To merge two Pandas DataFrame, use the merge() function. Just set both the DataFrames as a parameter of the merge() function.
At first, let us import the required library with alias “pd” −
import pandas as pd
Create the 1st DataFrame −
# Create DataFrame1 dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],"Units": [100, 150, 110, 80, 110, 90] } )
Next, create the 2nd DataFrame −
# Create DataFrame2 dataFrame2 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Mercedes', 'Jaguar'],"Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000] } )
Now, merge both the DataFrames using the merge() function −
mergedRes = pd.merge(dataFrame1, dataFrame2)
Example
Following is the code −
import pandas as pd # Create DataFrame1 dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],"Units": [100, 150, 110, 80, 110, 90] } ) print"DataFrame1 ...\n",dataFrame1 # Create DataFrame2 dataFrame2 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Mercedes', 'Jaguar'],"Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000] } ) print"\nDataFrame2 ...\n",dataFrame2 # merge DataFrames mergedRes = pd.merge(dataFrame1, dataFrame2) print"\nMerged data frame...\n", mergedRes
Output
This will produce the following output −
DataFrame1 ... Car Units 0 BMW 100 1 Lexus 150 2 Audi 110 3 Mustang 80 4 Bentley 110 5 Jaguar 90 DataFrame2 ... Car Reg_Price 0 BMW 7000 1 Lexus 1500 2 Audi 5000 3 Mustang 8000 4 Mercedes 9000 5 Jaguar 6000 Merged data frame... Car Units Reg_Price 0 BMW 100 7000 1 Lexus 150 1500 2 Audi 110 5000 3 Mustang 80 8000 4 Jaguar 90 6000