Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = thermosetting adhesives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3276 KiB  
Article
Ultraviolet Irradiation Surface Treatment to Enhance the Bonding Strength of Polyamide-Based Carbon Fiber-Reinforced Thermoplastic Polymers
by Mun Young Hwang, Soon Ho Yoon and Minkook Kim
Polymers 2024, 16(20), 2864; https://doi.org/10.3390/polym16202864 - 10 Oct 2024
Viewed by 355
Abstract
Adhesive bonding is a suitable joining method to satisfy the increasing industrial demand for carbon fiber-reinforced polymers without the need for a machining process. However, thermoplastic-based carbon fiber-reinforced polymers have small adhesive strength with structural thermoset adhesives. In this study, an ultraviolet irradiation [...] Read more.
Adhesive bonding is a suitable joining method to satisfy the increasing industrial demand for carbon fiber-reinforced polymers without the need for a machining process. However, thermoplastic-based carbon fiber-reinforced polymers have small adhesive strength with structural thermoset adhesives. In this study, an ultraviolet irradiation surface treatment was developed to improve the adhesive bonding strength for polyamide-based carbon fiber-reinforced polymer. The type of ultraviolet wavelength, irradiation distance and irradiation time were optimized. Surface treatment with simultaneous UV irradiation of 185 nm and 254 nm wavelength generated unbound N-H stretching that was capable of chemical bonding with epoxy adhesives through a photo-scission reaction of the amide bond of polyamide matrix. Therefore, ultraviolet irradiation treatment improved the wettability and functional groups of the polyamide-based carbon fiber-reinforced polymers for adhesive bonding. As a result, the adhesive strength of the polyamide-based carbon fiber-reinforced polymers was increased by more than 230%. Full article
Show Figures

Figure 1

15 pages, 7498 KiB  
Article
Enhancing the Lap Shear Performance of Resistance-Welded GF/PP Thermoplastic Composite by Modifying Metal Heating Elements with Silane Coupling Agent
by Wanling Long, Xinyu Zhou, Bing Du, Xiangrong Cheng, Guiyang Su and Liming Chen
Materials 2024, 17(20), 4944; https://doi.org/10.3390/ma17204944 - 10 Oct 2024
Viewed by 240
Abstract
Thermoplastic composites are gaining widespread application in aerospace and other industries due to their superior durability, excellent damage resistance, and recyclability compared to thermosetting materials. This study aims to enhance the lap shear strength (LSS) of resistance-welded GF/PP (glass fiber-reinforced polypropylene) thermoplastic composites [...] Read more.
Thermoplastic composites are gaining widespread application in aerospace and other industries due to their superior durability, excellent damage resistance, and recyclability compared to thermosetting materials. This study aims to enhance the lap shear strength (LSS) of resistance-welded GF/PP (glass fiber-reinforced polypropylene) thermoplastic composites by modifying stainless steel mesh (SSM) heating elements using a silane coupling agent. The influence of oxidation temperature, solvent properties, and solution pH on the LSS of the welded joints was systematically evaluated. Furthermore, scanning electron microscopy (SEM) was utilized to investigate the SSM surface and assess improvements in interfacial adhesion. The findings indicate that surface treatment promotes increased resin infiltration into the SSM, thereby enhancing the LSS of the resistance-welded joints. Treatment under optimal conditions (500 °C, ethanol solvent, and pH 11) improved LSS by 27.2% compared to untreated joints. Full article
(This article belongs to the Special Issue Advances in Welding Process and Materials (2nd Edition))
Show Figures

Figure 1

13 pages, 2704 KiB  
Article
Synthesis and Characterization of Rebondable Polyurethane Adhesives Relying on Thermo-Activated Transcarbamoylation
by Daniel Bautista-Anguís, Lisbeth Reiner, Florian Röper, Sebastian Maar, Markus Wolfahrt, Archim Wolfberger and Sandra Schlögl
Polymers 2024, 16(19), 2799; https://doi.org/10.3390/polym16192799 - 3 Oct 2024
Viewed by 546
Abstract
Dynamic polymer networks combine the noteworthy (thermo)mechanical features of thermosets with the processability of thermoplastics. They rely on externally triggered bond exchange reactions, which induce topological rearrangements and, at a sufficiently high rate, a macroscopic reflow of the polymer network. Due to this [...] Read more.
Dynamic polymer networks combine the noteworthy (thermo)mechanical features of thermosets with the processability of thermoplastics. They rely on externally triggered bond exchange reactions, which induce topological rearrangements and, at a sufficiently high rate, a macroscopic reflow of the polymer network. Due to this controlled change in viscosity, dynamic polymers are repairable, malleable, and reprocessable. Herein, several dynamic polyurethane networks were synthetized as model compounds, which were able to undergo thermo-activated transcarbamoylation for the use in rebondable adhesives. Ethylenediamine-N,N,N′,N′-tetra-2-propanol (EDTP) was applied as a transcarbamoylation catalyst, which participates in the curing reaction across its four -OH groups and thus, is covalently attached within the polyurethane network. Both bond exchange rate and (thermo)mechanical properties of the dynamic networks were readily adjusted by the crosslink density and availability of -OH groups. In a last step, the most promising model compound was optimized to prepare an adhesive formulation more suitable for a real case application. Single-lap shear tests were carried out to evaluate the bond strength of this final formulation in adhesively bonded carbon fiber reinforced polymers (CFRP). Exploiting the dynamic nature of the adhesive layer, the debonded CFRP test specimens were rebonded at elevated temperature. The results clearly show that thermally triggered rebonding was feasible by recovering up to 79% of the original bond strength. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

23 pages, 2048 KiB  
Review
Resistance Welding of Thermoplastic Composites, Including Welding to Thermosets and Metals: A Review
by Karolina Stankiewicz, Adrian Lipkowski, Piotr Kowalczyk, Maciej Giżyński and Bartłomiej Waśniewski
Materials 2024, 17(19), 4797; https://doi.org/10.3390/ma17194797 - 29 Sep 2024
Viewed by 903
Abstract
This review paper presents the current progress in the development of resistance welding techniques for thermoplastic composites, with a particular emphasis on their application in hybrid joints, such as those involving thermosetting composites and metals. Resistance welding, a fusion bonding method, offers significant [...] Read more.
This review paper presents the current progress in the development of resistance welding techniques for thermoplastic composites, with a particular emphasis on their application in hybrid joints, such as those involving thermosetting composites and metals. Resistance welding, a fusion bonding method, offers significant advantages over adhesive bonding and mechanical joining by eliminating the need for additional adhesive materials and enabling integration into automated manufacturing processes. The study highlights the unique benefits of resistance welding, including lower energy consumption compared to other methods and its compatibility with automated manufacturing, which can reduce production costs by up to 40%. Key findings from the literature indicate that resistance welding is particularly effective in achieving strong, durable joints for complex and large structures, such as those used in the aerospace industry. The review also identifies the main challenges associated with resistance welding, including temperature control, current leakage in carbon-fiber-reinforced polymers, and potential corrosion when using metal meshes. To address these challenges, various strategies are discussed, including surface treatments, the use of nanocomposites, and the integration of carbon nanotubes. The review concludes by emphasizing the need for further research to optimize welding parameters and to develop non-destructive testing methods for industrial applications, ensuring the reliability and long-term performance of welded joints. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

8 pages, 3830 KiB  
Proceeding Paper
Comparative Analysis of Adhesive Effectiveness in Kevlar/Aluminum 6061-T6 Hybrid Double-Strap Joints: A Study on Static and Fatigue Strength
by Shahid Iqbal, Adnan Tariq, Manzar Masud, Shahab Khushnood and Waqas Bin Faateh
Eng. Proc. 2024, 75(1), 5; https://doi.org/10.3390/engproc2024075005 - 20 Sep 2024
Viewed by 530
Abstract
This research work experimentally investigates the effectiveness of various adhesives in bonding Kevlar fiber-reinforced polymer with aluminum alloy 6061-T6 in a hybrid double-strap joint. Hybrid double-strap joints were developed using thermosetting epoxy Araldite LY5052 with Aradur H5052 and thermoplastic epoxy polyurethane mixed with [...] Read more.
This research work experimentally investigates the effectiveness of various adhesives in bonding Kevlar fiber-reinforced polymer with aluminum alloy 6061-T6 in a hybrid double-strap joint. Hybrid double-strap joints were developed using thermosetting epoxy Araldite LY5052 with Aradur H5052 and thermoplastic epoxy polyurethane mixed with tetrahydrofuran. These specimens were prepared using a hand layup method. Both adhesives were used to make eighty samples: forty for thermoplastic epoxy polyurethane with tetrahydrofuran and forty for thermosetting epoxy Araldite LY5052 with Aradur H5052. In order to determine the static strength of joints, tensile tests were conducted using a universal testing machine (UTM) where a tension–tension fatigue test was carried out on 50%, 70%, and 80% of the static load at which the joint failed. In the thermosetting double lap strap joint, the findings of both the elongation and fatigue tests showed an increase in strength throughout both the elongation and fatigue cycles. Thermosetting Kevlar hybrid joints have a high static and fatigue strength. Based on the results, thermosetting hybrid joints using Aradur H5052 and epoxy Araldite LY5052 had a static strength of 20.67 KN, whereas a thermoplastic adhesive joint had a static strength of 11.93 KN. Furthermore, the microscopic failure modes revealed that the mode of failure for the joints was cohesive and mixed-mode failure. Full article
Show Figures

Figure 1

12 pages, 2863 KiB  
Article
Natural Fiber-Reinforced Composite Incorporated with Anhydride-Cured Epoxidized Linseed-Oil Resin and Atmospheric Pressure Plasma-Treated Flax Fibers
by Sofya Savicheva, Bastian E. Rapp and Nico Teuscher
Materials 2024, 17(17), 4244; https://doi.org/10.3390/ma17174244 - 28 Aug 2024
Viewed by 730
Abstract
Fiber-reinforced composites (FRCs) represent a promising class of engineering materials due to their mechanical performance. However, the vast majority of FRCs are currently manufactured using carbon and glass fibers, which raises concerns because of the difficulties in recycling and the reliance on finite [...] Read more.
Fiber-reinforced composites (FRCs) represent a promising class of engineering materials due to their mechanical performance. However, the vast majority of FRCs are currently manufactured using carbon and glass fibers, which raises concerns because of the difficulties in recycling and the reliance on finite fossil resources. On the other hand, the use of natural fibers is still hampered due to the problems such as, e.g., differences in polarity between the reinforcement and the polymer matrix components, leading to a significant decrease in composite durability. In this work, we present a natural fiber-reinforced composite (NFRC), incorporating plasma pre-treated flax fibers as the reinforcing element, thermoplastic polylactic acid (PLA) as a matrix, and a key point of the current study—a thermoset coating based on epoxidized linseed oil for adhesion improvement. Using atmospheric plasma-jet treatment allows for increasing the fiber’s surface energy from 20 to 40 mN/m. Furthermore, a thermoset coating layer based on epoxidized linseed oil, in conjunction with dodecyl succinic anhydride (DDSA) as a curing agent and 2,4,6-tris(dimethyl amino methyl) phenol (DMP-30) as a catalyst, has been developed. This coated layer exhibits a decomposition temperature of 350 °C, and there is a substantial increase in the dispersive surface-energy part of the coated flax fibers from 8 to 30 mN/m. The obtained natural fiber-reinforced composite (NFRC) was prepared by belt-pressing with a PLA film, and its mechanical properties were evaluated by tensile testing. The results showed an elastic modulus up to 18.3 GPa, which is relevant in terms of mechanical properties and opens up a new pathway to use natural-based fiber-reinforced bio-based materials as a convenient approach to greener FRCs. Full article
Show Figures

Figure 1

14 pages, 4025 KiB  
Article
Experimental Analysis of Bonding in Steel Glued into Pine Timber
by Adam Derkowski, Monika Chuda-Kowalska, Jakub Kawalerczyk, Dorota Dziurka and Radoslaw Mirski
Materials 2024, 17(16), 3897; https://doi.org/10.3390/ma17163897 - 6 Aug 2024
Viewed by 630
Abstract
Combining steel with wood has been practised for many years. The issue is related to two main areas, i.e., bonding steel elements with wood so that they serve as connectors facilitating the assembly of wood elements and bonding steel elements to wood beams [...] Read more.
Combining steel with wood has been practised for many years. The issue is related to two main areas, i.e., bonding steel elements with wood so that they serve as connectors facilitating the assembly of wood elements and bonding steel elements to wood beams to improve their load-bearing capacity. In the first case, the adhesives used may be relatively expensive and more difficult to apply, whereas in the second one, especially when steel elements are glued inside the glulam (GL) beams, it is better if the adhesives used are more accessible to apply and cheaper. As it seems rational to reinforce wood with high-modulus ties, research has been carried out to compare the connection quality of commercially available adhesives that can be used for this purpose. Moreover, thermosetting adhesives have been applied as an alternative and cheaper solution. Thermostat adhesives also have a high pH of the bond, which prevents the steel from rusting. The research shows that the load-bearing capacity of the bond depends on whether the bars are ribbed or sheet metal. Moreover, among thermosetting adhesives, the most favourable load-bearing values were obtained using a mixture of PF/pMDI (phenol formaldehyde resin/polymeric diphenylmethane diisocyanate) and powder from recycled tyres. The shear strength of these joints was 1.63 N/mm2 and 3.14 N/mm2 for flat specimens and specimens with ribbed bars, respectively. Full article
(This article belongs to the Special Issue Modern Wood-Based Materials for Sustainable Building)
Show Figures

Figure 1

13 pages, 3588 KiB  
Article
Injection Pultrusion of Glass-Reinforced Epoxy: Cure Kinetics, Rheology, and Force Analysis
by Fausto Tucci, Vitantonio Esperto, Germana Pasquino and Pierpaolo Carlone
Polymers 2024, 16(12), 1642; https://doi.org/10.3390/polym16121642 - 10 Jun 2024
Viewed by 683
Abstract
Pultrusion is a highly efficient continuous process to manufacture advanced fiber-reinforced composites. The injection pultrusion variant permits a higher control of the resin flow, enabling the manufacturing of a high reinforcement volume fraction. Moreover, it reduces the emission of volatile compounds that are [...] Read more.
Pultrusion is a highly efficient continuous process to manufacture advanced fiber-reinforced composites. The injection pultrusion variant permits a higher control of the resin flow, enabling the manufacturing of a high reinforcement volume fraction. Moreover, it reduces the emission of volatile compounds that are dangerous for the operators and for the working environment. The present study proposes an experimental analysis of injection pultrusion in three different operative conditions. In particular, the activity focused on the effects of the temperature setup on the thermochemical and rheological behaviors of the resin system and on the interaction between the processed materials and the pultrusion die wall. The setup of the parameters was selected to evidence the behavior of the viscous interaction during the thermoset transition to the solid state, which is particularly challenging due to the localization of high adhesive forces related to the sharp increase in resin viscosity. Microscope observations of the cross-sections were performed to discuss the effects of the process parameters. Full article
(This article belongs to the Special Issue New Progress of Polymeric Materials in Advanced Manufacturing)
Show Figures

Figure 1

17 pages, 4190 KiB  
Article
From Formulation to Application: Effects of Plasticizer on the Printability of Fluoro Elastomer Compounds and Additive Manufacturing of Specialized Seals
by Mookkan Periyasamy, AA Mubasshir, Stiven Kodra, Sangeetham Chandramouli, Ronald Campbell, David O. Kazmer and Joey L. Mead
Micromachines 2024, 15(5), 622; https://doi.org/10.3390/mi15050622 - 5 May 2024
Cited by 1 | Viewed by 1168
Abstract
This work investigated material extrusion additive manufacturing (MatEx AM) of specialized fluoroelastomer (FKM) compounds for applications in rubber seals and gaskets. The influence of a commercially available perfluoropolyether (PFPE) plasticizer on the printability of a control FKM rubber compound was studied using a [...] Read more.
This work investigated material extrusion additive manufacturing (MatEx AM) of specialized fluoroelastomer (FKM) compounds for applications in rubber seals and gaskets. The influence of a commercially available perfluoropolyether (PFPE) plasticizer on the printability of a control FKM rubber compound was studied using a custom-designed ram material extruder, Additive Ram Material Extruder (ARME), for printing fully compounded thermoset elastomers. The plasticizer’s effectiveness was assessed based on its ability to address challenges such as high compound viscosity and post-print shrinkage, as well as its impact on interlayer adhesion. The addition of the PFPE plasticizer significantly reduced the FKM compound’s viscosity (by 70%) and post-print shrinkage (by 65%). While the addition of the plasticizer decreased the tensile strength of the control compound, specimens printed with the plasticized FKM retained 34% of the tensile strength of compression-molded samples, compared to only 23% for the unplasticized compound. Finally, the feasibility of seals and gaskets manufacturing using both conventional and unconventional additive manufacturing (AM) approaches was explored. A hybrid method combining AM and soft tooling for compression molding emerged as the optimal method for seal and gasket fabrication. Full article
Show Figures

Figure 1

19 pages, 6161 KiB  
Article
Green and Heavy-Duty Anticorrosion Coatings: Waterborne Epoxy Thermoset Composites Modified through Variation of Zinc Dust Loading and Incorporation of Amine-Capped Aniline Trimer and Graphene Oxide
by Yun-Xiang Lan, Yun-Hsuan Chen, Ying-Lung Chao, Yu-Hsuan Chang, Yu-Chi Huang, Wei-Ren Liu, Wei-Tsan Wong, Andrew Chi-Fa Sun, Karen S. Santiago and Jui-Ming Yeh
Polymers 2024, 16(9), 1252; https://doi.org/10.3390/polym16091252 - 30 Apr 2024
Viewed by 922
Abstract
In this study, an array of environmentally friendly and heavy-duty anticorrosion composite coatings were prepared. The synthesis involved amine-capped aniline trimer (ACAT) produced by an oxidative coupling reaction and graphene oxide (GO) prepared based on Hummer’s method, and later, the waterborne epoxy thermoset [...] Read more.
In this study, an array of environmentally friendly and heavy-duty anticorrosion composite coatings were prepared. The synthesis involved amine-capped aniline trimer (ACAT) produced by an oxidative coupling reaction and graphene oxide (GO) prepared based on Hummer’s method, and later, the waterborne epoxy thermoset composite (WETC) coatings were prepared by thermal ring-opening polymerization of EP 147w, a commercial waterborne epoxy resin, in the presence of ACAT and/or GO with zinc dust (ZD). A synergistic effect was observed by replacing a significant amount of the ZD loading in the WETC by simultaneously incorporating a small amount of ACAT and GO. The electrochemical corrosion measurements of the as-prepared WETC coatings indicated that incorporating 5% w/w ACAT or 0.5% w/w GO separately replaced approximately 30% w/w or 15% w/w of the ZD, respectively. Moreover, the WETC coatings containing 5% w/w ACAT and 0.5% w/w GO simultaneously were found to replace 45% w/w of the ZD. A salt spray test based on ASTM B-117 also showed a consistent trend with the electrochemical results. Incorporating small amounts of ACAT and GO in WETC coatings instead of ZD not only maintains the anticorrosion performance but also enhances adhesion and abrasion resistance, as demonstrated by the adhesion and abrasion tests. Full article
(This article belongs to the Special Issue Advances in Polymer Composites II)
Show Figures

Graphical abstract

13 pages, 7263 KiB  
Article
Control of Pore Sizes in Epoxy Monoliths and Applications as Sheet-Type Adhesives in Combination with Conventional Epoxy and Acrylic Adhesives
by Yoshiyuki Kamo and Akikazu Matsumoto
Molecules 2024, 29(9), 2059; https://doi.org/10.3390/molecules29092059 - 29 Apr 2024
Cited by 2 | Viewed by 872
Abstract
Materials with monolithic structures, such as epoxy monoliths, are used for a variety of applications, such as for column fillers in gas chromatography and HPLC, for separators in lithium-ion batteries, and for precursor polymers for monolith adhesion. In this study, we investigated the [...] Read more.
Materials with monolithic structures, such as epoxy monoliths, are used for a variety of applications, such as for column fillers in gas chromatography and HPLC, for separators in lithium-ion batteries, and for precursor polymers for monolith adhesion. In this study, we investigated the fabrication of epoxy monoliths using 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane (TETRAD-C) as the tetrafunctional epoxy and 4,4′-methylenebis(cyclohexylamine) (BACM) as the amine curing agent to control pore diameters using polyethylene glycols (PEGs) of differing molecular weights as the porogenic agents. We fabricated an epoxy monolith with micron-order pores and high strength levels, and which is suitable for the precursors of composite materials in cases where smaller PEGs are used. We discussed the effects of the porous structures of monoliths on their physical properties, such as tensile strength, elongation, elastic modulus, and glass transition temperatures. For example, epoxy monoliths prepared in the presence of PEGs exhibited an elastic modulus less than 1 GPa at room temperature and Tg values of 175–187 °C, while the epoxy bulk thermoset produced without any porogenic solvent showed a high elastic modulus as 1.8 GPa, which was maintained at high temperatures, and a high Tg of 223 °C. In addition, the unique adhesion characteristics of epoxy monolith sheets are revealed as a result of the combinations made with commercial epoxy and acrylic adhesives. Epoxy monoliths that are combined with conventional adhesives can function as sheet-type adhesives purposed with avoiding problems when only liquid-type adhesives are used. Full article
Show Figures

Figure 1

18 pages, 3736 KiB  
Article
Investigation of the Reaction between a Homemade PEEK Oligomer and an Epoxy Prepolymer: Optimisation of Critical Parameters Using Physico–Chemical Methods
by Léopold Stampfer, Cécile Bouilhac, Tiphaine Mérian, France Chabert, Toufik Djilali, Valérie Nassiet and Jean-Pierre Habas
Polymers 2024, 16(6), 764; https://doi.org/10.3390/polym16060764 - 11 Mar 2024
Cited by 1 | Viewed by 974
Abstract
Several researchers have examined the interest in using a thermoplastic to increase thermoset polymers’ shock resistance. However, fewer studies have examined the nature of the mechanisms involved between both kinds of polymers. This was the objective of our work, which was carried out [...] Read more.
Several researchers have examined the interest in using a thermoplastic to increase thermoset polymers’ shock resistance. However, fewer studies have examined the nature of the mechanisms involved between both kinds of polymers. This was the objective of our work, which was carried out using a gradual approach. First, we describe the synthesis of a poly(ether ether ketone) oligomer (oPEEK) with hydroxyl terminations from the reaction of hydroquinone and 4,4′-difluorobenzophenone in N-methyl-2-pyrrolidone. Then, the main physicochemical properties of this oligomer were determined using different thermal analyses (i.e., differential scanning calorimetry (DSC), thermogravimetric (ATG), and thermomechanical analyses) to isolate its response alone. The chemical characterisation of this compound using conventional analytical chemistry techniques was more complex due to its insolubility. To this end, it was sulfonated, according to a well-known process, to make it soluble and enable nuclear magnetic resonance (NMR) and size exclusion chromatography (SEC) experiments. Additional information about the structural and chemical characteristics of the oligomer and its average molecular weight could thus be obtained. The synthesis of an oligoPEEK with α,ω-hydroxyl end-groups and a molecular weight of around 5070 g/mol was thus confirmed by NMR. This value was in accordance with that determined by SEC analysis. Next, the reaction of oPEEK with an epoxy prepolymer was demonstrated using DSC and dynamic rheometry. To this end, uncured mixtures of epoxy prepolymer (DGEBA) with different proportions of oPEEK (3, 5, 10 and 25%) were prepared and characterised by both techniques. Ultimately, the epoxy-oPEEK mixture was cured with isophorone diamine. Finally, topological analyses were performed by atomic force microscopy (AFM) in tapping mode to investigate the interface quality between the epoxy matrix and the oPEEK particles indirectly. No defects, such as decohesion areas, microvoids, or cracks, were observed between both systems. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

15 pages, 4161 KiB  
Article
The Influence of Residual Stresses on the Curve Shape—Describing Interface Behavior in “Polymer–Fiber” Systems
by Yulia A. Gorbatkina, Viktoria G. Ivanova-Mumzhieva, Olga V. Alexeeva and Mariya A. Vyatkina
Polymers 2024, 16(5), 582; https://doi.org/10.3390/polym16050582 - 21 Feb 2024
Viewed by 722
Abstract
The pull-out method was used to study the adhesive strength τ of “fiber–thermoset” systems with wide variations in area. Studied binders were based on resins that had different chemical natures (epoxy, epoxy phenol, orthophthalic, polyphenylsiloxane, and phenol–formaldehyde). Shear adhesive strength was determined for [...] Read more.
The pull-out method was used to study the adhesive strength τ of “fiber–thermoset” systems with wide variations in area. Studied binders were based on resins that had different chemical natures (epoxy, epoxy phenol, orthophthalic, polyphenylsiloxane, and phenol–formaldehyde). Shear adhesive strength was determined for systems with two fiber types (glass and steel fibers). It was shown that strength τ depended on scale (area). Formation of τ occurred during the curing process and the system’s subsequent cooling to the measurement temperature T. It was found that interface strength depended on measurement temperature across a wide temperature range that covered the highly elastic and the glassy state of the adhesive. The influence of residual stresses τres, acting at the “binder–fiber” interface, on the nature of the curves describing the dependence of the adhesive strength on the studied factor was experimentally shown. A qualitative explanation of the observed regularities is proposed. Full article
(This article belongs to the Section Polymer Networks)
Show Figures

Figure 1

16 pages, 8947 KiB  
Article
Performance of Particleboard Made of Agroforestry Residues Bonded with Thermosetting Adhesive Derived from Waste Styrofoam
by Tati Karliati, Muhammad Adly Rahandi Lubis, Rudi Dungani, Rijanti Rahaju Maulani, Anne Hadiyane, Alfi Rumidatul, Petar Antov, Viktor Savov and Seng Hua Lee
Polymers 2024, 16(4), 543; https://doi.org/10.3390/polym16040543 - 17 Feb 2024
Cited by 2 | Viewed by 1119
Abstract
This paper investigated the upcycling process of thermoplastic waste polystyrene (WPS) into thermosetting particleboard adhesive using two cross-linkers, namely methylene diphenyl diisocyanate (MDI) and maleic anhydride (MA). The WPS was dissolved in an organic co-solvent. The weight ratio of WPS/co-solvent was 1:9, and [...] Read more.
This paper investigated the upcycling process of thermoplastic waste polystyrene (WPS) into thermosetting particleboard adhesive using two cross-linkers, namely methylene diphenyl diisocyanate (MDI) and maleic anhydride (MA). The WPS was dissolved in an organic co-solvent. The weight ratio of WPS/co-solvent was 1:9, and 10% of cross-linkers based on the WPS solids content were added subsequently at 60 °C under continuous stirring for 30 min. The adhesive properties, cohesion strength, and thermo-mechanical properties of WPS-based adhesives were examined to investigate the change of thermoplastic WPS to thermosetting adhesives. The bonding strength of WPS-based adhesives was evaluated in particleboard made of sengon (Falcataria moluccana (Miq.) Barneby & J.W. Grimes) wood and rice straw particles at different weight ratios according to the Japanese Industrial Standard (JIS) A 5908:2003. Rheology and Dynamic Mechanical Analysis revealed that modification with MDI and MA resulted in thermosetting properties in WPS-based adhesives by increasing the viscosity at a temperature above 72.7 °C and reaching the maximum storage modulus above 90.8 °C. WPS modified with MDI had a lower activation energy (Ea) value (83.4 kJ/mole) compared to the WPS modified with MA (150.8 kJ/mole), indicating the cross-linking with MDI was much faster compared with MA. Particleboard fabricated from 100% sengon wood particles bonded with WPS modified with MDI fulfilled the minimum requirement of JIS A 5908:2003 for interior applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

25 pages, 5137 KiB  
Article
Study of Synthesis of Dual-Curing Thermoplastic Polyurethane Hot-Melt Adhesive and Optimization by Using Gray Relational Analysis to Apply in Fabric Industry to Solve Seamless Bonding Issues
by Sheng-Yu Lin, Naveed Ahmad and Chung-Feng Jeffrey Kuo
Polymers 2024, 16(4), 467; https://doi.org/10.3390/polym16040467 - 7 Feb 2024
Cited by 1 | Viewed by 1282
Abstract
People wear clothes for warmth, survival and necessity in modern life, but in the modern era, eco-friendliness, shortened production times, design and intelligence also matter. To determine the relationship between data series and verify the proximity of each data series, a gray relational [...] Read more.
People wear clothes for warmth, survival and necessity in modern life, but in the modern era, eco-friendliness, shortened production times, design and intelligence also matter. To determine the relationship between data series and verify the proximity of each data series, a gray relational analysis, or GRA, is applied to textiles, where seamless bonding technology enhances the bond between components. In this study, a polyurethane prepolymer, 2-hydroxyethyl acrylate (2-HEA) as an end-capping agent and n-octyl acrylate (ODA) as a photoinitiator were used to synthesize a dual-curing polyurethane hot-melt adhesive. Taguchi quality engineering and a gray relational analysis were used to discuss the influence of different mole ratios of NCO:OH and the effect of the molar ratio of the addition of octyl decyl acrylate on the mechanical strength. The Fourier transform infrared spectroscopy (FTIR) results showed the termination of the prepolymer’s polymerization reaction and the C=O peak intensity at 1730 cm−1, indicating efficient bonding to the main chain. Advanced Polymer Chromatography (APC) was used to investigate the high-molecular-weight (20,000–30,000) polyurethane polymer bonded with octyl decyl acrylate to achieve a photothermosetting effect. The thermogravimetric analysis (TGA) results showed that the thermal decomposition temperature of the polyurethane hot-melt adhesive also increased, and they showed the highest pyrolysis temperature (349.89 °C) for the polyhydric alcohols. Furthermore, high peel strength (1.68 kg/cm) and shear strength (34.94 kg/cm2) values were detected with the dual-cure photothermosetting polyurethane hot-melt adhesive. The signal-to-noise ratio was also used to generate the gray relational degree. It was observed that the best parameter ratio of NCO:OH was 4:1 with five moles of monomer. The Taguchi quality engineering method was used to find the parameters of single-quality optimization, and then the gray relation calculation was used to obtain the parameter combination of multi-quality optimization for thermosetting the polyurethane hot-melt adhesive. The study aims to meet the requirements of seamless bonding in textile factories and optimize experimental parameter design by setting target values that can effectively increase production speed and reduce processing time and costs as well. Full article
(This article belongs to the Special Issue Progress in Polymer Networks)
Show Figures

Figure 1

Back to TopTop