To merge Pandas DataFrame, use the merge() function. The inner join is implemented on both the DataFrames by setting under the “how” parameter of the merge() function i.e. −
how = “inner”
At first, let us import the pandas library with an alias −
import pandas as pd
Create DataFrame1 −
dataFrame1 = pd.DataFrame(
{
"Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],
"Units": [100, 150, 110, 80, 110, 90]
}
)
Now, create DataFrame2 −
dataFrame2 = pd.DataFrame(
{
"Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'],
"Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000]
}
)
Merge DataFrames with a common column Car and "inner" in "how" parameter implements Inner Join −
mergedRes = pd.merge(dataFrame1, dataFrame2, on ='Car', how ="inner")
Example
Following is the code −
#
# Merge Pandas DataFrame with Inner Join
#
import pandas as pd
# Create DataFrame1
dataFrame1 = pd.DataFrame(
{
"Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],
"Units": [100, 150, 110, 80, 110, 90]
}
)
print"DataFrame1 ...\n",dataFrame1
# Create DataFrame2
dataFrame2 = pd.DataFrame(
{
"Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'],
"Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000]
}
)
print"\nDataFrame2 ...\n",dataFrame2
# merge DataFrames with common column Car and "inner" in "how" parameter implements Inner Join
mergedRes = pd.merge(dataFrame1, dataFrame2, on ='Car', how ="inner")
print"\nMerged dataframe with inner join...\n", mergedRes
Output
This will produce the following output −
DataFrame1 ... Car Units 0 BMW 100 1 Lexus 150 2 Audi 110 3 Mustang 80 4 Bentley 110 5 Jaguar 90 DataFrame2 ... Car Reg_Price 0 BMW 7000 1 Lexus 1500 2 Tesla 5000 3 Mustang 8000 4 Mercedes 9000 5 Jaguar 6000 Merged dataframe with inner join... Car Units Reg_Price 0 BMW 100 7000 1 Lexus 150 1500 2 Mustang 80 8000 3 Jaguar 90 6000