Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,489)

Search Parameters:
Keywords = thermodynamic properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2354 KiB  
Article
A Molecular Dynamics Simulation Study of Crystalline and Liquid MgO
by Anatoly S. Arkhipin, Alexander Pisch, Irina A. Uspenskaya and Noël Jakse
Ceramics 2024, 7(3), 1187-1203; https://doi.org/10.3390/ceramics7030078 - 4 Sep 2024
Abstract
Classical (MD) and ab initio (AIMD) molecular dynamics simulations were conducted to investigate the fundamental properties of solid and liquid MgO. AIMD was performed by DFT using the Strongly Conditioned and Appropriately Normed (SCAN) exchange correlation functional. The obtained pair-correlation functions of liquid [...] Read more.
Classical (MD) and ab initio (AIMD) molecular dynamics simulations were conducted to investigate the fundamental properties of solid and liquid MgO. AIMD was performed by DFT using the Strongly Conditioned and Appropriately Normed (SCAN) exchange correlation functional. The obtained pair-correlation functions of liquid MgO were used as reference data for the optimization of parameters of classical MD. For the latter, a Born–Mayer–Huggins (BMH) potential was applied, and parameters were adjusted until a best fit of both structural properties was obtained by AIMD and physical properties by experimental data. Different structural, dynamic and thermodynamic properties of solid and liquid MgO were then calculated by classical MD and compared with the literature data. Good agreement was found for the Mg-O bond length, self-diffusion coefficients, density of liquid MgO and for heat content and density of crystalline MgO. Using a void-melting approach, the melting temperature of MgO was found as 3295 ± 30 K, which is in good agreement with the recent experimental work by Ronchi et al. (3250 ± 20 K). The optimized parameters of BMH potential describe well the structural, dynamic and thermodynamic properties of solid and liquid MgO and may be combined with our previous results of a CaO-Al2O3-TiO2 system to calculate the properties of a quaternary CaO-MgO-Al2O3-TiO2 system. Full article
(This article belongs to the Special Issue Advances in Ceramics, 2nd Edition)
Show Figures

Figure 1

22 pages, 6186 KiB  
Article
Synthesis of Some Eco-Friendly Materials for Gold Recovery
by Theodora Babău, Mihaela Ciopec, Narcis Duteanu, Adina Negrea, Petru Negrea, Nicoleta Sorina Nemeş, Bogdan Pascu, Maria Mihăilescu and Catalin Ianasi
Polymers 2024, 16(17), 2512; https://doi.org/10.3390/polym16172512 - 4 Sep 2024
Abstract
The aim of this study was to develop new materials with adsorbent properties that can be used for the adsorption recovery of Au(III) from aqueous solutions. To achieve this result, it is necessary to obtain inexpensive adsorbent materials in a granular form. Concomitantly, [...] Read more.
The aim of this study was to develop new materials with adsorbent properties that can be used for the adsorption recovery of Au(III) from aqueous solutions. To achieve this result, it is necessary to obtain inexpensive adsorbent materials in a granular form. Concomitantly, these materials must have a high adsorption capacity and selectivity. Other desired properties of these materials include a higher physical resistance, insolubility in water, and materials that can be regenerated or reused. Among the methods applied for the separation, purification, and preconcentration of platinum-group metal ions, adsorption is recognised as one of the most promising methods because of its simplicity, high efficiency, and wide availability. The studies were carried out using three supports: cellulose (CE), chitosan (Chi), and diatomea earth (Diat). These supports were functionalised by impregnation with extractants, using the ultrasound method. The extractants are environmentally friendly and relatively cheap amino acids, which contain in their structure pendant groups with nitrogen and sulphur heteroatoms (aspartic acid—Asp, l-glutamic acid—Glu, valine—Val, DL-cysteine—Cys, or serine—Ser). After preliminary testing from 75 synthesised materials, CE-Cys was chosen for the further recovery of Au(III) ions from aqueous solutions. To highlight the morphology and the functionalisation of the material, we physicochemically characterised the obtained material. Therefore, the analysis of the specific surface and porosity showed that the CE-Cys material has a specific surface of 4.6 m2/g, with a porosity of about 3 nm. The FT-IR analysis showed the presence, at a wavelength of 3340 cm−1, of the specific NH bond vibration for cysteine. At the same time, pHpZc was determined to be 2.8. The kinetic, thermodynamic, and equilibrium studies showed that the pseudo-second-order kinetic model best describes the adsorption process of Au(III) ions on the CE-Cys material. A maximum adsorption capacity of 12.18 mg per gram of the adsorbent material was achieved. It was established that the CE-Cys material can be reused five times with a good recovery degree. Full article
Show Figures

Figure 1

23 pages, 5689 KiB  
Review
Research Progress on Characteristics of Marine Natural Gas Hydrate Reservoirs
by Jiajia Yan, Kefeng Yan, Ting Huang, Minghang Mao, Xiaosen Li, Zhaoyang Chen, Weixin Pang, Rui Qin and Xuke Ruan
Energies 2024, 17(17), 4431; https://doi.org/10.3390/en17174431 - 4 Sep 2024
Abstract
As one of the most important future clean energy sources, natural gas hydrate (NGH) is attracting widespread attention due to the vast reserves available and high energy density. How to extract this source in a safe, efficient, and environmentally friendly manner has become [...] Read more.
As one of the most important future clean energy sources, natural gas hydrate (NGH) is attracting widespread attention due to the vast reserves available and high energy density. How to extract this source in a safe, efficient, and environmentally friendly manner has become the key to the commercial utilization of its resources. This paper reviews the recent advances in the study of the fundamental reservoir properties of offshore NGH, summarizing the methods and technologies for testing the sedimentary properties of reservoirs, analyzing the characteristics in reservoir mechanics, electrics, thermodynamics, and fluid dynamics, and discusses the influence of reservoir fundamental properties on NGH exploitation. The aim is to provide guidance and reference for research on the exploitation of NGH in different target exploitation areas offshore. Full article
Show Figures

Figure 1

17 pages, 3601 KiB  
Article
Design of Point Charge Models for Divalent Metal Cations Targeting Quantum Mechanical Ion–Water Dimer Interactions
by Yongguang Zhang, Binghan Wu, Chenyi Lu and Haiyang Zhang
Metals 2024, 14(9), 1009; https://doi.org/10.3390/met14091009 - 3 Sep 2024
Viewed by 232
Abstract
Divalent metal cations are of vital importance in biochemistry and materials science, and their structural and thermodynamic properties in aqueous solution have often been used as targets for the development of ion models. This study presented a strategy for designing nonbonded point charge [...] Read more.
Divalent metal cations are of vital importance in biochemistry and materials science, and their structural and thermodynamic properties in aqueous solution have often been used as targets for the development of ion models. This study presented a strategy for designing nonbonded point charge models of divalent metal cations (Mg2+ and Ca2+) and Cl by targeting quantum mechanics (QM)-based ion–water dimer interactions. The designed models offered an accurate representation of ion–water interactions in the gas phase and showed reasonable performance for non-targeted properties in aqueous solutions, such as the ion–water oxygen distance (IOD), coordination number (CN), and density and viscosity of MgCl2 and CaCl2 solutions at low concentrations. Our metal cation models yielded considerable overestimates of the hydration free energies (HFEs) of the ions, whereas the Cl model displayed good performance. Together with the overestimated density and viscosity of the salt solutions, these results indicated the necessity of re-optimizing ion–ion interactions and/or including polarization effects in the design of ion models. The designed Mg2+ model was capable of maintaining the crystal metal-binding networks during MD simulation of a metalloprotein, indicating great potential for biomolecular simulations. This work highlighted the potential of QM-based ion models to advance the study of metal ion interactions in biological and material systems. Full article
Show Figures

Figure 1

15 pages, 4805 KiB  
Article
First Principles Calculation of the Effect of Cu Doping on the Mechanical and Thermodynamic Properties of Au-2.0Ni Solder
by Yan Wei, Hua Dai, Li Chen, Xian Wang, Hongzhong Cai, Jiankang Zhang, Ying Xu, Xingqiang Wang, Junmei Guo, Zhentao Yuan and Xiao Wang
Molecules 2024, 29(17), 4171; https://doi.org/10.3390/molecules29174171 - 3 Sep 2024
Viewed by 191
Abstract
To meet the demands for high-temperature performance and lightweight materials in aerospace engineering, the Au-Ni solder is often utilized for joining dissimilar materials, such as Ti3Al-based alloys and Ni-based high-temperature alloys. However, the interaction between Ti and Ni can lead to [...] Read more.
To meet the demands for high-temperature performance and lightweight materials in aerospace engineering, the Au-Ni solder is often utilized for joining dissimilar materials, such as Ti3Al-based alloys and Ni-based high-temperature alloys. However, the interaction between Ti and Ni can lead to the formation of brittle phases, like Ti2Ni, TiNi, and TiNi3, which diminish the mechanical properties of the joint and increase the risk of crack formation during the welding process. Cu doping has been shown to enhance the mechanical properties and high-temperature stability of the Au-Ni brazed joint’s central area. Due to the difficulty in accurately controlling the solid solution content of Cu in the Au-Ni alloy, along with the high cost of Au, traditional experimental trial-and-error methods are insufficient for the development of Au-based solders. In this study, first principles calculations based on density functional theory were employed to analyze the effect of Cu content on the stability of the Au-2.0Ni-xCu (x = 0, 0.25, 0.5, 0.75, 1.0, 1.25 wt%) alloy phase structure. The thermal properties of the alloy were determined using Gibbs software fitting. The results indicate that the Au-2.0Ni-0.25Cu alloy exhibits the highest plastic toughness (B/G = 5.601, ν = 0.416, Cauchy pressure = 73.676 GPa) and a hardness of 1.17 GPa, which is 80% higher than that of Au-2.0Ni. This alloy balances excellent strength and plastic toughness, meeting the mechanical performance requirements of brazed joints. The constant pressure specific heat capacity (Cp) of the Au-2.0Ni-xCu alloy is higher than that of Au-2.0Ni and increases with Cu content. At 1000 K, the Cp of the Au-2.0Ni-0.25Cu alloy is 35.606 J·mol−1·K−1, which is 5.88% higher than that of Au-2.0Ni. The higher Cp contributes to enhanced high-temperature stability. Moreover, the linear expansion coefficient (CTE) of the Au-2.0Ni-0.25Cu alloy at 1000 K is 8.76 × 10−5·K−1, only 0.68% higher than Au-2.0Ni. The lower CTE helps to reduce the risk of solder damage caused by thermal stress. Therefore, the Au-2.0Ni-0.25Cu alloy is more suitable for brazing applications in high-temperature environments due to its excellent mechanical properties and thermal stability. This study provides a theoretical basis for the performance optimization and engineering application of the Au-2.0Ni-xCu alloy as a gold-based solder. Full article
Show Figures

Figure 1

19 pages, 760 KiB  
Review
Bridging Thermochemical Technology and Ecology: Research Progress on Utilization of Factsage Software for Environmental Applications
by Hao Li, Hao Wang, Pin Lv and Hongzhi Ma
Appl. Sci. 2024, 14(17), 7784; https://doi.org/10.3390/app14177784 - 3 Sep 2024
Viewed by 288
Abstract
Factsage is a robust thermodynamic calculation software that enables simulation and computation of complex multi-component and multi-phase system reactions. It has a variety of application fields such as metallurgy, energy, and environmental domains. This article elucidates the key functionalities of Factsage’s diverse modules, [...] Read more.
Factsage is a robust thermodynamic calculation software that enables simulation and computation of complex multi-component and multi-phase system reactions. It has a variety of application fields such as metallurgy, energy, and environmental domains. This article elucidates the key functionalities of Factsage’s diverse modules, including Equilib, Viscosity, EpH, Reaction, and Phase Diagram modules. Furthermore, it delineates the present usage and research progress of the software in the realms of air pollution, water pollution, and solid waste treatment. By predicting the thermodynamic properties of pollutants, their chemical reactions, and complex phase changes, Factsage provides a critical scientific foundation for environmental decision-making and optimization of waste treatment processes. It showed its greater contributions to environmental protection and sustainable development. Full article
(This article belongs to the Special Issue New Insights on Environmentally Friendly Materials)
Show Figures

Figure 1

22 pages, 5443 KiB  
Article
Surface Thermodynamic Properties of Styrene–Divinylbenzene Copolymer Modified by Supramolecular Structure of Melamine Using Inverse Gas Chromatography
by Tayssir Hamieh and Vladimir Yu Gus'kov
Chemistry 2024, 6(5), 830-851; https://doi.org/10.3390/chemistry6050050 - 30 Aug 2024
Viewed by 492
Abstract
The surface thermodynamic properties of polymers and copolymers modified by supramolecular structures are used in several industrial processes, such as selective adsorption, paints, coatings, colloids, and adhesion applications. Background: Inverse gas chromatography at infinite dilution was proved to be the best technique to [...] Read more.
The surface thermodynamic properties of polymers and copolymers modified by supramolecular structures are used in several industrial processes, such as selective adsorption, paints, coatings, colloids, and adhesion applications. Background: Inverse gas chromatography at infinite dilution was proved to be the best technique to determine the surface properties of solid surfaces by studying the adsorption of some model polar and non-polar organic molecules adsorbed on solid surfaces at different temperatures. Methods: The retention volume of adsorbed solvents is a valuable parameter that was used to obtain the London dispersive and polar free energies and the London dispersive surface energy of styrene–divinylbenzene copolymer modified by supramolecular structure of melamine using both the Hamieh thermal model and our new methodology consisting of the separation of the two polar molecules and the dispersive free energy of their interaction. This led to the determination of the polar acid and base surface energy, and the Lewis acid–base constants of the various solid materials. Results: Following our new methodology, all surface energetic properties of styrene–divinylbenzene copolymer modified by melamine at different percentages were determined as a function of temperature. Conclusions: It was observed that the styrene–divinylbenzene copolymer exhibited the highest London dispersive surface energy, which decreased when the melamine percentage increased. All materials presented higher Lewis basicity and this Lewis basicity increased with the percentage of melamine. Full article
(This article belongs to the Section Chemistry of Materials)
Show Figures

Figure 1

26 pages, 2685 KiB  
Article
Energy and Exergy Analysis of Transcritical CO2 Cycles for Heat Pump Applications
by Marco Gambini, Michele Manno and Michela Vellini
Sustainability 2024, 16(17), 7511; https://doi.org/10.3390/su16177511 - 30 Aug 2024
Viewed by 361
Abstract
Heat pumps are recognized as a key tool in the energy transition toward a carbon-neutral society, enabling the electrification of the heating sector at least for low- and medium-temperature heat demands. In recent years, natural refrigerants have been reconsidered due to their low [...] Read more.
Heat pumps are recognized as a key tool in the energy transition toward a carbon-neutral society, enabling the electrification of the heating sector at least for low- and medium-temperature heat demands. In recent years, natural refrigerants have been reconsidered due to their low environmental impact: among them, CO2 is a safe option without an impact on the ozone layer and low global warming potential compared to synthetic fluids. However, as a consequence of its thermophysical properties, its thermodynamic cycle is transcritical and is particularly suitable for specific end-user temperature profiles. This paper analyzes in a systematic and thorough way the most significant modifications to the reference cycle that have been proposed in the literature to improve the performance, finding how the optimal configurations change with a change in the rated operating conditions (inlet temperature and temperature glide of the heat demand, and ambient temperature). Exergy analysis explains why there is an optimal gas cooler pressure and why its trend with the average temperature is split into two distinct regions, clearly recognizable in all cycle layouts. The maximum coefficient of performance (COP) of the reference cycle varies in the 1.52–3.74 range, with a second-law efficiency of 6.4–36.1%, for an optimal gas cooler pressure of up to 15.45 MPa, depending on the ambient temperature and end-user temperature profile. The most effective modification is the cycle with an ejector and internal heat exchanger, which raises the COP to 1.84–4.40 (second-law efficiency 8.7–45.56%). The presented results provide an extensive guide to understanding the behavior of a transcritical CO2 cycle and predict its performance in heat pump applications. Full article
(This article belongs to the Special Issue Energy Storage, Conversion and Sustainable Management)
Show Figures

Figure 1

24 pages, 4037 KiB  
Article
Deep Learning for Predicting Hydrogen Solubility in n-Alkanes: Enhancing Sustainable Energy Systems
by Afshin Tatar, Amin Shokrollahi, Abbas Zeinijahromi and Manouchehr Haghighi
Sustainability 2024, 16(17), 7512; https://doi.org/10.3390/su16177512 - 30 Aug 2024
Viewed by 400
Abstract
As global population growth and urbanisation intensify energy demands, the quest for sustainable energy sources gains paramount importance. Hydrogen (H2) emerges as a versatile energy carrier, contributing to diverse processes in energy systems, industrial applications, and scientific research. To harness the [...] Read more.
As global population growth and urbanisation intensify energy demands, the quest for sustainable energy sources gains paramount importance. Hydrogen (H2) emerges as a versatile energy carrier, contributing to diverse processes in energy systems, industrial applications, and scientific research. To harness the H2 potential effectively, a profound grasp of its thermodynamic properties across varied conditions is essential. While field and laboratory measurements offer accuracy, they are resource-intensive. Experimentation involving high-pressure and high-temperature conditions poses risks, rendering precise H2 solubility determination crucial. This study evaluates the application of Deep Neural Networks (DNNs) for predicting H2 solubility in n-alkanes. Three DNNs are developed, focusing on model structure and overfitting mitigation. The investigation utilises a comprehensive dataset, employing distinct model structures. Our study successfully demonstrates that the incorporation of dropout layers and batch normalisation within DNNs significantly mitigates overfitting, resulting in robust and accurate predictions of H2 solubility in n-alkanes. The DNN models developed not only perform comparably to traditional ensemble methods but also offer greater stability across varying training conditions. These advancements are crucial for the safe and efficient design of H2-based systems, contributing directly to cleaner energy technologies. Understanding H2 solubility in hydrocarbons can enhance the efficiency of H2 storage and transportation, facilitating its integration into existing energy systems. This advancement supports the development of cleaner fuels and improves the overall sustainability of energy production, ultimately contributing to a reduction in reliance on fossil fuels and minimising the environmental impact of energy generation. Full article
Show Figures

Figure 1

16 pages, 2235 KiB  
Article
Effect of Flammulina velutipes Soluble Dietary Fiber on Dough Processing Characteristics and Micro-Fermented Dried Noodles Quality Properties
by Wenliang Wang, Shuang Yang, Lihong Wang, Furong Hou, Shasha Song, Yansheng Wang, Zhiqing Gong and Fengjuan Jia
Foods 2024, 13(17), 2764; https://doi.org/10.3390/foods13172764 - 30 Aug 2024
Viewed by 377
Abstract
Our research focused on the integration of Flammulina velutipes soluble dietary fiber (Fv-SDF) into wheat flour during the production of dried noodles, delving into the impact of different addition ratios of Fv-SDF on both dough processing characteristics and the quality of the micro-fermented [...] Read more.
Our research focused on the integration of Flammulina velutipes soluble dietary fiber (Fv-SDF) into wheat flour during the production of dried noodles, delving into the impact of different addition ratios of Fv-SDF on both dough processing characteristics and the quality of the micro-fermented dried noodles. The viscometric and thermodynamic analyses revealed that Fv-SDF notably improved the thermal stability of the mix powder, reduced viscosity, and delayed starch aging. Additionally, Fv-SDF elevated the gelatinization temperature and enthalpy value of the blend. Farinograph Properties and dynamic rheology properties further indicated that Fv-SDF improved dough formation time, stability time, powder quality index, and viscoelasticity. Notably, at a 10% Fv-SDF addition, the noodles achieved the highest sensory score (92) and water absorption rate (148%), while maintaining a lower dry matter loss rate (5.2%) and optimal cooking time (142 s). Gas chromatography-ion mobility spectrometry (GC-IMS) analysis showed that 67 volatile substances were detected, and the contents of furfural, 1-hydroxy-2-acetone, propionic acid, and 3-methylbutyraldehyde were higher in the Fv-SDF 10% group. These 10% Fv-SDF micro-fermented noodles were not only nutritionally enhanced, but also had a unique flavor. This study provides a valuable theoretical basis for the industrial application of F. velutipes and the development of high-quality dried noodles rich in Fv-SDF. Full article
Show Figures

Figure 1

19 pages, 1885 KiB  
Article
The Legacy of AAZTA—Synthesis and Coordination Chemistry of Two AAZTA Structural Analogs
by Federico Forgione, Madalina Ranga, Fabio Travagin, Mariangela Boccalon, Zsolt Baranyai, Giovanni B. Giovenzana and Luciano Lattuada
Inorganics 2024, 12(9), 235; https://doi.org/10.3390/inorganics12090235 - 29 Aug 2024
Viewed by 232
Abstract
AAZTA (6-amino-6-methylperhydro-1,4-diazepinetetraacetic acid) is a mesocyclic chelating agent forming stable complexes with several metal ions. Over the past 20 years since its inception, AAZTA and its bifunctional derivatives have gained a growing role in several applications ranging from MRI contrast agents to diagnostics [...] Read more.
AAZTA (6-amino-6-methylperhydro-1,4-diazepinetetraacetic acid) is a mesocyclic chelating agent forming stable complexes with several metal ions. Over the past 20 years since its inception, AAZTA and its bifunctional derivatives have gained a growing role in several applications ranging from MRI contrast agents to diagnostics and nuclear medicine. The recent market restrictions applied to nitroethane preclude the easy preparation of AAZTA, prompting the search for a suitable alternative. In this work, we report the synthesis of two structural analogs (AAZTA-Bn and AAZTA-Et) from commercially available chemicals and the thermodynamic and kinetic study of their complexing ability towards selected metal ions. A comparison of the complexing properties of AAZTA-Bn and AAZTA-Et with the former AAZTA allows us to identify the possible heir of this efficient chelating agent. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Figure 1

30 pages, 6440 KiB  
Article
Mercury Ion Selective Adsorption from Aqueous Solution Using Amino-Functionalized Magnetic Fe2O3/SiO2 Nanocomposite
by Mahmoud M. Youssif, Heba G. El-Attar, Stanisław Małecki, Grzegorz Włoch, Maciej Czapkiewicz, Kamil Kornaus and Marek Wojnicki
Materials 2024, 17(17), 4254; https://doi.org/10.3390/ma17174254 - 28 Aug 2024
Viewed by 487
Abstract
This study focuses on the development of new amino-functionalized magnetic Fe2O3/SiO2 nanocomposites with varying silicate shell ratios (1:0.5, 1:1, and 1:2) for the efficient elimination of Hg2+ ions found in solutions. The Fe2O3/SiO [...] Read more.
This study focuses on the development of new amino-functionalized magnetic Fe2O3/SiO2 nanocomposites with varying silicate shell ratios (1:0.5, 1:1, and 1:2) for the efficient elimination of Hg2+ ions found in solutions. The Fe2O3/SiO2–NH2 adsorbents were characterized for their structural, surface, and magnetic properties using various techniques, including Fourier transform infrared spectrum (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Braunauer–Emmett–Teller (BET), thermogravimetric analysis (TGA), zeta-potential, and particle size measurement. We investigated the adsorption circumstances, such as pH, dosage of the adsorbent, and duration of adsorption. The pH value that yielded the best results was determined to be 5.0. The Fe2O3/SiO2–NH2 adsorbent with a silicate ratio of (1:2) exhibited the largest amount of adsorption capacity of 152.03 mg g−1. This can be attributed to its significantly large specific surface area of 100.1 m2 g−1, which surpasses that of other adsorbents. The adsorbent with amino functionalization demonstrated a strong affinity for Hg2+ ions due to the chemical interactions between the metal ions and the amino groups on the surface. The analysis of adsorption kinetics demonstrated that the adsorption outcomes adhere to the pseudo-second-order kinetic model. The study of adsorption isotherms revealed that the adsorption followed the Langmuir model, indicating that the adsorption of Hg2+ ions with the adsorbent occurred as a monomolecular layer adsorption process. Furthermore, the thermodynamic analyses revealed that the adsorption of Hg2+ ions using the adsorbent was characterized by a spontaneous and endothermic process. Additionally, the adsorbent has the ability to selectively extract mercury ions from a complex mixture of ions. The Fe2O3/SiO2–NH2 nanocomposite, which is loaded with metal, can be easily recovered from a water solution due to its magnetic properties. Moreover, it can be regenerated effortlessly through acid treatment. This study highlights the potential use of amino-functionalized Fe2O3/SiO2 magnetic nanoparticles as a highly efficient, reusable adsorbent for the removal of mercury ions from contaminated wastewater. Full article
Show Figures

Graphical abstract

12 pages, 3407 KiB  
Article
First-Principle Study on Tailoring the Martensitic Transformation of B2 Nb50−xTixRu50 Shape-Memory Alloy for Structural Applications
by Duduzile Nkomo, Yu-Nien Shen, Roelf Mostert, Yoko Yamabe-Mitarai and Maje Phasha
Metals 2024, 14(9), 976; https://doi.org/10.3390/met14090976 - 28 Aug 2024
Viewed by 286
Abstract
NbRu has a potential as a high-temperature shape-memory alloy (HTSMA) because it has a martensitic transformation temperature above 1000 °C. However, its shape-memory properties could be improved for consideration in the aerospace and automotive industry. The unsatisfactory shape-memory properties could be associated with [...] Read more.
NbRu has a potential as a high-temperature shape-memory alloy (HTSMA) because it has a martensitic transformation temperature above 1000 °C. However, its shape-memory properties could be improved for consideration in the aerospace and automotive industry. The unsatisfactory shape-memory properties could be associated with the presence of a brittle tetragonal L10 martensitic phase. Therefore, in an attempt to modify the transformation path from B2→L10 in preference of either B2→orthorhombic or B2→monoclinic (MCL), an addition of B2 phase stabiliser, titanium (Ti), has been considered in this study to partially substitute niobium (Nb) atoms. The ab initio calculations have been conducted to investigate the effect of Ti addition on the thermodynamic, elastic, and electronic properties of the Nb50−xTixRu50 in B2 and L10 phases. The results showed that the B2 and L10 phases had comparable stability with increasing Ti content. The simulated data presented here was sufficient for the selection of suitable compositions that would allow the L10 phase to be engineered out. The said composition was identified within 15–30 at.% Ti. These compositions have a potential to be considered when designing alloys for structural application at high temperatures above 200 °C. Full article
(This article belongs to the Special Issue Computational Methods in Metallic Materials Manufacturing Processes)
Show Figures

Figure 1

20 pages, 2319 KiB  
Review
Structural Particularities, Prediction, and Synthesis Methods in High-Entropy Alloys
by Stefania Caramarin, Ioana-Cristina Badea, Laurentiu-Florin Mosinoiu, Dumitru Mitrica, Beatrice-Adriana Serban, Nicoleta Vitan, Laura-Madalina Cursaru and Alexander Pogrebnjak
Appl. Sci. 2024, 14(17), 7576; https://doi.org/10.3390/app14177576 - 27 Aug 2024
Viewed by 501
Abstract
High-Entropy Alloys (HEAs) represent a transformative class of materials characterized by multiple principal elements and high configurational entropy. This review article provides an in-depth examination of their structural particularities, prediction methodologies, and synthesis techniques. HEAs exhibit unique structural stability due to high-entropy effects, [...] Read more.
High-Entropy Alloys (HEAs) represent a transformative class of materials characterized by multiple principal elements and high configurational entropy. This review article provides an in-depth examination of their structural particularities, prediction methodologies, and synthesis techniques. HEAs exhibit unique structural stability due to high-entropy effects, severe lattice distortions, and slow diffusion processes. Predictive models, including thermodynamic and kinetic approaches, are essential for understanding phase stability. Various synthesis methods impact HEA properties, and advanced characterization techniques are crucial for their study. The article highlights current applications and future research directions, emphasizing the potential of HEAs in diverse technological fields. Full article
Show Figures

Figure 1

17 pages, 2452 KiB  
Article
Experimental and Mathematical Investigation of Hydrogen Absorption in LaNi5 and La0.7Ce0.1Ga0.3Ni5 Compounds
by Sihem Belkhiria, Abdulrahman Alsawi, Ibtissem Hraiech, Mohamed Houcine Dhaou and Abdelmajid Jemni
Metals 2024, 14(9), 967; https://doi.org/10.3390/met14090967 - 27 Aug 2024
Viewed by 330
Abstract
In the present study, the hydrogen-absorption properties of the LaNi5 and the La0.7Ce0.1Ga0.3Ni5 compounds were determined and compared. This work is therefore divided into two parts: an experimental part that presents and discusses the kinetics [...] Read more.
In the present study, the hydrogen-absorption properties of the LaNi5 and the La0.7Ce0.1Ga0.3Ni5 compounds were determined and compared. This work is therefore divided into two parts: an experimental part that presents and discusses the kinetics and isotherms of hydrogen absorption in the two compounds at two different temperatures (298 K and 318 K). In addition, the temperature variations inside the hydride bed were determined. In the second section, the experimental isotherms were compared to a numerical model processed using statistical physics. Following that, thanks to the perfect agreement between the experimental data and the proposed model, the stereographic and energetic parameters associated with the hydrogen absorption reaction, such as the number of hydrogen atoms per receptor site (n1, n2), the densities of the sites (Nm1, Nm2), the half-saturation pressures (P1, P2) and the absorption energies (ΔE1, ΔE2) for each receptor site, were calculated. All of these parameters are acquired by making numerical adjustments to the experimental data. Thermodynamic functions, such as internal energy and Gibbs energy, which regulate the absorption process, were then identified using these parameters. For both compounds, all of the aforementioned were compared and discussed in relation to initial temperature and pressure. The results demonstrated that the hydrogen-storage properties in LaNi5 are enhanced by more than 30% of stored mass and kinetics when Ce and Ga are substituted at the La sites. Full article
Show Figures

Figure 1

Back to TopTop