Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (268)

Search Parameters:
Keywords = vegetable oils and derivatives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4975 KiB  
Article
Novel Aromatic Estolide Esters from Biobased Resources by a Green Synthetic Approach
by Andra Tămaș, Ioan Bîtcan, Sabina Nițu, Cristina Paul, Ioana Cristina Benea, Gerlinde Iuliana Rusu, Elline Perot, Francisc Peter and Anamaria Todea
Appl. Sci. 2024, 14(17), 7832; https://doi.org/10.3390/app14177832 - 4 Sep 2024
Viewed by 81
Abstract
The use of vegetable oils and their derivatives for polymer synthesis has been a major focus in recent years due to their universal availability, low production costs and biodegradability. In this study, the enzymatic synthesis of oligoesters of ricinoleic acid obtained from castor [...] Read more.
The use of vegetable oils and their derivatives for polymer synthesis has been a major focus in recent years due to their universal availability, low production costs and biodegradability. In this study, the enzymatic synthesis of oligoesters of ricinoleic acid obtained from castor oil combined with three aromatic natural derivatives (cinnamyl alcohol, sinapic acid, and caffeic acid) was investigated. The formation of the reaction products was demonstrated by FT-IR, MALDI-TOF MS and NMR spectroscopy and for the oligo (ricinoleyl)-caffeate the thermal properties and biodegradability in sweet water were analyzed and a rheological characterization was performed. The successful enzymatic synthesis of oligoesters from ricinoleic acid and aromatic monomers using lipases not only highlights the potential of biocatalysis in green chemistry but also contributes to the development of sustainable and biodegradable methods for synthesizing products with potential applications as cosmetic ingredients. Full article
(This article belongs to the Special Issue Bioenergy and Bioproducts from Biomass and Waste)
Show Figures

Figure 1

20 pages, 4562 KiB  
Review
Cyclodextrin Complexes for the Treatment of Chagas Disease: A Literature Review
by Fabrice Taio, Attilio Converti and Ádley Antonini Neves de Lima
Int. J. Mol. Sci. 2024, 25(17), 9511; https://doi.org/10.3390/ijms25179511 - 1 Sep 2024
Viewed by 426
Abstract
Cyclodextrins are ring-shaped sugars used as additives in medications to improve solubility, stability, and sensory characteristics. Despite being widespread, Chagas disease is neglected because of the limitations of available medications. This study aims to review the compounds used in the formation of inclusion [...] Read more.
Cyclodextrins are ring-shaped sugars used as additives in medications to improve solubility, stability, and sensory characteristics. Despite being widespread, Chagas disease is neglected because of the limitations of available medications. This study aims to review the compounds used in the formation of inclusion complexes for the treatment of Chagas disease, analyzing the incorporated compounds and advancements in related studies. The databases consulted include Scielo, Scopus, ScienceDirect, PubMed, LILACS, and Embase. The keywords used were “cyclodextrin AND Chagas AND disease” and “cyclodextrin complex against Trypanosoma cruzi”. Additionally, a statistical analysis of studies on Chagas disease over the last five years was conducted, highlighting the importance of research in this area. This review focused on articles that emphasize how cyclodextrins can improve the bioavailability, therapeutic action, toxicity, and solubility of medications. Initially, 380 articles were identified with the keyword “cyclodextrin AND Chagas disease”; 356 were excluded for not being directly related to the topic, using the keyword “cyclodextrin complex against Trypanosoma cruzi”. Over the last five years, a total of 13,075 studies on Chagas disease treatment were found in our literature analysis. The studies also showed interest in molecules derived from natural products and vegetable oils. Research on cyclodextrins, particularly in the context of Chagas disease treatment, has advanced significantly, with studies highlighting the efficacy of molecules in cyclodextrin complexes and indicating promising advances in disease treatment. Full article
(This article belongs to the Special Issue Research on Cyclodextrin: Properties and Biomedical Applications)
Show Figures

Figure 1

25 pages, 2233 KiB  
Article
Tracking Biofuel Innovation: A Graph-Based Analysis of Sustainable Aviation Fuel Patents
by Matheus Noschang de Oliveira, Letícia Rezende Mosquéra, Patricia Helena dos Santos Martins, André Luiz Marques Serrano, Guilherme Dantas Bispo, Guilherme Fay Vergara, Gabriela Mayumi Saiki, Clovis Neumann and Vinícius Pereira Gonçalves
Energies 2024, 17(15), 3683; https://doi.org/10.3390/en17153683 - 26 Jul 2024
Viewed by 489
Abstract
The use of biofuels represents a promising means of achieving a sustainable future and offers considerable economic and environmental benefits. Since they are derived from organic sources, such as vegetable oils and animal fats, biofuels can mitigate the effects of greenhouse gas emissions, [...] Read more.
The use of biofuels represents a promising means of achieving a sustainable future and offers considerable economic and environmental benefits. Since they are derived from organic sources, such as vegetable oils and animal fats, biofuels can mitigate the effects of greenhouse gas emissions, improve air quality, support local agriculture, create employment opportunities, and enhance energy security by reducing dependence on fossil fuels. However, introducing these alternative fuels to the aviation sector remains a significant challenge. Thus, it is vital to investigate the potential of sustainable aviation fuel (SAF) and discover how to overcome the technological obstacles to its integration into mainstream aviation to attain broader decarbonization objectives. This article seeks to contribute to a discussion about SAF by examining how it has evolved and its connections to related patents. This article is a comprehensive study of biofuel innovation, highlighting the complex relationships between academia, industry, and other stakeholders. It is hoped that the findings from this study will provide a clearer understanding of the catalysts involved in SAF innovation and provide valuable insights for policymakers, academics, and professionals in the field who are committed to shaping the trajectory of sustainable energy technologies in the future. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

18 pages, 1259 KiB  
Article
Usefulness of the 1H NMR Multisuppression Approach for the Global Characterization of Monovarietal Extra-Virgin Olive Oils
by Encarnacion Goicoechea-Oses and Ainhoa Ruiz-Aracama
Foods 2024, 13(14), 2298; https://doi.org/10.3390/foods13142298 - 22 Jul 2024
Viewed by 669
Abstract
Extra-virgin olive oil (EVOO) is one of the most appreciated vegetable oils worldwide, but its high price makes it prone to suffer adulteration with lower quality oils. Therefore, it is important to have methodologies able to study EVOO composition as a whole in [...] Read more.
Extra-virgin olive oil (EVOO) is one of the most appreciated vegetable oils worldwide, but its high price makes it prone to suffer adulteration with lower quality oils. Therefore, it is important to have methodologies able to study EVOO composition as a whole in a simple and fast way, in order to guarantee its quality and safety. For this purpose, in this study, commercial samples of five Spanish olive cultivars (Arbequina, Arroniz, Cornicabra, Hojiblanca, Picual) were studied by Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy, using standard and multisuppression pulses. The aim was to explore the possibility of 1H NMR use to characterize in a single run and in a global way the composition of these monocultivar oils, regarding not only their main components (fatty acids supported on triglycerides) but also minor ones (squalene, sterols, diterpenic wax esters of phytol and geranylgeraniol, phenolic and secoiridoid derivatives, like tyrosol, hydroxytyrosol, oleacein, oleocanthal, and lignans, among others, and aldehydes). The use of univariate and multivariate statistical analyses confirmed the presence of compositional features that were specific to some olive varieties. The Arbequina and Arroniz oils showed the most characteristic features that allowed for clearly differentiating them from the others. In contrast, the discrimination between the Cornicabra, Hojiblanca and Picual oils was not so easily achieved. Full article
(This article belongs to the Special Issue Edible Oils: Composition, Processing and Nutritional Properties)
Show Figures

Figure 1

14 pages, 5602 KiB  
Article
Surface Soil Moisture Estimation from Time Series of RADARSAT Constellation Mission Compact Polarimetric Data for the Identification of Water-Saturated Areas
by Igor Zakharov, Sarah Kohlsmith, Jon Hornung, François Charbonneau, Pradeep Bobby and Mark Howell
Remote Sens. 2024, 16(14), 2664; https://doi.org/10.3390/rs16142664 - 21 Jul 2024
Viewed by 498
Abstract
Soil moisture is one of the main factors affecting microwave radar backscatter from the ground. While there are other factors that affect backscatter levels (for instance, surface roughness, vegetation, and incident angle), relative variations in soil moisture can be estimated using space-based, medium [...] Read more.
Soil moisture is one of the main factors affecting microwave radar backscatter from the ground. While there are other factors that affect backscatter levels (for instance, surface roughness, vegetation, and incident angle), relative variations in soil moisture can be estimated using space-based, medium resolution, multi-temporal synthetic aperture radar (SAR). Understanding the distribution and identification of water-saturated areas using SAR soil moisture can be important for wetland mapping. The SAR soil moisture retrieval algorithm provides a relative assessment and requires calibration over wet and dry periods. In this work, relative soil moisture indicators are derived from a time series of the RADARSAT Constellation Mission (RCM) SAR compact polarimetric (CP) data over reclaimed areas of an oil sands mine in Alberta, Canada. An evaluation of the soil moisture product is performed using in situ measurements showing agreement from June to September. The surface scattering component of m-chi CP decomposition and the RL SAR products demonstrated a good agreement with the field data (low RMSE values and a perfect alignment with field-identified wetlands). Full article
(This article belongs to the Special Issue GIS and Remote Sensing in Soil Mapping and Modeling)
Show Figures

Figure 1

19 pages, 4653 KiB  
Article
Study of the Adsorption of Anionic Surfactants on Carbonate Rocks: Characterizations, Experimental Design, and Parameter Implementation
by Valdivino Francisco dos Santos Borges, Mayra Kerolly Sales Monteiro, Ernani Dias da Silva Filho, Dennys Correia da Silva, José Luís Cardozo Fonseca, Alcides O. Wanderley Neto and Tiago Pinheiro Braga
Coatings 2024, 14(7), 856; https://doi.org/10.3390/coatings14070856 - 8 Jul 2024
Viewed by 696
Abstract
Controlling or reducing the adsorption of surfactants on reservoir rock surfaces has been a challenging task in enhanced oil recovery (EOR) methods, as it directly affects the cost-effectiveness of the projects. The adsorption of surfactants on rock surfaces can modify their hydrophobicity, surface [...] Read more.
Controlling or reducing the adsorption of surfactants on reservoir rock surfaces has been a challenging task in enhanced oil recovery (EOR) methods, as it directly affects the cost-effectiveness of the projects. The adsorption of surfactants on rock surfaces can modify their hydrophobicity, surface charge, and other important parameters that govern EOR processes, such as reducing the interfacial tension between water and oil and increasing permeability. Therefore, understanding the adsorption mechanism on rocks is essential for developing alternatives that improve the effectiveness of these processes. In this work, the adsorption of surfactants on carbonate materials was evaluated considering variations in temperature, contact time, and surfactant concentration. The surfactants used were derived from vegetable oils, aiming for a sustainable approach: saponified coconut oil (SCO), saponified babassu coconut oil (SBCO), and saponified castor oil (SMO). The finite bath method was used, resulting in adsorption efficiencies of 85.74%, 82.52%, and 45.30% for SCO, SBCO, and SMO, respectively. The Sips isotherm and the pseudo-second-order model were found to be suitable for characterizing these systems. The simulation of SCO adsorption isotherms on limestone by the Langmuir model was more accurate than that using the Freundlich model. The limestone showed a negative surface charge of approximately −35.0 mV at pH 6.5; this negative charge varied over a wide pH range. These zeta potential data for the samples confirmed that hydrophobic interactions played an important role in the adsorption of the surfactants. Thermodynamic evaluation indicated spontaneous and endothermic adsorption of SCO on limestone. The systems were also characterized by FTIR, TG/DTG, XRD, XRF, SEM, and zeta potential. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Graphical abstract

28 pages, 12145 KiB  
Review
Eco-Friendly and High-Performance Bio-Polyurethane Adhesives from Vegetable Oils: A Review
by Sena Maulana, Eko Setio Wibowo, Efri Mardawati, Apri Heri Iswanto, Antonios Papadopoulos and Muhammad Adly Rahandi Lubis
Polymers 2024, 16(11), 1613; https://doi.org/10.3390/polym16111613 - 6 Jun 2024
Cited by 1 | Viewed by 1309
Abstract
Current petrochemical-based adhesives adversely affect the environment through substantial volatile organic compound (VOC) emissions during production, contributing to air pollution and climate change. In contrast, vegetable oils extracted from bio-resources provide a compelling alternative owing to their renewability, abundance, and compatibility with adhesive [...] Read more.
Current petrochemical-based adhesives adversely affect the environment through substantial volatile organic compound (VOC) emissions during production, contributing to air pollution and climate change. In contrast, vegetable oils extracted from bio-resources provide a compelling alternative owing to their renewability, abundance, and compatibility with adhesive formulation chemistry. This review aimed to critically examine and synthesize the existing scholarly literature on environmentally friendly, sustainable, and high-performance polyurethane adhesives (PUAs) developed from vegetable oils. The use of PUAs derived from vegetable oils promises to provide a long-term replacement while simultaneously maintaining or improving adhesive properties. This quality renders these adhesives appropriate for widespread use in various sectors, including construction, automotive manufacturing, packaging, textile, and footwear industries. This review intended to perform a comprehensive assessment and integration of the existing research, thereby identifying the raw materials, strengths, weaknesses, and gaps in knowledge concerning vegetable oil-based PUAs. In doing so, it responded to these gaps and proposes potential avenues for future research. Therefore, this review accomplishes more than merely evaluating the existing research; it fosters the advancement of greener PUA technologies by identifying areas for improvement and innovation towards more sustainable industrial practices by showcasing vegetable oil-based PUAs as viable, high-performance alternatives to their petroleum-based counterparts. Full article
(This article belongs to the Special Issue Valorization of Biopolymer from Renewable Biomass)
Show Figures

Figure 1

10 pages, 2024 KiB  
Article
Physicochemical and Mechanical Properties of Non-Isocyanate Polyhydroxyurethanes (NIPHUs) from Epoxidized Soybean Oil: Candidates for Wound Dressing Applications
by Maria Morales-González, Manuel F. Valero and Luis E. Díaz
Polymers 2024, 16(11), 1514; https://doi.org/10.3390/polym16111514 - 27 May 2024
Viewed by 615
Abstract
Only 0.1% of polyurethanes available on the market are from renewable sources. With increasing concern about climate change, the substitution of monomers derived from petrochemical sources and the application of eco-friendly synthesis processes is crucial for the development of biomaterials. Therefore, polyhydroxyurethanes have [...] Read more.
Only 0.1% of polyurethanes available on the market are from renewable sources. With increasing concern about climate change, the substitution of monomers derived from petrochemical sources and the application of eco-friendly synthesis processes is crucial for the development of biomaterials. Therefore, polyhydroxyurethanes have been utilized, as their synthesis route allows for the carbonation of vegetable oils with carbon dioxide and the substitution of isocyanates known for their high toxicity, carcinogenicity, and petrochemical origin. In this study, polyhydroxyurethanes were obtained from carbonated soybean oil in combination with two diamines, one that is aliphatic (1,4-butadiamine (putrescine)) and another that is cycloaliphatic (1,3-cyclohexanobis(methylamine)). Four polyhydroxyurethanes were obtained, showing stability in hydrolytic and oxidative media, thermal stability above 200 °C, tensile strength between 0.9 and 1.1 MPa, an elongation at break between 81 and 222%, a water absorption rate up 102%, and contact angles between 63.70 and 101.39. New formulations of bio-based NIPHUs can be developed with the inclusion of a cycloaliphatic diamine (CHM) for the improvement of mechanical properties, which represents a more sustainable process for obtaining NIPHUs with the physicochemical, mechanical, and thermal properties required for the preparation of wound dressings. Full article
Show Figures

Figure 1

14 pages, 3109 KiB  
Article
Biodegradable Hydrogenated Dimer Acid-Based Plasticizers for PLA with Excellent Plasticization, Thermal Stability and Gas Resistance
by Nengkun Huang, Fan Wang, Ruihao Zhang, Zhaolin Cao, Wen Sun, Yuting Ma, Jihuai Tan and Xinbao Zhu
Molecules 2024, 29(11), 2526; https://doi.org/10.3390/molecules29112526 - 27 May 2024
Viewed by 841
Abstract
The use of vegetable oil-dervied plasticizers to enhance the flexibility of polylactic acid (PLA) has received much attention due to their renewability, inexpensiveness and biodegradation. However, the double bonds in vegetable oil-based plasticizers limit their compatibility with PLA, resulting in PLA-derived products with [...] Read more.
The use of vegetable oil-dervied plasticizers to enhance the flexibility of polylactic acid (PLA) has received much attention due to their renewability, inexpensiveness and biodegradation. However, the double bonds in vegetable oil-based plasticizers limit their compatibility with PLA, resulting in PLA-derived products with reduced flexibility. Herein, we examined soybean oil-derived hydrogenated dimer acid-based polyethylene glycol methyl ether esters (HDA-2n, 2n = 2, 4, 6 or 8, referring to the ethoxy units) developed via the direct esterification of saturated hydrogenated dimer acid and polyethylene glycol monomethyl ethers. The resulting HDA-2n was first used as a plasticizer for PLA, and the effects of the ethoxy units in HDA-2n on the overall performance of the plasticized PLA were systematically investigated. The results showed that, compared with PLA blended with dioctyl terephthalate (DOTP), the PLA plasticized by HDA-8 with the maximum number of ethoxy units (PLA/HDA-8) exhibited better low-temperature resistance (40.1 °C vs. 15.3 °C), thermal stability (246.8 °C vs. 327.6 °C) and gas barrier properties. Additionally, the biodegradation results showed that HDA-8 could be biodegraded by directly burying it in soil. All results suggest that HDA-8 could be used as green alternative to the traditional petroleum-based plasticizer DOTP, which is applied in the PLA industry. Full article
Show Figures

Graphical abstract

16 pages, 4170 KiB  
Article
Mechanical Characterization of Recyclable and Non-Recyclable Bio-Epoxy Resins for Aerospace Applications
by Laurent Mezeix, Prateek Gupta, Christophe Bouvet and Komkrisd Wongtimnoi
J. Compos. Sci. 2024, 8(5), 191; https://doi.org/10.3390/jcs8050191 - 20 May 2024
Viewed by 993
Abstract
The use of composites in the aerospace industry has been increasing exponentially. However, conventional epoxy resins, derived from petroleum sources, are not sustainable, making them non-degradable and environmentally harmful. In order to foster a sustainable environment, replacing conventional thermoset epoxies with bio-sourced carbon [...] Read more.
The use of composites in the aerospace industry has been increasing exponentially. However, conventional epoxy resins, derived from petroleum sources, are not sustainable, making them non-degradable and environmentally harmful. In order to foster a sustainable environment, replacing conventional thermoset epoxies with bio-sourced carbon epoxies is imperative. With the enhancement in technology, it is possible to combine vegetable oils or bio-based copolymers with resins to make it recyclable in nature. Hence, it is necessary to study bio-based epoxies and carry out material characterization and see how they behave differently from conventional epoxies. This study examines the mechanical properties of different types of epoxy resins, which includes conventional, recyclable, and non-recyclable bio-epoxies. Tensile, bending, fracture toughness, and compression tests are performed in accordance with ASTM and ISO standards. The results show that the recyclable bio-epoxy exhibits comparable or superior properties when compared with conventional and non-recyclable bio-epoxies, particularly in terms of impact resistance. Recyclable epoxy, examined in the current study, shows a 73% higher strain energy release rate as compared to conventional epoxy. These results suggest that bio-epoxies could serve as a viable alternative to conventional epoxy. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, Volume II)
Show Figures

Figure 1

12 pages, 989 KiB  
Article
Photopolymerization of Limonene Dioxide and Vegetable Oils as Biobased 3D-Printing Stereolithographic Formulation
by Mégane Clerget, Eric Gagnon and Jerome P. Claverie
Polymers 2024, 16(7), 965; https://doi.org/10.3390/polym16070965 - 2 Apr 2024
Viewed by 900
Abstract
Epoxidized vegetable oils and limonene dioxide, a bis-epoxide derived from the terpene limonene, are photo-copolymerized to yield highly crosslinked networks with high conversion of all epoxide groups at ambient temperature. However, the slow polymerization of such biobased formulation polymerizes is not compatible for [...] Read more.
Epoxidized vegetable oils and limonene dioxide, a bis-epoxide derived from the terpene limonene, are photo-copolymerized to yield highly crosslinked networks with high conversion of all epoxide groups at ambient temperature. However, the slow polymerization of such biobased formulation polymerizes is not compatible for a use in a commercial SLA 3D printer. Adding an acrylated epoxidized vegetable oil to the bis-epoxide leads to a decrease of curing time and an increase in LDO conversion to polymer. For example, in a 60:40 wt:wt mixture of LDO and epoxidized soybean oil, the conversions of both exocyclic and endocyclic epoxide groups of LDO are ≥95%. These formulations were successfully used in SLA 3D printers, leading to generation of hard and dry complex objects using biobased formulations. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Canada)
Show Figures

Graphical abstract

16 pages, 309 KiB  
Article
A Cross-Sectional Pilot Study on Association of Ready-to-Eat and Processed Food Intakes with Metabolic Factors, Serum Trans Fat and Phospholipid Fatty Acid Compositions in Healthy Japanese Adults
by Chizuko Maruyama, Miya Uchiyama, Ariko Umezawa, Aoi Tokunaga, Akari Yasuda, Kanako Chibai, Chieko Fukuda, Rina Ichiki, Noriko Kameyama and Masakazu Shinohara
Nutrients 2024, 16(7), 1032; https://doi.org/10.3390/nu16071032 - 2 Apr 2024
Viewed by 1379
Abstract
Frequently consuming processed and ready-to-eat (RTE) foods is regarded as unhealthy, but evidence on the relationships with circulating metabolic parameters is lacking. Japanese residents of a metropolitan area, 20 to 50 years of age, were studied in terms of anthropometric and biochemical parameters, [...] Read more.
Frequently consuming processed and ready-to-eat (RTE) foods is regarded as unhealthy, but evidence on the relationships with circulating metabolic parameters is lacking. Japanese residents of a metropolitan area, 20 to 50 years of age, were studied in terms of anthropometric and biochemical parameters, including circulating trans fat and serum phospholipid fatty acid levels. Processed foods, except drinks and dairy items, were categorized according to requirements for additional ingredients and cooking before eating. Processed and RTE foods were divided according to fat and/or oil content into non-fatty or fatty foods. The participants were grouped into tertiles based on the energy percent (En%) derived from fatty-RTE foods. Fatty-RTE En% showed negative associations with fish, soybean and soybean products, dairy, eggs, vegetables, seaweed/mushrooms/konjac, fruit and non-oily seasonings reflecting lower dietary fiber, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and mineral and vitamin intakes, while the associations with fat/oil, confectionaries, and sweet beverages were positive. Fatty-RTE En% consumption was positively associated with alkaline phosphatase, leucine aminopeptidase, direct bilirubin, elaidic acid, and C18:2 but inversely associated with HDL cholesterol, C15:0, C17:0, EPA, and DHA. A higher fatty-RTE food intake was suggested to contribute to unbalanced nutrient intakes, as reflected in lipid metabolic parameters. Further large-scale studies are needed to evaluate the quality and impacts of RTE foods. Full article
(This article belongs to the Section Lipids)
19 pages, 9392 KiB  
Article
Eco-Friendly Cork–Polyurethane Biocomposites for Enhanced Impact Performance: Experimental and Numerical Analysis
by Mateusz Dymek, Mariusz Ptak, Paweł Kaczyński, Fábio A. O. Fernandes, Ricardo J. Alves de Sousa, Gabriel F. Serra and Maria Kurańska
Polymers 2024, 16(7), 887; https://doi.org/10.3390/polym16070887 - 24 Mar 2024
Viewed by 963
Abstract
Cork composites are byproducts from wine stopper production, resulting from the agglomeration of cork granules with a thermoset resin. The resulting compound is a versatile and durable material with numerous industrial applications. Due to its unique properties, such as low-density, high-strength, excellent energy [...] Read more.
Cork composites are byproducts from wine stopper production, resulting from the agglomeration of cork granules with a thermoset resin. The resulting compound is a versatile and durable material with numerous industrial applications. Due to its unique properties, such as low-density, high-strength, excellent energy absorption, and good thermal and acoustic insulators, cork composites find room for application in demanding industries such as automotive, construction, and aerospace. However, agglomerated cork typically has a polyurethane matrix derived from petrochemical sources. This study focuses on developing eco-friendly porous polyurethane biocomposites manufactured with the used cooking oil polyol modified with cork. Since cork and polyurethane foam are typically used for impact shock absorption, the manufactured samples were subjected to impact loading. The assessment of crashworthiness is performed through 100 J impact tests. A finite element numerical model was developed to simulate the compression of these new composites under impact, and the model validation was performed. The highest specific absorbed energy was obtained for petrochemical polyol composites with the 3% addition of natural or modified cork. The research conducted in this study showcased the feasibility of substituting certain petrochemical components used for the synthesis of the polyurethane matrix with ecological waste vegetable oil components. Full article
(This article belongs to the Special Issue Polymers and the Environment II)
Show Figures

Graphical abstract

13 pages, 2463 KiB  
Article
Enhancing Hydrophobic Properties in Olive Oil-Coated Papers through Thermal Treatment
by Amelia Loesch-Zhang, Tobias Meckel, Markus Biesalski and Andreas Geissler
Coatings 2024, 14(3), 364; https://doi.org/10.3390/coatings14030364 - 20 Mar 2024
Cited by 1 | Viewed by 1735
Abstract
Enhancing paper hydrophobicity is of key importance for many paper-based applications. Fatty acids or vegetable oils and their derivatives replace environmentally harmful conventional coating materials but still require challenging chemical reactions for covalent attachment onto paper. Here, we show that simple storage of [...] Read more.
Enhancing paper hydrophobicity is of key importance for many paper-based applications. Fatty acids or vegetable oils and their derivatives replace environmentally harmful conventional coating materials but still require challenging chemical reactions for covalent attachment onto paper. Here, we show that simple storage of olive oil-coated cotton linter paper at 70 °C and subsequent Soxhlet extraction is able to endow paper with hydrophobic properties, reaching water contact angles above 130°. In-depth chemical and morphological analytics show the relevance of temperature and air accessibility during the aging process compared with aging at ambient temperature and under the exclusion of oxygen, underlining the importance of assessing a coating’s long-term performance and stability under diverse storage conditions. Simple storage of vegetable oil-coated paper at elevated temperatures followed by extraction proves to be an easy way to produce stable covalently attached hydrophobic paper coatings with exceptionally low coating amounts. Full article
(This article belongs to the Special Issue Trends in Coatings and Surface Technology, 2nd Edition)
Show Figures

Figure 1

16 pages, 1177 KiB  
Article
Characterization of Nanovesicles Isolated from Olive Vegetation Water
by Sandra Buratta, Raffaella Latella, Elisabetta Chiaradia, Anna Maria Salzano, Brunella Tancini, Roberto Maria Pellegrino, Lorena Urbanelli, Giada Cerrotti, Eleonora Calzoni, Husam B. R. Alabed, Sabrina De Pascale, Luana Lugini, Cristina Federici, Andrea Scaloni and Carla Emiliani
Cited by 1 | Viewed by 1384
Abstract
Edible plant and fruit-derived nanovesicles (NVs) are membrane-enclosed particles with round-shape morphology and signaling functions, which resemble mammalian cell-derived extracellular vesicles. These NVs can transmit cross-kingdom signals as they contain bioactive molecules and exert biological effects on mammalian cells. Their properties and stability [...] Read more.
Edible plant and fruit-derived nanovesicles (NVs) are membrane-enclosed particles with round-shape morphology and signaling functions, which resemble mammalian cell-derived extracellular vesicles. These NVs can transmit cross-kingdom signals as they contain bioactive molecules and exert biological effects on mammalian cells. Their properties and stability in the gastrointestinal tract suggest NVs as a promising nutraceutical tool. In this study, we have demonstrated for the first time the presence of NVs in olive vegetation water (OVW), a waste by-product generated during olive oil production. Biophysical characterization by scanning electron microscopy, cryo-transmission electron microscopy, and nanoparticle tracking analysis revealed the presence in OVW of NVs having size and morphology similar to that of vesicles isolated from edible plants. Integrated lipidomic, metabolomic, and proteomic analyses showed that OVW-NVs carry a set of lipids, metabolites and proteins which have recognized antioxidant and anti-inflammatory activities. The nature of biomolecules identified in OVW-NVs suggests that these vesicles could exert beneficial effects on mammalian cells and could be used in the nutraceutical and food industries. The successful isolation of OVW-NVs and the characterization of their features strengthen the idea that agricultural waste might represent a source of NVs having features similar to NVs isolated from edible plants/fruits. Full article
Show Figures

Figure 1

Back to TopTop