Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (833)

Search Parameters:
Keywords = viscoelastic methods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1596 KiB  
Article
Three-Dimensional Micromechanical Simulation and Evaluation of High-Toughness Ultra-Thin Friction Course with X-Ray Computed Tomography
by Cheng Wan, Qiang Yi, Jiankun Yang, Yong Yu and Shuai Fang
Coatings 2024, 14(11), 1423; https://doi.org/10.3390/coatings14111423 - 8 Nov 2024
Viewed by 241
Abstract
As a novel pavement wear layer material, the micromechanical mechanisms of High-toughness Ultra-thin Friction Course (HUFC) have not been fully elucidated. This paper presents a new method for the three-dimensional micromechanical simulation of high-toughness asphalt mixtures based on a viscoelastic parameter calibration model. [...] Read more.
As a novel pavement wear layer material, the micromechanical mechanisms of High-toughness Ultra-thin Friction Course (HUFC) have not been fully elucidated. This paper presents a new method for the three-dimensional micromechanical simulation of high-toughness asphalt mixtures based on a viscoelastic parameter calibration model. X-ray Computerized Tomography (CT) was employed to scan samples of high-toughness asphalt mixtures to obtain detailed information on the internal structure (aggregate, fine aggregate matrix FAM and voids), and a three-dimensional micromechanical model was constructed based on the real-scale distribution of these components. Aggregates in the high-toughness asphalt mixture were modeled as elastic bodies, while FAM was treated as a viscoelastic material characterized by the Burgers model. Using the Boltzmann linear superposition principle and Laplace transform theory, the viscoelastic properties of FAM were converted into Prony parameters recognizable by finite element software, and the viscoelastic parameters were calibrated. Micromechanical simulations were conducted for three different gradings of high-toughness asphalt mixtures, and the results show that the predicted deformation closely matched the measured deformation. This method accurately reflects the deformation characteristics of different gradings of high-toughness asphalt mixtures, overcoming the limitations of traditional numerical simulations based on homogeneous material models. It represents an advancement and refinement of micromechanical simulation methods for high-toughness asphalt mixtures. Full article
19 pages, 2635 KiB  
Article
Effect of the Compounding Method on the Development of High-Performance Binary and Ternary Blends Based on PPE
by Erika Ivonne López-Martínez, Erasto Armando Zaragoza-Contreras, Alejandro Vega-Rios and Sergio Gabriel Flores-Gallardo
Appl. Sci. 2024, 14(22), 10264; https://doi.org/10.3390/app142210264 - 7 Nov 2024
Viewed by 342
Abstract
The polymer blends are an effective strategy for materials design with new properties in the plastic industry; such features may depend on the blend components and the processing method. This study aimed to understand the effect of styrene-butadiene-styrene (SBS) content and its architecture [...] Read more.
The polymer blends are an effective strategy for materials design with new properties in the plastic industry; such features may depend on the blend components and the processing method. This study aimed to understand the effect of styrene-butadiene-styrene (SBS) content and its architecture on blends based on polyphenylene ether (PPE), high-impact polystyrene (HIPS), and SBS. In addition, this research compared and analyzed the blends formulated by different processing methods: twin-screw extrusion (TSE) and internal mixing (IM). Furthermore, three SBS copolymers, two radial and one linear (with different molecular weights), were used to produce PPE/HIPS/SBS blends, analyzing which SBS copolymer feature provides excellent viscoelasticity, thermomechanical properties, and impact resistance. The findings revealed that the melt processing method played a crucial role in Izod impact resistance of the PPE/HIPS/SBS blends, as well as the molecular architecture, molecular weight, and SBS content. The findings also demonstrated that the TSE process is more effective than the IM. Since the PPE/HIPS/SBS blends displayed higher Izod impact resistance than the PPE/HIPS or PPE/SBS binary blends, a synergistic effect of SBS and HIPS is suggested. Full article
(This article belongs to the Special Issue Polymer Materials: Design, Fabrication and Mechanical Properties)
Show Figures

Figure 1

18 pages, 6253 KiB  
Article
Sulfur Diffusion Studies Imitating Recycled Ground-Rubber-Containing Compounds
by Stefan Frosch, Volker Herrmann, Tim Schülein, Fabian Grunert and Anke Blume
Polymers 2024, 16(22), 3112; https://doi.org/10.3390/polym16223112 - 6 Nov 2024
Viewed by 276
Abstract
In-rubber properties of vulcanizates deteriorate in the presence of incorporated recycled ground rubber (GR). This behavior is partly explained by a possible diffusion of sulfur from the rubber matrix into the GR. Therefore, the sulfur concentration and, thus, the crosslink density in the [...] Read more.
In-rubber properties of vulcanizates deteriorate in the presence of incorporated recycled ground rubber (GR). This behavior is partly explained by a possible diffusion of sulfur from the rubber matrix into the GR. Therefore, the sulfur concentration and, thus, the crosslink density in the matrix are reduced. This phenomenon was further investigated in this research work using two spatially resolved methods that supplement each other: the diffusion of soluble sulfur in GR-containing compounds was locally investigated via Micro X-Ray Fluorescence analysis. Viscoelastic properties were also determined spatially by the Micro Dynamic-Mechanical Indentation method. Combining the results of both methods, local concentrations of sulfur were related to local viscoelastic properties, revealing great differences in crosslink density at the interface between the GR and matrix material. In this way, it is shown that sulfur is capable of diffusing several mm, which locally doubles its concentration with respect to the sulfur content of the compound formulation. This, in turn, negatively impacts the homogeneity of crosslink density in both the matrix and GR, revealing a local increase in the elastic stiffness of 100 %. In addition, it was found that the vulcanization characteristics of the used polymers determine the amount of sulfur diffusion and, thus, the change in viscoelastic properties. Full article
(This article belongs to the Section Polymer Recycling)
Show Figures

Figure 1

22 pages, 12444 KiB  
Article
Rapid Prediction and Parameter Evaluation of Process-Induced Deformation in L-Shape Structures Based on Feature Selection and Artificial Neural Networks
by Qingchuan Liu, Xiaodong Wang, Zhidong Guan and Zengshan Li
J. Compos. Sci. 2024, 8(11), 455; https://doi.org/10.3390/jcs8110455 - 3 Nov 2024
Viewed by 381
Abstract
The process-induced deformation (PID) during the manufacturing of thermosetting composite materials can significantly compromise manufacturing precision. This paper introduces an innovative method that combines a finite element analysis (FEA), feature classification algorithms, and an Artificial Neural Network (ANN) framework to rapidly predict the [...] Read more.
The process-induced deformation (PID) during the manufacturing of thermosetting composite materials can significantly compromise manufacturing precision. This paper introduces an innovative method that combines a finite element analysis (FEA), feature classification algorithms, and an Artificial Neural Network (ANN) framework to rapidly predict the PID of a typical L-shaped structure. Initially, a comprehensive range of parameters that influence PID are compiled in this research, followed by the generation of a dataset through FEA considering viscoelastic constitutive models, validated by experimental results. Influential parameters are classified using Random Forest and LASSO regression methods, with each parameter rated according to its impact on PID, delineating their varying degrees of importance. Subsequently, through a hyperparameter analysis, an ANN framework is developed to rapidly predict the PID, while also refining the assessment of the parameters’ significance. This innovative approach achieves a computational time reduction of 98% with less than a 5% loss in accuracy, and highlights that under limited computational conditions, considering only a subset or all of the parameters—the peak temperature, corner angle, coefficient of chemical shrinkage, coefficient of thermal expansion, curing pressure, and E1—minimizes accuracy loss. The study demonstrates that machine learning algorithms can effectively address the challenge of predicting composite material PID, providing valuable insights for practical manufacturing applications. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

22 pages, 8489 KiB  
Article
De- and Re-Structuring of Starch to Control the Melt and Solid State Visco-Elasticity as Method for Getting New Multi Component Compounds with Scalable Properties
by Doina Dimonie, Ramona-Marina Grigorescu, Bogdan Trică, Monica Raduly, Celina-Maria Damian, Roxana Trusca, Alina-Elena Mustatea, Stefan-Ovidiu Dima and Florin Oancea
Polymers 2024, 16(21), 3063; https://doi.org/10.3390/polym16213063 - 30 Oct 2024
Viewed by 415
Abstract
The aim of the article was to design and develop new thermodynamically stable starch-based compounds, with scalable properties, that are melt-processable into finished products by classic or 3D printing methods. This is based on phenomena of de-structuring, entanglement compatibilization, and re-structuring of starch, [...] Read more.
The aim of the article was to design and develop new thermodynamically stable starch-based compounds, with scalable properties, that are melt-processable into finished products by classic or 3D printing methods. This is based on phenomena of de-structuring, entanglement compatibilization, and re-structuring of starch, along with the modification of the polymer, polyvinyl alcohol (PVA), by following an experimental sequence involving pre-treatment and melt compounding in two stages. The new compounds selection was made considering the dependence of viscoelastic properties on formulation and flowing conditions in both the melted and solid states. Starting from starch with 125 °C glass transition and PVA with a Tg at 85 °C, and following the mentioned experimental sequence, new starch-PVA compounds with a high macromolecular miscibility and proven thermodynamic stability for at least 10 years, with glass transitions ranging from −10 °C to 50 °C, optimal processability through both classical melt procedures (extrusion, injection) and 3D printing, as well as good scalability properties, were achieved. The results are connected to the approaches considering the relationship between miscibility and the lifetime of compounds with renewable-based polymer content. By deepening the understanding of the thermodynamic stability features characterizing these compounds, it can be possible to open the way for starch usage in medium-life compositions, not only for short-life applications, as until now. Full article
(This article belongs to the Special Issue Biobased and Biodegradable Polymer Blends and Composites II)
Show Figures

Figure 1

19 pages, 6499 KiB  
Article
Fractional-Order Modeling and Stochastic Dynamics Analysis of a Nonlinear Rubbing Overhung Rotor System
by Heng Zhao, Fubin Wang, Yaqiong Zhang, Zhaoli Zheng, Jiaojiao Ma and Chao Fu
Fractal Fract. 2024, 8(11), 643; https://doi.org/10.3390/fractalfract8110643 - 30 Oct 2024
Viewed by 645
Abstract
To study the nonlinear dynamic behavior and system stability of a rubbing overhung rotor with viscoelastic and memory-effect damping and random uncertain parameters, this paper introduces a fractional-order modeling and stochastic dynamic analysis method for the nonlinear overhung rotor system with frictional impact [...] Read more.
To study the nonlinear dynamic behavior and system stability of a rubbing overhung rotor with viscoelastic and memory-effect damping and random uncertain parameters, this paper introduces a fractional-order modeling and stochastic dynamic analysis method for the nonlinear overhung rotor system with frictional impact faults. Firstly, the dynamic equations of the overhung rotor considering friction effect and fractional damping effect are established based on the transfer matrix method and fractional order derivative. Then, the time-domain response of the fractional-order dynamic equations is solved by combining the Runge–Kutta method and the continuous fractional expansion, and the steady-state response characteristics of different fractional damping are analyzed in the deterministic case. Finally, to analyze the response of the system under the effect of stochastic parameters, the sparse grid-based PCE metamodel of the system response is developed. Statistical moments, probability distributions, and sensitivity indices of the response of stochastic systems are revealed. The results of this paper provide a theoretical basis for efficient and accurate prediction of the stochastic response of nonlinear rubbing overhung rotor systems. Full article
Show Figures

Figure 1

6 pages, 1497 KiB  
Proceeding Paper
Nanofiber-Filled Alginate–Gelatine Hybrid Hydrogel: Rheology and Shape Fidelity of 3D-Printed Scaffold
by Rokeya Sarah, Benjamin Szum and Ahasan Habib
Eng. Proc. 2024, 76(1), 53; https://doi.org/10.3390/engproc2024076053 - 29 Oct 2024
Viewed by 442
Abstract
This study explored extrusion-based 3D bioprinting as a method for depositing cell-laden bio-ink to create well-defined scaffolds for tissue regeneration. Natural hydrogels, known for their biocompatibility and low cell toxicity, were favored for bio-ink formulation in this process. However, their limited mechanical strength [...] Read more.
This study explored extrusion-based 3D bioprinting as a method for depositing cell-laden bio-ink to create well-defined scaffolds for tissue regeneration. Natural hydrogels, known for their biocompatibility and low cell toxicity, were favored for bio-ink formulation in this process. However, their limited mechanical strength poses a challenge to maintaining structural integrity. To address this, the rheological properties of hybrid hydrogels containing cellulose-derived nanofiber (TONFC) at concentrations between 0.5% and 1.0%, along with alginate and gelatin at levels between 2% and 5%, were tested in this study. A total of eight formulations was created by adjusting the proportions of alginate, TO-NFC, and gelatin, resulting in a combined solid content of 8%. Various rheological properties, such as the flow behavior, recovery rate, and linear viscoelastic range, were analyzed. Bi-layer scaffolds were 3D printed with various compositions and the shape fidelity was investigated. Human mesenchymal stem cells (hMSCs) were mixed to prepare bio-ink and cell survivability was observed after 7 incubation days. The ability to control 3D printability and the favorable survival of cells make nanofiber-infused alginate–gelatin a promising option for creating precisely shaped scaffolds using the 3D bio-printing process. Full article
Show Figures

Figure 1

12 pages, 2943 KiB  
Article
Investigation of an Innovative Roll-to-Plate (R2P) Hot-Embossing Process for Microstructure Arrays of Infrared Glass
by Qinjun Li, Kangsen Li, Jinyu Lv, Linglong Tao and Feng Gong
Micromachines 2024, 15(11), 1307; https://doi.org/10.3390/mi15111307 - 28 Oct 2024
Viewed by 419
Abstract
The roller-to-plate (R2P) hot-embossing process is an effective, low-cost method for producing high-quality micro-/nano-optical components. In the field of night vision applications, the fabrication of chalcogenide glass microstructures is emerging as a promising alternative to traditional infrared glass. This trend is driven by [...] Read more.
The roller-to-plate (R2P) hot-embossing process is an effective, low-cost method for producing high-quality micro-/nano-optical components. In the field of night vision applications, the fabrication of chalcogenide glass microstructures is emerging as a promising alternative to traditional infrared glass. This trend is driven by the potential of chalcogenide glass to surpass conventional materials in terms of performance. However, the development of R2P hot embossing faces challenges, such as the high cost of curved mold manufacturing, the reliance on roll-to-roll processes for nano hot embossing, the limitations of plastic materials, and the unclear viscoelastic properties of infrared glass. In this study, a novel R2P hot-embossing process was developed to fabricate flat chalcogenide glass structures. The key parameters, such as roller temperature, speed, and embossing pressure, were investigated to understand their impact on the glass-filling performance. The deformation mechanism of the glass microstructures was also analyzed. The experimental results show that the R2P hot-embossing method offers excellent reproducibility, achieving a maximum filling rate of 96% and an average roughness deviation of 8.36 nm. The increase in the roller temperature and embossing force increased the filling height of the glass microstructure arrays, while an increase in the roller speed decreased the filling height. Different embossing methods, including variations in speed, temperature, and force, are summarized to analyze the structural changes during embossing. This study provides a foundation and a basis for future research on the roller-to-plate hot embossing process. Full article
(This article belongs to the Special Issue Functional Materials and Microdevices)
Show Figures

Figure 1

15 pages, 3350 KiB  
Article
Optimization of a Solvent Exchange Method Enabling the Use of Dehydrated Cellulose Nanofibers as the Thickener in Lubricating Oleogels
by María García-Pérez, Claudia Roman, Samuel D. Fernández-Silva, Miguel A. Delgado and Moisés García-Morales
Gels 2024, 10(11), 690; https://doi.org/10.3390/gels10110690 - 24 Oct 2024
Viewed by 470
Abstract
A method that enabled the formulation of lubricating oleogels using dried cellulose nanofibers (CNFs) as an eco-friendly thickener in castor oil was studied. In their dehydrated state, strong hydrogen bonding between nanofibers and high hydrophilicity are the main obstacles to their dispersion in [...] Read more.
A method that enabled the formulation of lubricating oleogels using dried cellulose nanofibers (CNFs) as an eco-friendly thickener in castor oil was studied. In their dehydrated state, strong hydrogen bonding between nanofibers and high hydrophilicity are the main obstacles to their dispersion in oil. Hence, clusters of dried CNFs had to be previously detached by their dispersion in water. The resulting hydrogels were then subjected to methanol washes to displace the water from the nanofibers. After centrifugation, the methanol-wetted precipitate was readily dispersed in castor oil, forming an oleogel once the methanol was removed. Optimization was conducted in terms of the following variables: (a) hydrogel processing method; (b) hydrogel pH; (c) methanol/hydrogel ratio; (d) number of washes; and (e) oleogel CNF concentration. Their effect on the oleogel linear viscoelastic behavior was analyzed. In general, they demonstrated a prevailing elastic behavior denoted by a well-developed plateau region. The CNF concentration was found to have a more remarkable impact on the oleogels’ rheological behavior than any other variable studied. Hence, substantial differences were observed between 1 and 2 wt.%. The CNFs exhibited a very remarkable thickening capacity in castor oil, achieving a plateau modulus of ca. 700 Pa with just 2 wt.%. Moreover, the resulting oleogels maintained a uniform texture even after one year of storage. This indicates that the oleogels were both homogeneous and storage stable, effectively overcoming the stability issues associated with direct dispersion of dried CNFs in castor oil. Full article
(This article belongs to the Special Issue Recent Progress on Oleogels and Organogels)
Show Figures

Figure 1

13 pages, 3833 KiB  
Article
Evaluation of a Comprehensive Approach for the Development of the Field E* Master Curve Using NDT Data
by Konstantina Georgouli, Christina Plati and Andreas Loizos
NDT 2024, 2(4), 474-486; https://doi.org/10.3390/ndt2040029 - 24 Oct 2024
Viewed by 357
Abstract
Non-destructive testing (NDT) systems are essential tools and are widely used for assessing the condition and structural integrity of pavement structures without causing any damage. They are cost-effective, provide comprehensive data, and are time efficient. The bearing capacity and structural condition of a [...] Read more.
Non-destructive testing (NDT) systems are essential tools and are widely used for assessing the condition and structural integrity of pavement structures without causing any damage. They are cost-effective, provide comprehensive data, and are time efficient. The bearing capacity and structural condition of a flexible pavement depends on several interrelated factors, with asphalt layers stiffness being dominant. Since asphalt mix is a viscoelastic material, its performance can be fully captured by the dynamic modulus master curve. However, in terms of evaluating an in-service pavement, although a dynamic load is applied and the time history of deflections is recorded during testing of FWD, only the peak deflection is considered in the analysis. Therefore, the modulus of stiffness estimated by backcalculation is the modulus of elasticity. While several methods have been introduced for the determination of the field dynamic modulus master curve, the MEPDG approach provides significant advantages in terms of transparency and robustness. This study focuses on evaluating the methodology’s accuracy through an experimental study. The data analysis and validation process showed that routine measurements with the FWD and GPR, within the framework of a pavement monitoring system, can provide valuable input parameters for the evaluation of in-service pavements. Full article
Show Figures

Figure 1

16 pages, 9169 KiB  
Article
The Effect of Acetic Acid as a Solvent on the Structure and Properties of Poly(3-hydroxybutyrate)—Based Dried Gels
by Vsevolod Zhuikov and Yulia Zhuikova
Gels 2024, 10(10), 664; https://doi.org/10.3390/gels10100664 - 17 Oct 2024
Viewed by 644
Abstract
Poly(3-hydroxybutyrate) (PHB) is a microbially derived polyhydroxyalkanoate that is widely used in biomedical applications. In this study, we investigated the use of acetic acid (aa) as an alternative environmentally friendly solvent for the preparation of gels from PHB (PHB aa) and compared their [...] Read more.
Poly(3-hydroxybutyrate) (PHB) is a microbially derived polyhydroxyalkanoate that is widely used in biomedical applications. In this study, we investigated the use of acetic acid (aa) as an alternative environmentally friendly solvent for the preparation of gels from PHB (PHB aa) and compared their characteristics with PHB products dissolved in chloroform (PHB chl) using such methods as DSC, FTIR, SEM, rheometry, biodegradation, and cytocompatibility assay. A slight decrease in the degree of the crystallinity of the PHB from 61% to 50.8% was found when the acetic acid was used. This resulted in a greater mass loss for the PHB aa (11%) during enzymatic degradation over 180 days. Gels prepared from PHB in the different solvents showed differences in the microstructure and porosity of the samples, which affected their viscoelastic properties. The storage modulus (G′) for the PHB aa gels was higher by 35% compared to that for the PHB chl, and Young’s modulus in compression was 101.5 and 41.3 kPa for the PHB aa and PHB chl, respectively. The porosity of the PHB aa was 97.7%, which was 5.2% higher than that for the PHB chl. The presence of low molecular weight polymers in the PHB aa had an effect on mesenchymal stem cells’ viability, expressed as a threefold increase in the number of attached cells after 7 days of incubation compared to the PHB chl. Thus, the proposed method of PHB-based materials’ preparation is a promising, more environmentally friendly analog of the extensively used method of preparation from chloroform. Full article
(This article belongs to the Special Issue Chemical Properties and Application of Gel Materials)
Show Figures

Figure 1

18 pages, 6569 KiB  
Article
Reduction in Floor Impact Noise Using Resilient Pads Composed of Machining Scraps
by Donghyeon Lee, Jonghoon Jeon, Wanseung Kim, Narae Kim, Minjung Lee and Junhong Park
Polymers 2024, 16(20), 2912; https://doi.org/10.3390/polym16202912 - 16 Oct 2024
Viewed by 564
Abstract
Floor impact noise is a significant social concern to secure a quiescent living space for multi-story building residents in South Korea. The floating floor, consisting of a concrete structure on resilient pads, is a specifically designed system to minimize noise transmission. This floating [...] Read more.
Floor impact noise is a significant social concern to secure a quiescent living space for multi-story building residents in South Korea. The floating floor, consisting of a concrete structure on resilient pads, is a specifically designed system to minimize noise transmission. This floating structure employs polymeric pads as the resilient materials. In this study, we investigated the utilization of helically shaped machining scraps as a resilient material for an alternative approach to floor noise reduction. The dynamic elastic modulus and loss factor of the scrap pads were measured using the vibration test method. The scrap pads exhibited a low dynamic elastic modulus and a high loss factor compared to the polymeric pads. Heavyweight impact sound experiments in an actual building were conducted to evaluate the noise reduction performance. The proposed pads showed excellent performance on the reduction in the structure-borne vibration of the concrete slab and resulting sound generation. The analytical model was used to simulate the response of the floating floor structure, enabling a parametric study to examine the effects of the resilient layer viscoelastic properties. Both experimental and analytical evidence confirmed that the proposed scrap pads contribute to the development of sustainable solutions for the minimization of floor impact noise. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 2447 KiB  
Article
Improving Hydrophobicity and Water Vapor Barrier Properties in Paper Using Cellulose Nanofiber-Stabilized Cocoa Butter and PLA Emulsions
by Shaydier Argel-Pérez, Jorge Velásquez-Cock, Robin Zuluaga and Catalina Gómez-Hoyos
Coatings 2024, 14(10), 1310; https://doi.org/10.3390/coatings14101310 - 13 Oct 2024
Viewed by 938
Abstract
This study explores the use of cellulose nanofiber (CNF)-stabilized Pickering emulsions for paper coatings, focusing on their rheological properties and effects on hydrophilicity and water vapor transmission rate (WVTR). Two types of Pickering emulsions, oil-in-water (O/W), were stabilized with 1 wt% CNF extracted [...] Read more.
This study explores the use of cellulose nanofiber (CNF)-stabilized Pickering emulsions for paper coatings, focusing on their rheological properties and effects on hydrophilicity and water vapor transmission rate (WVTR). Two types of Pickering emulsions, oil-in-water (O/W), were stabilized with 1 wt% CNF extracted from fique by-products. The oily phases of the emulsions were composed of poly(lactic acid) (PLA) and cocoa butter (CB). The physical stability, viscosity, and viscoelasticity of the emulsions were characterized. The emulsions were applied to the surfaces of Bond and Kraft papers using the rod-coating method. The coating process involved first applying a layer of the PLA emulsion followed by a layer of the CB emulsion. The coated papers were then evaluated by FE-SEM, contact angle, adhesion work, and water vapor transmission rate (WVTR). The results indicated that the coatings effectively produced a slightly hydrophobic surface on the papers, with contact angles approaching 90°. Initially, Kraft paper exhibited a WVTR value of 29.20 ± 1.13 g/m2·h, which significantly decreased to 7.06 ± 2.80 g/m2·h after coating, representing a reduction of 75.82%. Similarly, natural Bond paper showed a WVTR value of 30.56 ± 0.34 g/m2·h, which decreased to 14.37 ± 5.91 g/m2·h after coating, indicating a reduction of 47.02%. These findings demonstrate the potential of CNF-stabilized Pickering emulsions for enhancing the performance of paper coatings in terms of hydrophobicity and moisture barrier properties. The approach of this study aligns with global sustainability goals in packaging materials combining the use of PLA and CB to develop a waterborne coating to enhance the moisture barrier properties, demonstrated by a substantial reduction in water vapor transmission rates, and an improved hydrophobicity of coated papers. Full article
(This article belongs to the Special Issue Advanced Coatings and Films for Food Packing and Storage, 2nd Edition)
Show Figures

Figure 1

14 pages, 3219 KiB  
Article
Numerical Simulation for Durability of a Viscoelastic Polymer Material Subjected to Variable Loadings Fatigue Based on Entropy Damage Criterion
by Yutong Li, M. J. Mohammad Fikry and Jun Koyanagi
Polymers 2024, 16(20), 2857; https://doi.org/10.3390/polym16202857 - 10 Oct 2024
Viewed by 575
Abstract
This study aims to explore the impact of load history on the premature failure of the viscoelastic polymer matrix in carbon-fiber-reinforced plastics (CFRPs) using a method based on the concept of fracture fatigue entropy (FFE). A user-defined subroutine (UMAT) developed by the authors [...] Read more.
This study aims to explore the impact of load history on the premature failure of the viscoelastic polymer matrix in carbon-fiber-reinforced plastics (CFRPs) using a method based on the concept of fracture fatigue entropy (FFE). A user-defined subroutine (UMAT) developed by the authors in previous studies was incorporated to apply the FFE damage criterion using ABAQUS software. Several variable-amplitude load modes, including frequent load amplitude changes and intermittent interruptions, were designed based on the conventional linear damage accumulation method (Palmgren–Miner rule), and the fatigue life under these loadings was obtained via numerical simulations. The results show that both frequent amplitude changes and even brief pauses in loading can accelerate damage accumulation, leading to premature failure of the polymer matrix. In these scenarios, the fatigue life ranged from 33.6% to 91.9% of the predictions made using the Palmgren–Miner rule, which shows significant variation and highlights cases in which the predicted fatigue life falls far short of expectations. This study offers a more practical and reliable approach for predicting fatigue life under complex loading conditions. Since the accuracy of the FFE criterion has been comprehensively validated in previous studies, this research focuses on its application to predict failure under variable loading conditions. Full article
Show Figures

Figure 1

34 pages, 13868 KiB  
Article
A Novel Approach of the Viscoelasticity of Axially Functional Graded Bar and Application of Harmonic Vibration Analysis of an Isotropic Beam as Support
by Cihan Demir
Appl. Sci. 2024, 14(19), 8974; https://doi.org/10.3390/app14198974 - 5 Oct 2024
Viewed by 570
Abstract
The use of smart materials and passive controllers in modern technologies has stimulated the study of vibration in elastic systems with viscoelastic damping. It is also possible to create components with precise material distribution coefficients and distinct properties, such as Functionally Graded Materials. [...] Read more.
The use of smart materials and passive controllers in modern technologies has stimulated the study of vibration in elastic systems with viscoelastic damping. It is also possible to create components with precise material distribution coefficients and distinct properties, such as Functionally Graded Materials. This work investigates the resonant frequency characteristics of a beam supported at its ends by Axially Functionally Graded (AFG) viscoelastic bars using the finite element method. The set of equations governing motion is obtained by assuming Euler–Bernoulli beam theory for the beam and bar theory for the bars using Lagrange’s equations. The material properties of the functionally graded bar is assumed to vary through the length according to the power law distribution. The longitudinal loss factor values are used to define the internal damping coefficient, which is also dependent on the Young’s modulus value varying along the bar. The effects of the length-varying material properties and internal damping of the FG support bars on the force transmission TR and frequency parameters λ are examined in detail. No study has been found in the literature on the vibration of viscoelastic FG bar-supported beams subjected to a harmonic force at the centre point. It is shown that using bars formed with combinations of different materials considering material damping will be useful to keep the vibration level and force transmission at a certain value and control the frequency parameters. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

Back to TopTop