown in Ta-
ble 10. Here, in Line 17 and 18, |V | = |V ′

m,r| and |M | = 1. Also, GIGroloop,n≥m,
DIGroloop,n≥m and AIGroloop,n≥m denote the G-cost, D-cost and the number of
the ancilla bits from Line 4 to Line 18 in Algorithm 8. Then,

GIGroloop,n≥m = r(GQRA(m, log |V ′
m,r|) +GQRA(m, r)) + (n− k)nrGpro(m)

+GGE(m(n− k), nr) + nr(Gadd(m) +Gpro(m))
+Grank(m,n) +GOPF(V,M) +Gdif(V ),

DIGroloop,n≥m = max{r ·max{DQRA(m, log |V ′
m,r|), DQRA(m, r)}

, (n− k)nrDpro(m), DGE(m(n− k), nr), nr ·Dadd(m)
, nr ·Dpro(m), Drank(m,n), DOPF(V,M), Ddif(V )}
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Line operation

6 QRA(m, log |V ′
m,r|) and QRA(m, r)

10 pro(m)

13 GE(m(n− k), nr)
15 pro(m) and add(m)

16 rank(m,n)

17 OPF(V,M)

18 dif(V )

Table 10. each operation in Improved Grovern≥m

AIGroloop,n≥m = r(AQRA(m, log |V ′
m,r|) +AQRA(m, r)) + (n− k)nrApro(m)

+AGE(m(n− k), nr) + nr(Aadd(m) +Apro(m))
+Arank(m,n) +AOPF(V,M) +Adif(V ).

The for sentence is executed in ℓQGRS,n≥m times. GIGro,n≥m, DIGro,n≥m and
AIGro,n≥m denote the G-cost, D-cost and the number of the ancilla bits in Al-
gorithm 8. Hence, pIgro processors are in parallel, the following holds:

GIGro,n≥m = GIGroloop,n≥m · ℓQGRS,n≥m ·
√
pIgro +GQRA(m, log |V ′

m,r|),

DIGro,n≥m = max{DIGroloop,n≥m · ℓQGRS,n≥m ·
1

√
pIgro

, DQRA(m, log |V ′
m,r|)},

AIGro,n≥m = AIGroloop,n≥m · ℓQGRS,n≥m · pIgro +AQRA(m, log |V ′
m,r|).

Therefore,GIQGRS,n≥m, DIQGRS,n≥m and AIQGRS,n≥m denote the G-cost, D-cost
and the number of the ancilla bits in Algorithm 9. Then,

GIQGRS,n≥m = GIGro,n≥m + (n− k)nrGpro(m)
+GGE(m(n− k), nr) + nr(Gadd(m) +Gpro(m)),

DIQGRS,n≥m = max{DIGro,n≥m, (n− k)nrDpro(m)
, DGE(m(n− k), nr), nrmax{Dadd(m), Dpro(m)},

AIQGRS,n≥m = AIGro,n≥m + (n− k)nrApro(m)
+AGE(m(n− k), nr) + nr(Aadd(m) +Apro(m)).

In addition, IIGro,n≥m and WIGro,n≥m denote the number of input qubits and
the W-cost in Algorithm 9, respectively. Here, IIGro,n≥m = m(n − k) ·mn +
m(n− k) +m2 + |B′

m,r| ·m2 because Algorithm 9 is the algorithm for H, s, β
and B′

m,r. We estimate the W-cost by WIGro,n≥m = IIGro,n≥m +AIGro,n≥m.

B.2 In the case n < m

We can compute the same in this case. Improved_Grovern<m denote the sub-
routine using the Grover’s algorithm in this case, and that algorithm is given in
Algorithm 13.
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Algorithm 13 Improved_Grovern<m

Input: w,H, s, β,B′
n,r

Output: F ′

1: |ψ⟩ ← |0|B
′
n,r|⟩

2: |ψ⟩ ← H⊗|B′
n,r||ψ⟩

3: for x := 1 to

√√√√(
n
w

)
q(

r
w

)
q

do

4: |e⟩ = |e1⟩ · · · |er⟩ ← |0log q⟩ · · · |0log q⟩
5: for j := 1 to r do
6: |F ′

ψ,j⟩ ← QRA((QRA(|Bn,r⟩, |ψ⟩)), |j⟩)
7: for ℓ := 1 to n− k do
8: for i := 1 to m do
9: for i′ := 1 to m do

10: for j := 1 to r do
11: |(Ĥ ′

ℓ,i)j,i′⟩ ← |0⟩⌈log2 q⌉
12: for ℓ′ := 1 to n do
13: if î <= n then
14: |(Ĥ ′

ℓ,i)j,i′⟩ ← |(Ĥ ′
ℓ,i)j,i′⟩+ pi′(|Hℓ,̂i⟩) · |βi′⟩

15: else
16: |(Ĥ ′

ℓ,i)j,i′⟩ ← |(Ĥ ′
ℓ,i)j,i′⟩+ pi′(|Hℓ,n⟩) · |βi′⟩

17: for ℓ := 1 to n− k do
18: |ŝℓ⟩ ← |p1(|sℓ⟩)⟩ · · · |pm(|sℓ⟩)⟩
19: (|λℓ′,j⟩)1≤ℓ′≤n,1≤j≤r ← GE(|Ĥ ′⟩, |ŝ⟩)
20: for i := 1 to m do
21: |e′i⟩ ← |0log q⟩
22: for j := 1 to r do
23: |e′i⟩ ← |e′i⟩+ |λ′

ℓ′,j⟩ · |F ′
ψ,j⟩

24: for ℓ′ := 1 to n do
25: |eℓ′⟩ ← |eℓ′⟩+ |e′i,ℓ′⟩|βℓ′⟩
26: if rankFq (|e⟩)! = w then
27: |ψ⟩ ← −|ψ⟩
28: |ψ⟩ ← Ud|ψ⟩
29: return QRA(|Bn,r⟩, |ψ⟩)
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Algorithm 14 Improved quantum GRS algorithm（n < m）
Input: q,m, n, k, w,H, s, β = (β1, · · · , βm), r, B′

n,r

Output: e
1: |e⟩ = |e1⟩ · · · |er⟩ ← |0log q⟩ · · · |0log q⟩
2: |F ′⟩ = |F ′

1⟩ · · · |F ′
r⟩ ← Grovern<m(w,H, s, β,B′

n,r)
3: for ℓ := 1 to n− k do
4: for i := 1 to m do
5: for i′ := 1 to m do
6: for j := 1 to r do
7: |(Ĥ ′

ℓ,i)j,i′⟩ ← |0⟩⌈log2 q⌉
8: for ℓ′ := 1 to n do
9: if î <= n then

10: |(Ĥ ′
ℓ,i)j,i′⟩ ← |(Ĥ ′

ℓ,i)j,i′⟩+ pi′(|Hℓ,̂i⟩) · |βi′⟩
11: else
12: |(Ĥ ′

ℓ,i)j,i′⟩ ← |(Ĥ ′
ℓ,i)j,i′⟩+ pi′(|Hℓ,n⟩) · |βi′⟩

13: for ℓ := 1 to n− k do
14: |ŝℓ⟩ ← |p1(|sℓ⟩)⟩ · · · |pm(|sℓ⟩)⟩
15: (|λℓ′,j⟩)1≤ℓ′≤n,1≤j≤r ← GE(|Ĥ ′⟩, |ŝ⟩)
16: for i := 1 to m do
17: |e′i⟩ ← |0log q⟩
18: for j := 1 to r do
19: |e′i⟩ ← |e′i⟩+ |λ′

ℓ′,j⟩ · |F ′
j⟩

20: for ℓ′ := 1 to n do
21: |eℓ′⟩ ← |eℓ′⟩+ |e′i,ℓ′⟩|βℓ′⟩
22: return |e⟩

GIGroloop,n<m, DIGroloop,n<m and AIGroloop,n<m denote the G-cost, D-cost
and the number of the ancilla bits from Line 4 to Line 28 in Algorithm 13.
Also, GIGro,n<m, DIGro,n<m and AIGro,n<m denote the G-cost, D-cost and the
number of the ancilla bits in Algorithm 13, and we can estimate these com-
putational costs by GIGroloop,n<m, DIGroloop,n<m, AIGroloop,n<m, ℓQGRS,n≥m and
p′Gro, where p′Gro means the number of processors in parallel.

GIQGRS,n<m, DIQGRS,n<m and AIQGRS,n<m denote the G-cost, D-cost and
the number of the ancilla bits in the improved quantum GRS algorithm when n <
m（Algorithm 14）. We can evaluate these costs using GIGro,n<m, DIGro,n<m

and AIGro,n<m, and compute the W-cost in the same way.


