
- MySQL - Home
- MySQL - Introduction
- MySQL - Features
- MySQL - Versions
- MySQL - Variables
- MySQL - Installation
- MySQL - Administration
- MySQL - PHP Syntax
- MySQL - Node.js Syntax
- MySQL - Java Syntax
- MySQL - Python Syntax
- MySQL - Connection
- MySQL - Workbench
- MySQL Databases
- MySQL - Create Database
- MySQL - Drop Database
- MySQL - Select Database
- MySQL - Show Database
- MySQL - Copy Database
- MySQL - Database Export
- MySQL - Database Import
- MySQL - Database Info
- MySQL Users
- MySQL - Create Users
- MySQL - Drop Users
- MySQL - Show Users
- MySQL - Change Password
- MySQL - Grant Privileges
- MySQL - Show Privileges
- MySQL - Revoke Privileges
- MySQL - Lock User Account
- MySQL - Unlock User Account
- MySQL Tables
- MySQL - Create Tables
- MySQL - Show Tables
- MySQL - Alter Tables
- MySQL - Rename Tables
- MySQL - Clone Tables
- MySQL - Truncate Tables
- MySQL - Temporary Tables
- MySQL - Repair Tables
- MySQL - Describe Tables
- MySQL - Add/Delete Columns
- MySQL - Show Columns
- MySQL - Rename Columns
- MySQL - Table Locking
- MySQL - Drop Tables
- MySQL - Derived Tables
- MySQL Queries
- MySQL - Queries
- MySQL - Constraints
- MySQL - Insert Query
- MySQL - Select Query
- MySQL - Update Query
- MySQL - Delete Query
- MySQL - Replace Query
- MySQL - Insert Ignore
- MySQL - Insert on Duplicate Key Update
- MySQL - Insert Into Select
- MySQL Indexes
- MySQL - Indexes
- MySQL - Create Index
- MySQL - Drop Index
- MySQL - Show Indexes
- MySQL - Unique Index
- MySQL - Clustered Index
- MySQL - Non-Clustered Index
- MySQL Operators and Clauses
- MySQL - Where Clause
- MySQL - Limit Clause
- MySQL - Distinct Clause
- MySQL - Order By Clause
- MySQL - Group By Clause
- MySQL - Having Clause
- MySQL - AND Operator
- MySQL - OR Operator
- MySQL - Like Operator
- MySQL - IN Operator
- MySQL - ANY Operator
- MySQL - EXISTS Operator
- MySQL - NOT Operator
- MySQL - NOT EQUAL Operator
- MySQL - IS NULL Operator
- MySQL - IS NOT NULL Operator
- MySQL - Between Operator
- MySQL - UNION Operator
- MySQL - UNION vs UNION ALL
- MySQL - MINUS Operator
- MySQL - INTERSECT Operator
- MySQL - INTERVAL Operator
- MySQL Joins
- MySQL - Using Joins
- MySQL - Inner Join
- MySQL - Left Join
- MySQL - Right Join
- MySQL - Cross Join
- MySQL - Full Join
- MySQL - Self Join
- MySQL - Delete Join
- MySQL - Update Join
- MySQL - Union vs Join
- MySQL Keys
- MySQL - Unique Key
- MySQL - Primary Key
- MySQL - Foreign Key
- MySQL - Composite Key
- MySQL - Alternate Key
- MySQL Triggers
- MySQL - Triggers
- MySQL - Create Trigger
- MySQL - Show Trigger
- MySQL - Drop Trigger
- MySQL - Before Insert Trigger
- MySQL - After Insert Trigger
- MySQL - Before Update Trigger
- MySQL - After Update Trigger
- MySQL - Before Delete Trigger
- MySQL - After Delete Trigger
- MySQL Data Types
- MySQL - Data Types
- MySQL - VARCHAR
- MySQL - BOOLEAN
- MySQL - ENUM
- MySQL - DECIMAL
- MySQL - INT
- MySQL - FLOAT
- MySQL - BIT
- MySQL - TINYINT
- MySQL - BLOB
- MySQL - SET
- MySQL Regular Expressions
- MySQL - Regular Expressions
- MySQL - RLIKE Operator
- MySQL - NOT LIKE Operator
- MySQL - NOT REGEXP Operator
- MySQL - regexp_instr() Function
- MySQL - regexp_like() Function
- MySQL - regexp_replace() Function
- MySQL - regexp_substr() Function
- MySQL Fulltext Search
- MySQL - Fulltext Search
- MySQL - Natural Language Fulltext Search
- MySQL - Boolean Fulltext Search
- MySQL - Query Expansion Fulltext Search
- MySQL - ngram Fulltext Parser
- MySQL Functions & Operators
- MySQL - Date and Time Functions
- MySQL - Arithmetic Operators
- MySQL - Numeric Functions
- MySQL - String Functions
- MySQL - Aggregate Functions
- MySQL Misc Concepts
- MySQL - NULL Values
- MySQL - Transactions
- MySQL - Using Sequences
- MySQL - Handling Duplicates
- MySQL - SQL Injection
- MySQL - SubQuery
- MySQL - Comments
- MySQL - Check Constraints
- MySQL - Storage Engines
- MySQL - Export Table into CSV File
- MySQL - Import CSV File into Database
- MySQL - UUID
- MySQL - Common Table Expressions
- MySQL - On Delete Cascade
- MySQL - Upsert
- MySQL - Horizontal Partitioning
- MySQL - Vertical Partitioning
- MySQL - Cursor
- MySQL - Stored Functions
- MySQL - Signal
- MySQL - Resignal
- MySQL - Character Set
- MySQL - Collation
- MySQL - Wildcards
- MySQL - Alias
- MySQL - ROLLUP
- MySQL - Today Date
- MySQL - Literals
- MySQL - Stored Procedure
- MySQL - Explain
- MySQL - JSON
- MySQL - Standard Deviation
- MySQL - Find Duplicate Records
- MySQL - Delete Duplicate Records
- MySQL - Select Random Records
- MySQL - Show Processlist
- MySQL - Change Column Type
- MySQL - Reset Auto-Increment
- MySQL - Coalesce() Function
MySQL LTRIM() Function
The MySQL LTRIM() function is used to remove all the leading spaces from the given string. It accepts a string value as a parameter and returns the result by removing any whitespace characters, such as spaces, tabs, or newlines, from the left beginning of the string.
Syntax
Following is the syntax of MySQL LTRIM() function −
LTRIM(str)
Parameters
This function takes a string value as a parameter.
Return Value
This function returns the modified string with leading spaces removed.
Example
In the following example, we are using the LTRIM() function to remove the leading spaces from the string ' Tutorialspoint' −
SELECT LTRIM(' Tutorialspoint');
Following is the output of the above code −
LTRIM(' Tutorialspoint') |
---|
Tutorialspoint |
Example
You can also use numerical values as arguments to this function by converting them to strings −
SELECT LTRIM(' 5578');
The output obtained is as follows −
LTRIM(' 5578') |
---|
5578 |
Example
If the argument passed to this function is NULL, it returns NULL −
SELECT LTRIM(NULL );
We get the output as follows −
LTRIM(NULL ) |
---|
0x |
If you disable the --binary-as-hex value, the result of the above query will be as follows −
SELECT LTRIM(NULL );
We get the output as follows −
LTRIM(NULL ) |
---|
NULL |
Example
You can also use this function to remove leading spaces from the values of a column of a table.
Let us create a table named "PLAYERS_TABLE" and insert records into it using CREATE and INSERT statements as shown below −
CREATE TABLE PLAYERS_TABLE( ID INT, First_Name VARCHAR(255), Last_Name VARCHAR(255), Date_Of_Birth date, Place_Of_Birth VARCHAR(255), Country VARCHAR(255), PRIMARY KEY (ID) );
Now, let us insert records into it using the INSERT statement −
INSERT INTO PLAYERS_TABLE VALUES (1, ' Shikhar', 'Dhawan', DATE('1981-12-05'), 'Delhi', 'India'), (2, ' Jonathan', 'Trott', DATE('1981-04-22'), 'CapeTown', 'SouthAfrica'), (3, ' Kumara', 'Sangakkara', DATE('1977-10-27'), 'Matale', 'Srilanka'), (4, ' Virat', 'Kohli', DATE('1988-11-05'), 'Delhi', 'India'), (5, ' Rohit', 'Sharma', DATE('1987-04-30'), 'Nagpur', 'India'), (6, ' James', 'Anderson', DATE('1982-06-30'), 'Burnley', 'England');
The PLAYERS_TABLE obtained is as follows −
ID | First_Name | Last_Name | Date_Of_Birth | Place_Of_Birth | Country |
---|---|---|---|---|---|
1 | Shikhar | Dhawan | 1981-12-05 | Delhi | India |
2 | Jonathan | Trott | 1981-04-22 | CapeTown | SouthAfrica |
3 | Kumara | Sangakkara | 1977-10-27 | Matale | Srilanka |
4 | Virat | Kohli | 1988-11-05 | Delhi | India |
5 | Rohit | Sharma | 1987-04-30 | Nagpur | India |
6 | James | Anderson | 1982-06-30 | Burnley | England |
Following query removes all the leading spaces entities of the values of the column First_Name −
SELECT ID, First_Name, Last_Name, Country, LTRIM(First_Name) FROM PLAYERS_TABLE;
Output
After executing the above code, we get the following output −
ID | First_Name | Last_Name | Country | LTRIM(First_Name) |
---|---|---|---|---|
1 | Shikhar | Dhawan | India | Shikhar |
2 | Jonathan | Trott | SouthAfrica | Jonathan |
3 | Kumara | Sangakkara | Srilanka | Kumara |
4 | Virat | Kohli | India | Virat |
5 | Rohit | Sharma | India | Rohit |
6 | James | Anderson | England | James |
Example
Additionally, you can use the LTRIM() function along with the UPDATE statement to remove leading spaces in a column.
In the following example, we are updating the 'First_Name' column in the 'PLAYERS_TABLE' −
UPDATE PLAYERS_TABLE SET First_name = LTRIM(First_name);
Output
Following is the output obtained −
Query OK, 6 rows affected (0.02 sec) Rows matched: 6 Changed: 6 Warnings: 0
Verification
You can verify the changes done using the following SELECT query −
SELECT * FROM PLAYERS_TABLE;
The result produced is as follows −
ID | First_Name | Last_Name | Date_Of_Birth | Place_Of_Birth | Country |
---|---|---|---|---|---|
1 | Shikhar | Dhawan | 1981-12-05 | Delhi | India |
2 | Jonathan | Trott | 1981-04-22 | CapeTown | SouthAfrica |
3 | Kumara | Sangakkara | 1977-10-27 | Matale | Srilanka |
4 | Virat | Kohli | 1988-11-05 | Delhi | India |
5 | Rohit | Sharma | 1987-04-30 | Nagpur | India |
6 | James | Anderson | 1982-06-30 | Burnley | England |
Example
We can also use the LTRIM() function along with WHERE clause.
Here, we are removing the leading spaces for the player names whose country is not "INDIA" −
UPDATE PLAYERS_TABLE SET First_name = LTRIM(First_name) WHERE Country <> 'India';
Output
Following is the output obtained −
Query OK, 3 rows affected (0.01 sec) Rows matched: 3 Changed: 3 Warnings: 0
Verification
You can verify the changes done using the following SELECT query −
SELECT * FROM PLAYERS_TABLE;
The table obtained is as follows −
ID | First_Name | Last_Name | Date_Of_Birth | Place_Of_Birth | Country |
---|---|---|---|---|---|
1 | Shikhar | Dhawan | 1981-12-05 | Delhi | India |
2 | Jonathan | Trott | 1981-04-22 | CapeTown | SouthAfrica |
3 | Kumara | Sangakkara | 1977-10-27 | Matale | Srilanka |
4 | Virat | Kohli | 1988-11-05 | Delhi | India |
5 | Rohit | Sharma | 1987-04-30 | Nagpur | India |
6 | James | Anderson | 1982-06-30 | Burnley | England |