To merge Pandas DataFrame, use the merge() function. The outer join is implemented on both the DataFrames by setting under the “how” parameter of the merge() function i.e. −
how = “outer”
At first, let us import the pandas library with an alias −
import pandas as pd
Let us create DataFrame1 −
dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'], "Units": [100, 150, 110, 80, 110, 90] } )
Let us now create DataFrame2 −
dataFrame2 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'], "Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000] } )
Merge DataFrames with a common column Car and "outer" in "how" parameter implements Outer Join −
mergedRes = pd.merge(dataFrame1, dataFrame2, on ='Car', how ="outer")
Example
Following is the code −
import pandas as pd # Create DataFrame1 dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'], "Units": [100, 150, 110, 80, 110, 90] } ) print"DataFrame1 ...\n",dataFrame1 # Create DataFrame2 dataFrame2 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'], "Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000] } ) print"\nDataFrame2 ...\n",dataFrame2 # merge DataFrames with common column Car and "outer" in "how" parameter implements Outer Join mergedRes = pd.merge(dataFrame1, dataFrame2, on ='Car', how ="outer") print"\nMerged dataframe with outer join...\n", mergedRes
Output
This will produce the following output −
DataFrame1 ... Car Units 0 BMW 100 1 Lexus 150 2 Audi 110 3 Mustang 80 4 Bentley 110 5 Jaguar 90 DataFrame2 ... Car Reg_Price 0 BMW 7000 1 Lexus 1500 2 Tesla 5000 3 Mustang 8000 4 Mercedes 9000 5 Jaguar 6000 Merged dataframe with outer join... Car Units Reg_Price 0 BMW 100.0 7000.0 1 Lexus 150.0 1500.0 2 Audi 110.0 NaN 3 Mustang 80.0 8000.0 4 Bentley 110.0 NaN 5 Jaguar 90.0 6000.0 6 Tesla NaN 5000.0 7 Mercedes NaN 9000.0