Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,006)

Search Parameters:
Keywords = thiol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 9001 KiB  
Article
Consumption of Sylimarin, Pyrroloquinoline Quinone Sodium Salt and Myricetin: Effects on Alcohol Levels and Markers of Oxidative Stress—A Pilot Study
by Gerardo Bosco, Alessandra Vezzoli, Andrea Brizzolari, Matteo Paganini, Tommaso Antonio Giacon, Fabio Savini, Maristella Gussoni, Michela Montorsi, Cinzia Dellanoce and Simona Mrakic-Sposta
Nutrients 2024, 16(17), 2965; https://doi.org/10.3390/nu16172965 - 3 Sep 2024
Viewed by 331
Abstract
Background: Alcohol abuse is one of the most common causes of mortality worldwide. This study aimed to investigate the efficacy of a treatment in reducing circulating ethanol and oxidative stress biomarkers. Methods: Twenty wine-drinking subjects were investigated in a randomized controlled, single-blind trial [...] Read more.
Background: Alcohol abuse is one of the most common causes of mortality worldwide. This study aimed to investigate the efficacy of a treatment in reducing circulating ethanol and oxidative stress biomarkers. Methods: Twenty wine-drinking subjects were investigated in a randomized controlled, single-blind trial (ClinicalTrials.gov. Identifier: NCT06548503; Ethical Committee of the University of Padova (HEC-DSB/12-2023) to evaluate the effect of the intake of a product containing silymarin, pyrroloquinoline quinone sodium salt, and myricetin (referred to as Si.Pi.Mi. for this project) on blood alcohol, ethyl glucuronide (EtG: marker for alcohol consumption) and markers of oxidative stress levels (Reactive Oxygen Species—ROS, Total Antioxidant Capacity—TAC, CoQ10, thiols redox status, 8-isoprostane, NO metabolites, neopterin, and uric acid). The effects of the treatment versus placebo were evaluated acutely and after 1 week of supplementation in blood and/or saliva and urine samples. Results: Si.Pi.Mi intake reduced circulating ethanol after 120 min (−33%). Changes in oxidative stress biomarkers, particularly a TAC (range +9–12%) increase and an 8-isoprostane (marker of lipidic peroxidation) decrease (range −22–27%), were observed too. Conclusion: After the administration of Si.Pi.Mi, the data seemed to suggest a better alcohol metabolism and oxidative balance in response to wine intake. Further verification is requested. Full article
(This article belongs to the Special Issue Alcohol Consumption and Human Health)
Show Figures

Figure 1

16 pages, 5528 KiB  
Article
Bioactive Hydrogels Based on Tyramine and Maleimide Functionalized Dextran for Tissue Engineering Applications
by Lin Zhong, Alma Tamunonengiofori Banigo, Bram Zoetebier and Marcel Karperien
Gels 2024, 10(9), 566; https://doi.org/10.3390/gels10090566 - 30 Aug 2024
Viewed by 237
Abstract
Hydrogels are widely used in tissue engineering due to their ability to form three-dimensional (3D) structures that support cellular functions and mimic the extracellular matrix (ECM). Despite their advantages, dextran-based hydrogels lack intrinsic biological activity, limiting their use in this field. Here, we [...] Read more.
Hydrogels are widely used in tissue engineering due to their ability to form three-dimensional (3D) structures that support cellular functions and mimic the extracellular matrix (ECM). Despite their advantages, dextran-based hydrogels lack intrinsic biological activity, limiting their use in this field. Here, we present a strategy for developing bioactive hydrogels through sequential thiol–maleimide bio-functionalization and enzyme-catalyzed crosslinking. The hydrogel network is formed through the reaction of tyramine moieties in the presence of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2), allowing for tunable gelation time and stiffness by adjusting H2O2 concentrations. Maleimide groups on the hydrogel backbone enable the coupling of thiol-containing bioactive molecules, such as arginylglycylaspartic acid (RGD) peptides, to enhance biological activity. We examined the effects of hydrogel stiffness and RGD concentration on human mesenchymal stem cells (hMSCs) during differentiation and found that hMSCs encapsulated within these hydrogels exhibited over 88% cell viability on day 1 across all conditions, with a slight reduction to 60–81% by day 14. Furthermore, the hydrogels facilitated adipogenic differentiation, as evidenced by positive Oil Red O staining. These findings demonstrate that DexTA–Mal hydrogels create a biocompatible environment that is conducive to cell viability and differentiation, offering a versatile platform for future tissue engineering applications. Full article
(This article belongs to the Special Issue Biopolymer-Based Gels for Drug Delivery and Tissue Engineering)
Show Figures

Graphical abstract

13 pages, 2130 KiB  
Article
Prediction of Antioxidant Capacity of Thiolate–Disulfide Systems Using Species-Specific Basicity Values
by Tamás Pálla, Béla Noszál and Arash Mirzahosseini
Antioxidants 2024, 13(9), 1053; https://doi.org/10.3390/antiox13091053 - 29 Aug 2024
Viewed by 237
Abstract
The principal reactions that maintain redox homeostasis in living systems are the deprotonation of thiols, followed by the oxidative conversion of the produced thiolates into disulfides, which thus reduce the harmful oxidizing agents. The various biological thiols have different molecule-specific propensities to carry [...] Read more.
The principal reactions that maintain redox homeostasis in living systems are the deprotonation of thiols, followed by the oxidative conversion of the produced thiolates into disulfides, which thus reduce the harmful oxidizing agents. The various biological thiols have different molecule-specific propensities to carry on the co-dependent deprotonation and redox processes. This study utilizes the known correlation between thiolate basicities and oxidizabilities, to quantify antioxidant or reducing capacities and pH-dependences of thiol–disulfide antioxidant systems, as a tool to find adequate molecules against oxidative stress. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

9 pages, 3136 KiB  
Communication
Off-Stoichiometry Thiol-Ene (OSTE) Micro Mushroom Forest: A Superhydrophobic Substrate
by Haonan Li, Muyang Zhang, Yeqian Liu, Shangneng Yu, Xionghui Li, Zejingqiu Chen, Zitao Feng, Jie Zhou, Qinghao He, Xinyi Chen, Huiru Zhang, Jiaen Zhang, Xingwei Zhang and Weijin Guo
Micromachines 2024, 15(9), 1088; https://doi.org/10.3390/mi15091088 - 28 Aug 2024
Viewed by 325
Abstract
Superhydrophobic surfaces have been used in various fields of engineering due to their resistance to corrosion and fouling and their ability to control fluid movement. Traditionally, superhydrophobic surfaces are fabricated via chemical methods of changing the surface energy or mechanical methods of controlling [...] Read more.
Superhydrophobic surfaces have been used in various fields of engineering due to their resistance to corrosion and fouling and their ability to control fluid movement. Traditionally, superhydrophobic surfaces are fabricated via chemical methods of changing the surface energy or mechanical methods of controlling the surface topology. Many of the conventional mechanical methods use a top-to-bottom scheme to control the surface topolopy. Here, we develop a novel fabrication method of superhydrophobic substrates using a bottom-to-top scheme via polymer OSTE, which is a prototyping polymer material developed for the fabrication of microchips due to its superior photocuring ability, mechanical properties, and surface modification ability. We fabricate a superhydrophobic substrate by OSTE–OSTE micro mushroom forest via a two-step lithography process. At first, we fabricate an OSTE pillar forest as the mushroom stems; then, we fabricate the mushroom heads via backside lithography with diffused UV light. Such topology and surface properties of OSTE render these structures superhydrophobic, with water droplets reaching a contact angle of 152.9 ± 0.2°, a sliding angle of 4.1°, and a contact angle hysteresis of less than 0.5°. These characteristics indicate the promising potential of this substrate for superhydrophobic applications. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nano-Fabrication)
Show Figures

Figure 1

20 pages, 2623 KiB  
Article
A Highly Sensitive Chitosan-Based SERS Sensor for the Trace Detection of a Model Cationic Dye
by Bahareh Vafakish and Lee D. Wilson
Int. J. Mol. Sci. 2024, 25(17), 9327; https://doi.org/10.3390/ijms25179327 - 28 Aug 2024
Viewed by 241
Abstract
The rapid detection of contaminants in water resources is vital for safeguarding the environment, where the use of eco-friendly materials for water monitoring technologies has become increasingly prioritized. In this context, the role of biocomposites in the development of a SERS sensor is [...] Read more.
The rapid detection of contaminants in water resources is vital for safeguarding the environment, where the use of eco-friendly materials for water monitoring technologies has become increasingly prioritized. In this context, the role of biocomposites in the development of a SERS sensor is reported in this study. Grafted chitosan was employed as a matrix support for Ag nanoparticles (NPs) for the surface-enhanced Raman spectroscopy (SERS). Chitosan (CS) was decorated with thiol and carboxylic acid groups by incorporating S-acetyl mercaptosuccinic anhydride (SAMSA) to yield CS-SAMSA. Then, Ag NPs were immobilized onto the CS-SAMSA (Ag@CS-SAMSA) and characterized by spectral methods (IR, Raman, NIR, solid state 13C NMR with CP-MAS, XPS, and TEM). Ag@CS-SAMSA was evaluated as a substrate for SERS, where methylene blue (MB) was used as a model dye adsorbate. The Ag@CS-SAMSA sensor demonstrated a high sensitivity (with an enhancement factor ca. 108) and reusability over three cycles, with acceptable reproducibility and storage stability. The Raman imaging revealed a large SERS effect, whereas the MB detection varied from 1–100 μM. The limits of detection (LOD) and quantitation (LOQ) of the biocomposite sensor were characterized, revealing properties that rival current state-of-the-art systems. The dye adsorption profiles were studied via SERS by fitting the isotherm results with the Hill model to yield the ΔG°ads for the adsorption process. This research demonstrates a sustainable dual-function biocomposite with tailored adsorption and sensing properties suitable for potential utility in advanced water treatment technology and environmental monitoring applications. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

14 pages, 2012 KiB  
Article
Free Radical Production Induced by Nitroimidazole Compounds Lead to Cell Death in Leishmania infantum Amastigotes
by Julia Andrés-Rodríguez, María-Cristina González-Montero, Nerea García-Fernández, Estefanía Calvo-Álvarez, María-Yolanda Pérez-Pertejo, Rosa-María Reguera-Torres, Rafael Balaña-Fouce and Carlos García-Estrada
Molecules 2024, 29(17), 4041; https://doi.org/10.3390/molecules29174041 - 26 Aug 2024
Viewed by 355
Abstract
Leishmania infantum is the vector-borne trypanosomatid parasite causing visceral leishmaniasis in the Mediterranean basin. This neglected tropical disease is treated with a limited number of obsolete drugs that are not exempt from adverse effects and whose overuse has promoted the emergence of resistant [...] Read more.
Leishmania infantum is the vector-borne trypanosomatid parasite causing visceral leishmaniasis in the Mediterranean basin. This neglected tropical disease is treated with a limited number of obsolete drugs that are not exempt from adverse effects and whose overuse has promoted the emergence of resistant pathogens. In the search for novel antitrypanosomatid molecules that help overcome these drawbacks, drug repurposing has emerged as a good strategy. Nitroaromatic compounds have been found in drug discovery campaigns as promising antileishmanial molecules. Fexinidazole (recently introduced for the treatment of stages 1 and 2 of African trypanosomiasis), and pretomanid, which share the nitroimidazole nitroaromatic structure, have provided antileishmanial activity in different studies. In this work, we have tested the in vitro efficacy of these two nitroimidazoles to validate our 384-well high-throughput screening (HTS) platform consisting of L. infantum parasites emitting the near-infrared fluorescent protein (iRFP) as a biomarker of cell viability. These molecules showed good efficacy in both axenic and intramacrophage amastigotes and were poorly cytotoxic in RAW 264.7 and HepG2 cultures. Fexinidazole and pretomanid induced the production of ROS in axenic amastigotes but were not able to inhibit trypanothione reductase (TryR), thus suggesting that these compounds may target thiol metabolism through a different mechanism of action. Full article
Show Figures

Figure 1

18 pages, 1707 KiB  
Article
Phytochemical Profile and Antidiabetic, Antioxidant, and Anti-Inflammatory Activities of Gypsophila paniculata Ethanol Extract in Rat Streptozotocin-Induced Diabetes Mellitus
by Lia-Oxana Usatiuc, Marcel Pârvu, Raluca Maria Pop, Ana Uifălean, Dan Vălean, Csilla-Eniko Szabo, Mădălina Țicolea, Florinela Adriana Cătoi, Floricuța Ranga and Alina Elena Pârvu
Antioxidants 2024, 13(9), 1029; https://doi.org/10.3390/antiox13091029 - 24 Aug 2024
Viewed by 471
Abstract
The present study aimed to investigate the effects of the Gypsophila paniculata ethanol extract (GPEE) on oxidative stress, inflammation, and metabolic markers in a rat model of streptozotocin-induced diabetes mellitus (DM). Phytochemical analysis using high-performance liquid chromatography coupled with mass spectrometry was performed [...] Read more.
The present study aimed to investigate the effects of the Gypsophila paniculata ethanol extract (GPEE) on oxidative stress, inflammation, and metabolic markers in a rat model of streptozotocin-induced diabetes mellitus (DM). Phytochemical analysis using high-performance liquid chromatography coupled with mass spectrometry was performed to measure the total phenolic and flavonoid contents. In vitro antioxidant activity was evaluated through DPPH, FRAP, H2O2, and NO scavenging tests, and the in vivo effects of the GPEE were assessed in streptozotocin-induced DM rats. Treatments with the GPEE, metformin, and Trolox were administrated by gavage for 10 days. On day 11, blood was collected, and serum oxidative stress (total oxidative status, oxidative stress index, malondialdehyde, advanced oxidation protein products, 8-hydroxydeoxyguanosine, nitric oxide, 3-nitrotyrosine, advanced glycation end-products, total antioxidant reactivity, total thiols), inflammatory (IL-1β, NF-κB, IL-18, and gasdermin D), metabolic (fasting glucose, total cholesterol, triglycerides, and triglyceride–glucose index), and liver injury (AST, ALT, and AST:ALT ratio) markers were measured. The GPEE was found to have a significant polyphenols content and a moderate in vitro antioxidant effect. In vivo, the GPEE lowered oxidants and increased antioxidants, decreased inflammatory markers and blood glucose, and improved lipid profiles and transaminases in a dose-dependent manner, with higher doses having a better effect, being comparable to those of metformin and Trolox. Full article
(This article belongs to the Special Issue Natural Antioxidants and Metabolic Diseases)
Show Figures

Figure 1

14 pages, 3156 KiB  
Article
Eco-Friendly Functionalization of Ynals with Thiols under Mild Conditions
by Kamil Hanek and Patrycja Żak
Int. J. Mol. Sci. 2024, 25(17), 9201; https://doi.org/10.3390/ijms25179201 - 24 Aug 2024
Viewed by 311
Abstract
A new eco-friendly method for the synthesis of mono- and multifunctional organosulfur compounds, based on the process between ynals and thiols, catalyzed by bulky N-heterocyclic carbene (NHC), was designed and optimized. The proposed organocatalytic approach allows the straightforward formation of a broad [...] Read more.
A new eco-friendly method for the synthesis of mono- and multifunctional organosulfur compounds, based on the process between ynals and thiols, catalyzed by bulky N-heterocyclic carbene (NHC), was designed and optimized. The proposed organocatalytic approach allows the straightforward formation of a broad range of thioesters and sulfenyl-substituted aldehydes in yields above 86%, in mild and metal-free conditions. In this study, thirty-six sulfur-based derivatives were obtained and characterized by spectroscopic methods. Full article
Show Figures

Figure 1

14 pages, 1135 KiB  
Article
Synthesis and Biological Activity of Homohypotaurine Obtained by the Enzyme-Based Conversion of Homocysteine Sulfinic Acid Using Recombinant Escherichia Coli Glutamate Decarboxylase
by Mario Fontana, Aysenur Gunaydin Akyildiz, Chiara D’Alonzo, Fabio Giovannercole, Arianna Zicchi, Antonio Francioso, Elisabetta Capuozzo and Daniela De Biase
Molecules 2024, 29(17), 3985; https://doi.org/10.3390/molecules29173985 - 23 Aug 2024
Viewed by 428
Abstract
l-Homocysteine, formed from S-adenosyl methionine following demethylation and adenosine release, accumulates when the methionine recycling pathway and other pathways become impaired, thus leading to hyperhomocysteinemia, a biomarker in cardiovascular diseases, neurological/psychiatric disorders, and cancer. The partial oxidation of the l-homocysteine thiol [...] Read more.
l-Homocysteine, formed from S-adenosyl methionine following demethylation and adenosine release, accumulates when the methionine recycling pathway and other pathways become impaired, thus leading to hyperhomocysteinemia, a biomarker in cardiovascular diseases, neurological/psychiatric disorders, and cancer. The partial oxidation of the l-homocysteine thiol group and its decarboxylation on C-alpha lead to the formation of l-homocysteinesulfinic acid (l-HCSA) and homohypotaurine (HHT), respectively. Both compounds are not readily available from commercial suppliers, which hinders the investigation of their biological activities. Herein, the chemical synthesis of l-HCSA, from l-homocystine, was the starting point for establishing the bio-based synthesis of HHT using recombinant Escherichia coli glutamate decarboxylase (EcGadB), an enzyme already successfully employed for the bio-based synthesis of GABA and its phosphinic analog. Prior to HHT synthesis, kcat (33.92 ± 1.07) and KM (38.24 ± 3.45 mM) kinetic constants were determined for l-HCSA on EcGadB. The results of our study show that the EcGadB-mediated synthesis of HHT can be achieved with good yields (i.e., 40% following enzymatic synthesis and column chromatography). Purified HHT was tested in vitro on primary human umbilical vein endothelial cells and rat cardiomyoblasts and compared to the fully oxidized analog, homotaurine (OT, also known as tramiprosate), in widespread pharmaceutical use. The results show that both cell lines display statistically significant recovery from the cytotoxic effects induced by H2O2 in the presence of HHT. Full article
(This article belongs to the Special Issue Enzymes in Biosynthesis and Biocatalysis)
Show Figures

Figure 1

20 pages, 6887 KiB  
Review
Current Strategy for Targeting Metallo-β-Lactamase with Metal-Ion-Binding Inhibitors
by Jessica L. Ortega-Balleza, Lenci K. Vázquez-Jiménez, Eyra Ortiz-Pérez, Guadalupe Avalos-Navarro, Alma D. Paz-González, Edgar E. Lara-Ramírez and Gildardo Rivera
Molecules 2024, 29(16), 3944; https://doi.org/10.3390/molecules29163944 - 21 Aug 2024
Viewed by 568
Abstract
Currently, antimicrobial resistance (AMR) is a serious health problem in the world, mainly because of the rapid spread of multidrug-resistant (MDR) bacteria. These include bacteria that produce β-lactamases, which confer resistance to β-lactams, the antibiotics with the most prescriptions in the world. Carbapenems [...] Read more.
Currently, antimicrobial resistance (AMR) is a serious health problem in the world, mainly because of the rapid spread of multidrug-resistant (MDR) bacteria. These include bacteria that produce β-lactamases, which confer resistance to β-lactams, the antibiotics with the most prescriptions in the world. Carbapenems are particularly noteworthy because they are considered the ultimate therapeutic option for MDR bacteria. However, this group of antibiotics can also be hydrolyzed by β-lactamases, including metallo-β-lactamases (MBLs), which have one or two zinc ions (Zn2+) on the active site and are resistant to common inhibitors of serine β-lactamases, such as clavulanic acid, sulbactam, tazobactam, and avibactam. Therefore, the design of inhibitors against MBLs has been directed toward various compounds, with groups such as nitrogen, thiols, and metal-binding carboxylates, or compounds such as bicyclic boronates that mimic hydrolysis intermediates. Other compounds, such as dipicolinic acid and aspergillomarasmin A, have also been shown to inhibit MBLs by chelating Zn2+. In fact, recent inhibitors are based on Zn2+ chelation, which is an important factor in the mechanism of action of most MBL inhibitors. Therefore, in this review, we analyzed the current strategies for the design and mechanism of action of metal-ion-binding inhibitors that combat MDR bacteria. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

20 pages, 1378 KiB  
Article
Phytochemical Composition Antioxidant and Anti-Inflammatory Activity of Artemisia dracunculus and Artemisia abrotanum
by Mădălina Țicolea, Raluca Maria Pop, Marcel Pârvu, Lia-Oxana Usatiuc, Ana Uifălean, Floricuța Ranga and Alina Elena Pârvu
Antioxidants 2024, 13(8), 1016; https://doi.org/10.3390/antiox13081016 - 20 Aug 2024
Viewed by 432
Abstract
This study aimed to investigate the antioxidant and anti-inflammatory activities mechanism of Artemisia dracunculus (A. dracunculus) and Artemisia abrotanum (A. abrotanum) ethanol extracts in acute rat inflammation induced in Wistar male rats with turpentine oil. The characterization of the [...] Read more.
This study aimed to investigate the antioxidant and anti-inflammatory activities mechanism of Artemisia dracunculus (A. dracunculus) and Artemisia abrotanum (A. abrotanum) ethanol extracts in acute rat inflammation induced in Wistar male rats with turpentine oil. The characterization of the polyphenolic compounds in the extracts was conducted using UV–Vis and Fourier-transform infrared spectroscopy and high-performance liquid chromatography coupled with mass spectrometry techniques. The antioxidant activity of the extracts was evaluated in vitro by DPPH, FRAP, H2O2, and NO scavenging tests and in vivo by measuring the total oxidative status (TOS), total antioxidant capacity (TAC), oxidative stress index (OSI), 8-hydroxy-deoxyguanosine (8-Oxo-dG), advanced oxidation protein products (AOPP), malondialdehyde (MDA), nitric oxide (NO), 3-nitrotyrosine (3NT), and total thiols (SH). Inflammation was evaluated by measuring nuclear factor-kB-p65 (NfkB-p65) and NLRP3 inflammasome activation with IL-1β, IL-18, and gasdermin D. Liver and renal toxicity was determined following transaminases (ALT and AST), creatinine, and urea. The experimental results indicated that A. dracunculus and A. abrotanum ethanol extracts have moderate in vitro antioxidant activity and had in vivo antioxidant activity and an anti-inflammatory effect by NfkB-p65, IL-1b, IL-18, and gasdermin D serum level reduction. The antioxidant activity correlated with the chemical composition of the extracts. These results bring evidence-based use of A. dracunculus and A. abrotanum’s in traditional and contemporary medicine. Full article
Show Figures

Figure 1

8 pages, 1877 KiB  
Communication
Single-Nanoparticle Electrochemical Collision for Monitoring Self-Assembly of Thiol Molecules on Au Nanoparticles
by Yiyan Bai
Biosensors 2024, 14(8), 393; https://doi.org/10.3390/bios14080393 - 15 Aug 2024
Viewed by 505
Abstract
A precise understanding of the self-assembly kinetics of small molecules on nanoparticles (NPs) can give greater control over the size and architecture of the functionalized NPs. Herein, a single-nanoparticle electrochemical collision (SNEC)-based method was developed to monitor the self-assembly processes of 6-mercapto-1-hexanol (6-MCH) [...] Read more.
A precise understanding of the self-assembly kinetics of small molecules on nanoparticles (NPs) can give greater control over the size and architecture of the functionalized NPs. Herein, a single-nanoparticle electrochemical collision (SNEC)-based method was developed to monitor the self-assembly processes of 6-mercapto-1-hexanol (6-MCH) and 1-hexanethiol (MCH) on Au NPs at the single-particle level, and to investigate the self-assembly kinetics exactly. Results showed that the self-assembly processes of both consisted of rapid adsorption and slow recombination. However, the adsorption rate of MCH was significantly lower than that of 6-MCH due to the poorer polarity. Also noteworthy is that the rapid adsorption of 6-MCH on Au NPs conformed to the Langmuir model of diffusion control. Hence, the proposed SNEC-based method could serve as a complementary method to research the self-assembly mechanism of functionalized NPs. Full article
(This article belongs to the Special Issue Advances in Plasmonic Biosensing Technology)
Show Figures

Figure 1

17 pages, 2838 KiB  
Article
The SOD1 Inhibitor, LCS-1, Oxidizes H2S to Reactive Sulfur Species, Directly and Indirectly, through Conversion of SOD1 to an Oxidase
by Kenneth R. Olson, Tsuyoshi Takata, Kasey J. Clear, Yan Gao, Zhilin Ma, Ella Pfaff, Karthik Mouli, Thomas A. Kent, Prentiss Jones, Jon Fukuto, Gang Wu and Karl D. Straub
Antioxidants 2024, 13(8), 991; https://doi.org/10.3390/antiox13080991 - 15 Aug 2024
Viewed by 410
Abstract
LCS-1, a putative selective inhibitor of SOD1, is a substituted pyridazinone with rudimentary similarity to quinones and naphthoquinones. As quinones catalytically oxidize H2S to biologically active reactive sulfur species (RSS), we hypothesized LCS-1 might have similar attributes. Here, we examine LCS-1 [...] Read more.
LCS-1, a putative selective inhibitor of SOD1, is a substituted pyridazinone with rudimentary similarity to quinones and naphthoquinones. As quinones catalytically oxidize H2S to biologically active reactive sulfur species (RSS), we hypothesized LCS-1 might have similar attributes. Here, we examine LCS-1 reactions with H2S and SOD1 using thiol-specific fluorophores, liquid chromatography–mass spectrometry, electron paramagnetic resonance (EPR), UV–vis spectrometry, and oxygen consumption. We show that LCS-1 catalytically oxidizes H2S in buffer solutions to form RSS, namely per- and polyhydrosulfides (H2Sn, n = 2–6). These reactions consume oxygen and produce hydrogen peroxide, but they do not have an EPR signature, nor do they affect the UV–vis spectrum. Surprisingly, LCS-1 synergizes with SOD1, but not SOD2, to oxidize H2S to H2S3-6. LCS-1 forms monothiol adducts with H2S, glutathione (GSH), and cysteine (Cys), but not with oxidized glutathione or cystine; both thiol adducts inhibit LCS-1-SOD1 synergism. We propose that LCS-1 forms an adduct with SOD1 that disrupts the intramolecular Cys57-Cys146 disulfide bond and transforms SOD1 from a dismutase to an oxidase. This would increase cellular ROS and polysulfides, the latter potentially affecting cellular signaling and/or cytoprotection. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Figure 1

12 pages, 1708 KiB  
Article
Fabricating High Strength Bio-Based Dynamic Networks from Epoxidized Soybean Oil and Poly(Butylene Adipate-co-Terephthalate)
by Bin Xu, Zhong-Ming Xia, Rui Zhan and Ke-Ke Yang
Polymers 2024, 16(16), 2280; https://doi.org/10.3390/polym16162280 - 11 Aug 2024
Viewed by 734
Abstract
Amid the rapid development of modern society, the widespread use of plastic products has led to significant environmental issues, including the accumulation of non-degradable waste and extensive consumption of non-renewable resources. Developing healable, recyclable, bio-based materials from abundant renewable resources using diverse dynamic [...] Read more.
Amid the rapid development of modern society, the widespread use of plastic products has led to significant environmental issues, including the accumulation of non-degradable waste and extensive consumption of non-renewable resources. Developing healable, recyclable, bio-based materials from abundant renewable resources using diverse dynamic interactions attracts increasing global attention. However, achieving a good balance between the self-healing capacity and mechanical performance, such as strength and toughness, remains challenging. In our study, we address this challenge by developing a new type of dynamic network from epoxidized soybean oil (ESO) and poly(butylene adipate-co-terephthalate) (PBAT) with good strength and toughness. For the synthetic strategy, a thiol–epoxy click reaction was conducted to functionalize ESO with thiol and hydroxyl groups. Subsequently, a curing reaction with isocyanates generated dynamic thiourethane and urethane bonds with different bonding energies in the dynamic networks to reach a trade-off between dynamic features and mechanical properties; amongst these, the thiourethane bonds with a lower bonding energy provide good dynamic features, while the urethane bonds with a higher bonding energy ensure good mechanical properties. The incorporation of flexible PBAT segments to form the rational multi-phase structure with crystalline domains further enhanced the products. A typical sample, OTSO100-PBAT100, exhibited a tensile strength of 33.2 MPa and an elongation at break of 1238%, demonstrating good healing capacity and desirable mechanical performance. This study provides a promising solution to contemporary environmental and energy challenges by developing materials that combine mechanical and repair properties. It addresses the specific gap of achieving a trade-off between tensile strength and elongation at break in bio-based self-healing materials, promising a wide range of applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

18 pages, 2898 KiB  
Article
Investigating the Regulation of Ribosomal Protein S6 Kinase 1 by CoAlation
by Oksana Malanchuk, Anna Bdzhola, Sergii Palchevskyi, Volodymyr Bdzhola, Peng Chai, Olivier E. Pardo, Michael J. Seckl, Adrija Banerjee, Sew Yeu Peak-Chew, Mark Skehel, Lalitha Guruprasad, Alexander Zhyvoloup, Ivan Gout and Valeriy Filonenko
Int. J. Mol. Sci. 2024, 25(16), 8747; https://doi.org/10.3390/ijms25168747 - 11 Aug 2024
Viewed by 543
Abstract
Ribosomal protein S6 kinases belong to a family of highly conserved enzymes in eukaryotes that regulate cell growth, proliferation, survival, and the stress response. It is well established that the activation and downstream signalling of p70S6Ks involve multiple phosphorylation events by key regulators [...] Read more.
Ribosomal protein S6 kinases belong to a family of highly conserved enzymes in eukaryotes that regulate cell growth, proliferation, survival, and the stress response. It is well established that the activation and downstream signalling of p70S6Ks involve multiple phosphorylation events by key regulators of cell growth, survival, and energy metabolism. Here, we report for the first time the covalent modification of p70S6K1 by coenzyme A (CoA) in response to oxidative stress, which regulates its kinase activity. The site of CoA binding (CoAlation) was mapped by mass spectrometry to cysteine 217 (Cys217), located in the kinase activation loop and only one amino acid away from the tripeptide DFG motif, which facilitates ATP-binding. The CoAlation of recombinant p70S6K1 was demonstrated in vitro and was shown to inhibit its kinase activity. Our molecular docking and dynamics analysis revealed the most likely mode for CoA binding to p70S6K1. This mechanism involves the non-covalent binding of the CoA ADP moiety to the p70S6K1 nucleotide-binding pocket, positioning the CoA thiol group in close proximity to form a covalent bond with the surface-exposed Cys217 residue. These findings support a “dual anchor” mechanism for protein kinase inhibition by CoAlation in cellular response to oxidative stress. Furthermore, the inhibition of S6K1 by CoAlation may open new avenues for developing novel inhibitors. Full article
(This article belongs to the Special Issue Kinase Inhibitors and Kinase-Targeted Cancer Therapies)
Show Figures

Figure 1

Back to TopTop