Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (62)

Search Parameters:
Keywords = surveillance drug resistance mutations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 538 KiB  
Article
Evaluation of Dihydroartemisinin–Piperaquine Efficacy and Molecular Markers in Uncomplicated Falciparum Patients: A Study across Binh Phuoc and Dak Nong, Vietnam
by Thu Huyen Thi Tran, Bui Thi Thu Hien, Nguyen Thi Lan Dung, Nguyen Thi Huong, Tran Thanh Binh, Nguyen Van Long and Nguyen Dang Ton
Medicina 2024, 60(6), 1013; https://doi.org/10.3390/medicina60061013 - 20 Jun 2024
Viewed by 821
Abstract
Background and Objectives: Malaria continues to be a significant global health challenge. The efficacy of artemisinin-based combination therapies (ACTs) has declined in many parts of the Greater Mekong Subregion, including Vietnam, due to the spread of resistant malaria strains. This study was [...] Read more.
Background and Objectives: Malaria continues to be a significant global health challenge. The efficacy of artemisinin-based combination therapies (ACTs) has declined in many parts of the Greater Mekong Subregion, including Vietnam, due to the spread of resistant malaria strains. This study was conducted to assess the efficacy of the Dihydroartemisinin (DHA)–Piperaquine (PPQ) regimen in treating uncomplicated falciparum malaria and to conduct molecular surveillance of antimalarial drug resistance in Binh Phuoc and Dak Nong provinces. Materials and Methods: The study included 63 uncomplicated malaria falciparum patients from therapeutic efficacy studies (TES) treated following the WHO treatment guidelines (2009). Molecular marker analysis was performed on all 63 patients. Methods encompassed Sanger sequencing for pfK13 mutations and quantitative real-time PCR for the pfpm2 gene. Results: This study found a marked decrease in the efficacy of the DHA-PPQ regimen, with an increased rate of treatment failures at two study sites. Genetic analysis revealed a significant presence of pfK13 mutations and pfpm2 amplifications, indicating emerging resistance to artemisinin and its partner drug. Conclusions: The effectiveness of the standard DHA-PPQ regimen has sharply declined, with rising treatment failure rates. This decline necessitates a review and possible revision of national malaria treatment guidelines. Importantly, molecular monitoring and clinical efficacy assessments together provide a robust framework for understanding and addressing detection drug resistance in malaria. Full article
(This article belongs to the Section Infectious Disease)
Show Figures

Figure 1

18 pages, 2568 KiB  
Article
Human Immunodeficiency Virus Type-1 Genetic Diversity and Drugs Resistance Mutations among People Living with HIV in Karachi, Pakistan
by Abdur Rashid, Li Kang, Feng Yi, Qingfei Chu, Sharaf Ali Shah, Syed Faisal Mahmood, Yimam Getaneh, Min Wei, Song Chang, Syed Hani Abidi and Yiming Shao
Viruses 2024, 16(6), 962; https://doi.org/10.3390/v16060962 - 14 Jun 2024
Viewed by 699
Abstract
The human immunodeficiency virus type-1 epidemic in Pakistan has significantly increased over the last two decades. In Karachi, Pakistan, there is a lack of updated information on the complexity of HIV-1 genetic diversity and the burden of drug resistance mutations (DRMs) that can [...] Read more.
The human immunodeficiency virus type-1 epidemic in Pakistan has significantly increased over the last two decades. In Karachi, Pakistan, there is a lack of updated information on the complexity of HIV-1 genetic diversity and the burden of drug resistance mutations (DRMs) that can contribute to ART failure and poor treatment outcomes. This study aimed to determine HIV-1 genetic diversity and identify drug-resistance mutations among people living with HIV in Karachi. A total of 364 HIV-positive individuals, with a median age of 36 years, were enrolled in the study. The HIV-1 partial pol gene was successfully sequenced from 268 individuals. The sequences were used to generate phylogenetic trees to determine clade diversity and also to assess the burden of DRMs. Based on the partial pol sequences, 13 distinct HIV-1 subtypes and recombinant forms were identified. Subtype A1 was the most common clade (40%), followed by CRF02_AG (33.2%). Acquired DRMs were found in 30.6% of the ART-experienced patients, of whom 70.7%, 20.7%, and 8.5% were associated with resistance to NNRTIs, NRTIs, and PIs, respectively. Transmitted DRMs were found in 5.6% of the ART-naïve patients, of whom 93% were associated with resistance against NNRTIs and 7% to PIs. The high prevalence of DRMs in ART-experienced patients poses significant challenges to the long-term benefits and sustainability of the ART program. This study emphasizes the importance of continuous HIV molecular epidemiology and drug resistance surveillance to support evidence-based HIV prevention, precise ART, and targeted AIDS care. Full article
(This article belongs to the Special Issue The Challenge of HIV Diversity)
Show Figures

Figure 1

22 pages, 2861 KiB  
Article
Genetic Characterization and Population Structure of Drug-Resistant Mycobacterium tuberculosis Isolated from Brazilian Patients Using Whole-Genome Sequencing
by Leonardo Souza Esteves, Lia Lima Gomes, Daniela Brites, Fátima Cristina Onofre Fandinho, Marcela Bhering, Márcia Aparecida da Silva Pereira, Emilyn Costa Conceição, Richard Salvato, Bianca Porphirio da Costa, Reginalda Ferreira de Melo Medeiros, Paulo Cesar de Souza Caldas, Paulo Redner, Margareth Pretti Dalcolmo, Vegard Eldholm, Sebastien Gagneux, Maria Lucia Rossetti, Afrânio Lineu Kritski and Philip Noel Suffys
Antibiotics 2024, 13(6), 496; https://doi.org/10.3390/antibiotics13060496 - 28 May 2024
Viewed by 985
Abstract
The present study aimed to determine the genetic diversity of isolates of Mycobacterium tuberculosis (Mtb) from presumed drug-resistant tuberculosis patients from several states of Brazil. The isolates had been submitted to conventional drug susceptibility testing for first- and second-line drugs. Multidrug-resistant (MDR-TB) (54.8%) [...] Read more.
The present study aimed to determine the genetic diversity of isolates of Mycobacterium tuberculosis (Mtb) from presumed drug-resistant tuberculosis patients from several states of Brazil. The isolates had been submitted to conventional drug susceptibility testing for first- and second-line drugs. Multidrug-resistant (MDR-TB) (54.8%) was the most frequent phenotypic resistance profile, in addition to an important high frequency of pre-extensive resistance (p-XDR-TB) (9.2%). Using whole-genome sequencing (WGS), we characterized 298 Mtb isolates from Brazil. Besides the analysis of genotype distribution and possible correlations between molecular and clinical data, we determined the performance of an in-house WGS pipeline with other online pipelines for Mtb lineages and drug resistance profile definitions. Sub-lineage 4.3 (52%) was the most frequent genotype, and the genomic approach revealed a p-XDR-TB level of 22.5%. We detected twenty novel mutations in three resistance genes, and six of these were observed in eight phenotypically resistant isolates. A cluster analysis of 170 isolates showed that 43.5% of the TB patients belonged to 24 genomic clusters, suggesting considerable ongoing transmission of DR-TB, including two interstate transmissions. The in-house WGS pipeline showed the best overall performance in drug resistance prediction, presenting the best accuracy values for five of the nine drugs tested. Significant associations were observed between suffering from fatal disease and genotypic p-XDR-TB (p = 0.03) and either phenotypic (p = 0.006) or genotypic (p = 0.0007) ethambutol resistance. The use of WGS analysis improved our understanding of the population structure of MTBC in Brazil and the genetic and clinical data correlations and demonstrated its utility for surveillance efforts regarding the spread of DR-TB, hopefully helping to avoid the emergence of even more resistant strains and to reduce TB incidence and mortality rates. Full article
(This article belongs to the Special Issue Genomic Analysis of Antimicrobial Drug-Resistant Bacteria)
Show Figures

Figure 1

13 pages, 2109 KiB  
Article
Evaluation of Antimicrobial Resistancein Clinical Isolates of Enterococcus spp. Obtained from Hospital Patients in Latvia
by Linda Labecka, Juris Ķibilds, Aivars Cīrulis, Evelīna Diāna Čeirāne, Indra Zeltiņa, Aigars Reinis, Barba Vilima, Dace Rudzīte, Renārs Erts, Inga Mauliņa, Dace Bandere and Angelika Krūmiņa
Medicina 2024, 60(6), 850; https://doi.org/10.3390/medicina60060850 - 23 May 2024
Viewed by 1007
Abstract
Background and Objective: Enterococci are typically found in a healthy human gastrointestinal tract but can cause severe infections in immunocompromised patients. Such infections are treated with antibiotics. This study addresses the rising concern of antimicrobial resistance (AMR) in Enterococci, focusing on the [...] Read more.
Background and Objective: Enterococci are typically found in a healthy human gastrointestinal tract but can cause severe infections in immunocompromised patients. Such infections are treated with antibiotics. This study addresses the rising concern of antimicrobial resistance (AMR) in Enterococci, focusing on the prevalence of vancomycin-resistant enterococcus (VRE) strains. Materials and Methods: The pilot study involved 140 Enterococci isolates collected between 2021 and 2022 from two multidisciplinary hospitals (with and without local therapeutic drug monitoring protocol of vancomycin) in Latvia. Microbiological assays and whole genome sequencing were used. AMR gene prevalence with resistance profiles were determined and the genetic relationship and outbreak evaluation were made by applying core genome multi-locus sequence typing (cgMLST). Results: The acquired genes and mutations were responsible for resistance against 10 antimicrobial classes, including 25.0% of isolates expressing resistance to vancomycin, predominantly of the vanB type. Genetic diversity among E. faecalis and E. faecium isolates was observed and seven potential outbreak clusters were identified, three of them containing sequence types ST6, ST78 and ST80. The prevalence of vancomycin resistance was highest in the hospital without a therapeutic drug-monitoring protocol and in E. faecium. Notably, a case of linezolid resistance due to a mutation was documented. Conclusions: The study illustrates the concerning prevalence of multidrug-resistant Enterococci in Latvian hospitals, showcasing the rather widespread occurrence of vancomycin-resistant strains. This highlights the urgency of implementing efficient infection control mechanisms and the need for continuous VRE surveillance in Latvia to define the scope and pattern of the problem, influencing clinical decision making and planning further preventative measures. Full article
Show Figures

Figure 1

15 pages, 762 KiB  
Article
Resistance Mutation Patterns among HIV-1-Infected Children and Features of the Program for Prevention of Mother-to-Child Transmission in Vietnam’s Central Highlands and Southern Regions, 2017–2021
by Huynh Hoang Khanh Thu, Alexandr N. Schemelev, Yulia V. Ostankova, Diana E. Reingardt, Vladimir S. Davydenko, Nguyen Tuong Vi, Le Ngoc Tu, Ton Tran, Truong Thi Xuan Lien, Aleksandr V. Semenov and Areg A. Totolian
Viruses 2024, 16(5), 696; https://doi.org/10.3390/v16050696 - 28 Apr 2024
Viewed by 754
Abstract
The Vietnam Ministry of Health (MOH) has intensified efforts in its aim to eliminate AIDS by 2030. Expanding the program for prevention of mother-to-child transmission (PMTCT) is a significant step towards achieving this goal. However, there are still HIV-exposed children who do not [...] Read more.
The Vietnam Ministry of Health (MOH) has intensified efforts in its aim to eliminate AIDS by 2030. Expanding the program for prevention of mother-to-child transmission (PMTCT) is a significant step towards achieving this goal. However, there are still HIV-exposed children who do not have access to PMTCT services, and some who have participated in the program but still contracted HIV. This study focused on assessing the prevalence and profile of HIV mutations among children under 18 months of age who had recently tested positive for HIV, while gaining insights into the implementation of early infant diagnostic (EID) tests. Between 2017 and 2021, 3.43% of 5854 collected dry blood spot (DBS) specimens from Vietnam’s Central and Southern regions showed positive EID results. This study identified a high prevalence of resistance mutations in children, totaling 62.9% (95% CI: 53.5–72.3). The highest prevalence of mutations was observed for NNRTIs, with 57.1% (95% CI: 47.5–66.8). Common mutations included Y181C and K103N (NNRTI resistance), M184I/V (NRTI resistance), and no major mutations for PI. The percentage of children with any resistance mutation was significantly higher among those who received PMTCT interventions (69.2%; 95% CI: 50.5–92.6%) compared with those without PMTCT (45.0%; 95% CI: 26.7–71.1%) with χ2 = 6.06, p = 0.0138, and OR = 2.75 (95% CI: 1.13–6.74). Mutation profiles revealed that polymorphic mutations could be present regardless of whether PMTCT interventions were implemented or not. However, non-polymorphic drug resistance mutations were predominantly observed in children who received PMTCT measures. Regarding PMTCT program characteristics, this study highlights the issue of late access to HIV testing for both mothers and their infected children. Statistical differences were observed between PMTCT and non-PMTCT children. The proportion of late detection of HIV infection and breastfeeding rates were significantly higher among non-PMTCT children (p < 0.05). Comparative analysis between children with low viral load (≤200 copies/mL) and high viral load (>200 copies/mL) showed significant differences between the mothers’ current ART regimens (p = 0.029) and the ARV prophylaxis regimen for children (p = 0.016). These findings emphasize the need for comprehensive surveillance to assess the effectiveness of the PMTCT program, including potential transmission of HIV drug-resistance mutations from mothers to children in Vietnam. Full article
(This article belongs to the Special Issue HIV Reservoirs, Latency, and the Factors Responsible)
Show Figures

Figure 1

14 pages, 3896 KiB  
Article
Cross-Species Transmission Potential of H4 Avian Influenza Viruses in China: Epidemiological and Evolutionary Study
by Shuxia Lin, Ye Zhang, Jiaying Yang, Lei Yang, Xiyan Li, Hong Bo, Jia Liu, Min Tan, Wenfei Zhu, Dayan Wang and Yuelong Shu
Viruses 2024, 16(3), 353; https://doi.org/10.3390/v16030353 - 24 Feb 2024
Viewed by 1308
Abstract
H4 avian influenza viruses (AIVs) have been widely detected in live poultry markets in China. However, the potential public health impact of H4 AIVs remains largely uncertain. Here, we fully analyzed the distribution and phylogenetic relationship of H4 AIVs in China. We obtained [...] Read more.
H4 avian influenza viruses (AIVs) have been widely detected in live poultry markets in China. However, the potential public health impact of H4 AIVs remains largely uncertain. Here, we fully analyzed the distribution and phylogenetic relationship of H4 AIVs in China. We obtained 31 isolates of H4 viruses in China during 2009–2022 through surveillance in poultry-associated environments, such as live poultry markets and poultry farms. Genomic sequence analysis together with publicly available data revealed that frequent reassortment and introduction of H4 AIV from wild birds to poultry may have occurred. We identified 62 genotypes among 127 whole genome sequences of H4 viruses in China, indicating that H4 AIVs had great genetic diversity in China. We also investigated molecular markers and found that drug resistance mutations frequently occurred in the M2 protein and a few mutations related to receptor binding and the host signature in H4 AIVs. Our study demonstrates the cross-species transmission potential of H4 AIVs in China and provides some reference significance for its risk assessment. Full article
(This article belongs to the Special Issue Influenza Virus Pathogenesis and Transmission)
Show Figures

Figure 1

18 pages, 2842 KiB  
Systematic Review
HIV-1 Drug Resistance Detected by Next-Generation Sequencing among ART-Naïve Individuals: A Systematic Review and Meta-Analysis
by Fei Ouyang, Defu Yuan, Wenjing Zhai, Shanshan Liu, Ying Zhou and Haitao Yang
Viruses 2024, 16(2), 239; https://doi.org/10.3390/v16020239 - 2 Feb 2024
Cited by 1 | Viewed by 1628
Abstract
Background: There are an increasing number of articles focused on the prevalence and clinical impact of pretreatment HIV drug resistance (PDR) detected by Sanger sequencing (SGS). PDR may contribute to the increased likelihood of virologic failure and the emergence of new resistance mutations. [...] Read more.
Background: There are an increasing number of articles focused on the prevalence and clinical impact of pretreatment HIV drug resistance (PDR) detected by Sanger sequencing (SGS). PDR may contribute to the increased likelihood of virologic failure and the emergence of new resistance mutations. As SGS is gradually replaced by next-generation sequencing (NGS), it is necessary to assess the levels of PDR using NGS in ART-naïve patients systematically. NGS can detect the viral variants (low-abundance drug-resistant HIV-1 variants (LA-DRVs)) of virus quasi-species at levels below 20% that SGS may fail to detect. NGS has the potential to optimize current HIV drug resistance surveillance methods and inform future research directions. As the NGS technique has high sensitivity, it is highly likely that the level of pretreatment resistance would be underestimated using conventional techniques. Methods: For the systematic review and meta-analysis, we searched for original studies published in PubMed, Web of Science, Scopus, and Embase before 30 March 2023 that focused exclusively on the application of NGS in the detection of HIV drug resistance. Pooled prevalence estimates were calculated using a random effects model using the ‘meta’ package in R (version 4.2.3). We described drug resistance detected at five thresholds (>1%, 2%, 5%, 10%, and 20% of virus quasi-species). Chi-squared tests were used to analyze differences between the overall prevalence of PDR reported by SGS and NGS. Results: A total of 39 eligible studies were selected. The studies included a total of 15,242 ART-naïve individuals living with HIV. The prevalence of PDR was inversely correlated with the mutation detection threshold. The overall prevalence of PDR was 29.74% at the 1% threshold, 22.43% at the 2% threshold, 15.47% at the 5% threshold, 12.95% at the 10% threshold, and 11.08% at the 20% threshold. The prevalence of PDR to INSTIs was 1.22% (95%CI: 0.58–2.57), which is the lowest among the values for all antiretroviral drugs. The prevalence of LA-DRVs was 9.45%. At the 2% and 20% detection threshold, the prevalence of PDR was 22.43% and 11.08%, respectively. Resistance to PIs and INSTIs increased 5.52-fold and 7.08-fold, respectively, in those with a PDR threshold of 2% compared with those with PDR at 20%. However, resistance to NRTIs and NNRTIs increased 2.50-fold and 2.37-fold, respectively. There was a significant difference between the 2% and 5% threshold for detecting HIV drug resistance. There was no statistically significant difference between the results reported by SGS and NGS when using the 20% threshold for reporting resistance mutations. Conclusion: In this study, we found that next-generation sequencing facilitates a more sensitive detection of HIV-1 drug resistance than SGS. The high prevalence of PDR emphasizes the importance of baseline resistance and assessing the threshold for optimal clinical detection using NGS. Full article
Show Figures

Figure 1

12 pages, 1218 KiB  
Article
Uncovering a Novel cyp51A Mutation and Antifungal Resistance in Aspergillus fumigatus through Culture Collection Screening
by Laís Pontes, Teppei Arai, Caio Augusto Gualtieri Beraquet, Ana Luisa Perini Leme Giordano, Franqueline Reichert-Lima, Edson Aparecido da Luz, Camila Fernanda de Sá, Larissa Ortolan Levy, Cibele Aparecida Tararam, Akira Watanabe, Maria Luiza Moretti and Angélica Zaninelli Schreiber
J. Fungi 2024, 10(2), 122; https://doi.org/10.3390/jof10020122 - 1 Feb 2024
Cited by 1 | Viewed by 1648
Abstract
Background: Aspergillus fumigatus is an important concern for immunocompromised individuals, often resulting in severe infections. With the emergence of resistance to azoles, which has been the therapeutic choice for Aspergillus infections, monitoring the resistance of these microorganisms becomes important, including the search for [...] Read more.
Background: Aspergillus fumigatus is an important concern for immunocompromised individuals, often resulting in severe infections. With the emergence of resistance to azoles, which has been the therapeutic choice for Aspergillus infections, monitoring the resistance of these microorganisms becomes important, including the search for mutations in the cyp51A gene, which is the gene responsible for the mechanism of action of azoles. We conducted a retrospective analysis covering 478 A. fumigatus isolates. Methods: This comprehensive dataset comprised 415 clinical isolates and 63 isolates from hospital environmental sources. For clinical isolates, they were evaluated in two different periods, from 1998 to 2004 and 2014 to 2021; for environmental strains, one strain was isolated in 1998, and 62 isolates were evaluated in 2015. Our primary objectives were to assess the epidemiological antifungal susceptibility profile; trace the evolution of resistance to azoles, Amphotericin B (AMB), and echinocandins; and monitor cyp51A mutations in resistant strains. We utilized the broth microdilution assay for susceptibility testing, coupled with cyp51A gene sequencing and microsatellite genotyping to evaluate genetic variability among resistant strains. Results: Our findings reveal a progressive increase in Minimum Inhibitory Concentrations (MICs) for azoles and AMB over time. Notably, a discernible trend in cyp51A gene mutations emerged in clinical isolates starting in 2014. Moreover, our study marks a significant discovery as we detected, for the first time, an A. fumigatus isolate carrying the recently identified TR46/F495I mutation within a sample obtained from a hospital environment. The observed cyp51A mutations underscore the ongoing necessity for surveillance, particularly as MICs for various antifungal classes continue to rise. Conclusions: By conducting resistance surveillance within our institution’s culture collection, we successfully identified a novel TR46/F495I mutation in an isolate retrieved from the hospital environment which had been preserved since 1998. Moreover, clinical isolates were found to exhibit TR34/L98H/S297T/F495I mutations. In addition, we observed an increase in MIC patterns for Amphotericin B and azoles, signaling a change in the resistance pattern, emphasizing the urgent need for the development of new antifungal drugs. Our study highlights the importance of continued monitoring and research in understanding the evolving challenges in managing A. fumigatus infections. Full article
(This article belongs to the Special Issue Young Investigators of Human Pathogenic Fungi)
Show Figures

Figure 1

12 pages, 1340 KiB  
Article
Comprehensive Analysis of HIV-1 Integrase Resistance-Related Mutations in African Countries
by Francesco Branda, Marta Giovanetti, Leonardo Sernicola, Stefania Farcomeni, Massimo Ciccozzi and Alessandra Borsetti
Pathogens 2024, 13(2), 102; https://doi.org/10.3390/pathogens13020102 - 24 Jan 2024
Viewed by 1424
Abstract
The growing emergence of non-nucleoside reverse transcriptase inhibitor (NNRTI) HIV drug resistance in sub-Saharan Africa (SSA) led to the World Health Organization (WHO) recommending, in 2018, a transition to dolutegravir (DTG) as a first-line antiretroviral therapy (ART) in SSA. The broad HIV-1 genetic [...] Read more.
The growing emergence of non-nucleoside reverse transcriptase inhibitor (NNRTI) HIV drug resistance in sub-Saharan Africa (SSA) led to the World Health Organization (WHO) recommending, in 2018, a transition to dolutegravir (DTG) as a first-line antiretroviral therapy (ART) in SSA. The broad HIV-1 genetic diversity in SSA could shape DTG effectiveness and the pattern of drug resistance mutations (DRMs) in this region. This study evaluated HIV-1 integrase (IN) DRMs and conserved regions among published groups M, N, O, and P HIV-1 sequences spanning forty years of the HIV epidemic during the transition of DTG-based ART. Overall, we found low levels of integrase strand transfer inhibitor (INSTI)-DRMs (<1%) across HIV groups between the years 1983 and 2023; however, it was unexpected to detect DRMs at statistically significantly higher frequencies in pre-INSTI (1983–2007) than in the INSTI (2008–2023) era. The variability of accessory INSTI-DRMs depended on the HIV subtypes, with implications for susceptibility to DTG. Our findings provide new perspectives on the molecular epidemiology and drug resistance profiles of INSTIs in SSA, emphasizing the need for ongoing surveillance and customized treatment approaches to address the continent’s varied HIV subtypes and changing resistance patterns. Full article
Show Figures

Figure 1

22 pages, 1756 KiB  
Article
Characterization of Human Immunodeficiency Virus-1 Transmission Clusters and Transmitted Drug-Resistant Mutations in Croatia from 2019 to 2022
by Ana Planinić, Josip Begovac, Filip Rokić, Petra Šimičić, Maja Oroz, Katja Jakovac, Oliver Vugrek and Snjezana Zidovec-Lepej
Viruses 2023, 15(12), 2408; https://doi.org/10.3390/v15122408 - 11 Dec 2023
Cited by 1 | Viewed by 941
Abstract
Molecular epidemiology of HIV-1 infection is challenging due to the highly diverse HIV-genome. We investigated the genetic diversity and prevalence of transmitted drug resistance (TDR) followed by phylogenetic analysis in 270 HIV-1 infected, treatment-naïve individuals from Croatia in the period 2019–2022. The results [...] Read more.
Molecular epidemiology of HIV-1 infection is challenging due to the highly diverse HIV-genome. We investigated the genetic diversity and prevalence of transmitted drug resistance (TDR) followed by phylogenetic analysis in 270 HIV-1 infected, treatment-naïve individuals from Croatia in the period 2019–2022. The results of this research confirmed a high overall prevalence of TDR of 16.7%. Resistance to nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside RTIs (NNRTIs), and protease inhibitors (PIs) was found in 9.6%, 7.4%, and 1.5% of persons, respectively. No resistance to integrase strand-transfer inhibitors (INSTIs) was found. Phylogenetic analysis revealed that 173/229 sequences (75.5%) were part of transmission clusters, and the largest identified was T215S, consisting of 45 sequences. Forward transmission was confirmed in several clusters. We compared deep sequencing (DS) with Sanger sequencing (SS) on 60 randomly selected samples and identified additional surveillance drug resistance mutations (SDRMs) in 49 of them. Our data highlight the need for baseline resistance testing in treatment-naïve persons. Although no major INSTIs were found, monitoring of SDRMs to INSTIs should be continued due to the extensive use of first- and second-generation INSTIs. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

20 pages, 2843 KiB  
Review
Drug-Resistant Aspergillus spp.: A Literature Review of Its Resistance Mechanisms and Its Prevalence in Europe
by Maria Antonia De Francesco
Pathogens 2023, 12(11), 1305; https://doi.org/10.3390/pathogens12111305 - 31 Oct 2023
Cited by 3 | Viewed by 1937
Abstract
Infections due to the Aspergillus species constitute an important challenge for human health. Invasive aspergillosis represents a life-threatening disease, mostly in patients with immune defects. Drugs used for fungal infections comprise amphotericin B, triazoles, and echinocandins. However, in the last decade, an increased [...] Read more.
Infections due to the Aspergillus species constitute an important challenge for human health. Invasive aspergillosis represents a life-threatening disease, mostly in patients with immune defects. Drugs used for fungal infections comprise amphotericin B, triazoles, and echinocandins. However, in the last decade, an increased emergence of azole-resistant Aspergillus strains has been reported, principally belonging to Aspergillus fumigatus species. Therefore, both the early diagnosis of aspergillosis and its epidemiological surveillance are very important to establish the correct antifungal therapy and to ensure a successful patient outcome. In this paper, a literature review is performed to analyze the prevalence of Aspergillus antifungal resistance in European countries. Amphotericin B resistance is observed in 2.6% and 10.8% of Aspergillus fumigatus isolates in Denmark and Greece, respectively. A prevalence of 84% of amphotericin B-resistant Aspergillus flavus isolates is reported in France, followed by 49.4%, 35.1%, 21.7%, and 20% in Spain, Portugal, Greece, and amphotericin B resistance of Aspergillus niger isolates is observed in Greece and Belgium with a prevalence of 75% and 12.8%, respectively. The prevalence of triazole resistance of Aspergillus fumigatus isolates, the most studied mold obtained from the included studies, is 0.3% in Austria, 1% in Greece, 1.2% in Switzerland, 2.1% in France, 3.9% in Portugal, 4.9% in Italy, 5.3% in Germany, 6.1% in Denmark, 7.4% in Spain, 8.3% in Belgium, 11% in the Netherlands, and 13.2% in the United Kingdom. The mechanism of resistance is mainly driven by the TR34/L98H mutation. In Europe, no in vivo resistance is reported for echinocandins. Future studies are needed to implement the knowledge on the spread of drug-resistant Aspergillus spp. with the aim of defining optimal treatment strategies. Full article
(This article belongs to the Section Fungal Pathogens)
Show Figures

Figure 1

16 pages, 1458 KiB  
Article
A Whole-Genome Sequencing-Based Approach for the Characterization of Klebsiella pneumoniae Co-Producing KPC and OXA-48-like Carbapenemases Circulating in Sardinia, Italy
by Arcadia Del Rio, Valeria Fox, Narcisa Muresu, Illari Sechi, Andrea Cossu, Alessandra Palmieri, Rossana Scutari, Claudia Alteri, Giovanni Sotgiu, Paolo Castiglia and Andrea Piana
Microorganisms 2023, 11(9), 2354; https://doi.org/10.3390/microorganisms11092354 - 20 Sep 2023
Cited by 2 | Viewed by 1322
Abstract
Background: Whole-genome sequencing (WGS) provides important information for the characterization, surveillance, and monitoring of antimicrobial resistance (AMR) determinants, particularly in cases of multi- and extensively drug-resistant microorganisms. We reported the results of a WGS analysis carried out on carbapenemases-producing Klebsiella pneumoniae, which [...] Read more.
Background: Whole-genome sequencing (WGS) provides important information for the characterization, surveillance, and monitoring of antimicrobial resistance (AMR) determinants, particularly in cases of multi- and extensively drug-resistant microorganisms. We reported the results of a WGS analysis carried out on carbapenemases-producing Klebsiella pneumoniae, which causes hospital-acquired infections (HAIs) and is characterized by a marked resistance profile. Methods: Clinical, phenotypic, and genotypic data were collected for the AMR surveillance screening program of the University Hospital of Sassari (Italy) during 2020–2021. Genomic DNA was sequenced using the Illumina Nova Seq 6000 platform. Final assemblies were manually curated and carefully verified for the detection of antimicrobial resistance genes, porin mutations, and virulence factors. A phylogenetic analysis was performed using the maximum likelihood method. Results: All 17 strains analyzed belonged to ST512, and most of them carried the blaKPC-31 variant blaOXA-48-like, an OmpK35 truncation, and an OmpK36 mutation. Phenotypic analysis showed a marked resistance profile to all antibiotic classes, including β-lactams, carbapenems, aminoglycosides, fluoroquinolone, sulphonamides, and novel β-lactam/β-lactamase inhibitors (BL/BLI). Conclusion: WGS characterization revealed the presence of several antibiotic resistance determinants and porin mutations in highly resistant K. pneumoniae strains responsible for HAIs. The detection of blaKPC-31 in our hospital wards highlights the importance of genomic surveillance in hospital settings to monitor the emergence of new clones and the need to improve control and preventive strategies to efficiently contrast AMR. Full article
(This article belongs to the Special Issue 10th Anniversary of Microorganisms: Past, Present and Future)
Show Figures

Figure 1

15 pages, 1200 KiB  
Review
Current Applications of Digital PCR in Veterinary Parasitology: An Overview
by Constantina N. Tsokana, Isaia Symeonidou, Georgios Sioutas, Athanasios I. Gelasakis and Elias Papadopoulos
Parasitologia 2023, 3(3), 269-283; https://doi.org/10.3390/parasitologia3030028 - 6 Sep 2023
Cited by 2 | Viewed by 1834
Abstract
Digital PCR (dPCR) is an emerging technology that enables the absolute quantification of the targeted nucleic acids. The body of research on the potential applications of this novel tool is growing in human and veterinary medicine. Most of the research on dPCR applications [...] Read more.
Digital PCR (dPCR) is an emerging technology that enables the absolute quantification of the targeted nucleic acids. The body of research on the potential applications of this novel tool is growing in human and veterinary medicine. Most of the research on dPCR applications in veterinary parasitology is concentrated on developing and validating new assays to detect and quantify parasites of great financial impact in the food-producing animal industry. Several studies describe the utility of dPCR for individualized medicine in companion animals. Most frequently, dPCR performance is assessed compared to quantitative PCR or Next Generation Sequencing platforms, while others also compare the accuracy of dPCR with traditional parasitological techniques considered gold standard methods. Other researchers describe dPCR assays for surveillance purposes, species identification, and quantification in mixed parasitic infections, the detection of mutations indicative of anthelmintic resistance, and the identification of new targets for drug development. This review provides an overview of the studies that employed dPCR in investigating animal parasites and parasitic diseases from a veterinary perspective and discusses how this novel technology could advance and facilitate diagnosis, surveillance, and the monitoring of response to treatment, or shed light on current gaps in our knowledge of the epidemiology of significant veterinary parasitic diseases. Full article
(This article belongs to the Special Issue The Molecular Epidemiology of Parasites)
Show Figures

Figure 1

17 pages, 2339 KiB  
Brief Report
Nanobiotics and the One Health Approach: Boosting the Fight against Antimicrobial Resistance at the Nanoscale
by Himanshu, Riya Mukherjee, Jasmina Vidic, Elcio Leal, Antonio Charlys da Costa, Carlos Roberto Prudencio, V. Samuel Raj, Chung-Ming Chang and Ramendra Pati Pandey
Biomolecules 2023, 13(8), 1182; https://doi.org/10.3390/biom13081182 - 28 Jul 2023
Cited by 3 | Viewed by 1709
Abstract
Antimicrobial resistance (AMR) is a growing public health concern worldwide, and it poses a significant threat to human, animal, and environmental health. The overuse and misuse of antibiotics have contributed significantly and others factors including gene mutation, bacteria living in biofilms, and enzymatic [...] Read more.
Antimicrobial resistance (AMR) is a growing public health concern worldwide, and it poses a significant threat to human, animal, and environmental health. The overuse and misuse of antibiotics have contributed significantly and others factors including gene mutation, bacteria living in biofilms, and enzymatic degradation/hydrolyses help in the emergence and spread of AMR, which may lead to significant economic consequences such as reduced productivity and increased health care costs. Nanotechnology offers a promising platform for addressing this challenge. Nanoparticles have unique properties that make them highly effective in combating bacterial infections by inhibiting the growth and survival of multi-drug-resistant bacteria in three areas of health: human, animal, and environmental. To conduct an economic evaluation of surveillance in this context, it is crucial to obtain an understanding of the connections to be addressed by several nations by implementing national action policies based on the One Health strategy. This review provides an overview of the progress made thus far and presents potential future directions to optimize the impact of nanobiotics on AMR. Full article
Show Figures

Figure 1

23 pages, 3229 KiB  
Article
Genomic Features of Antimicrobial Resistance in Staphylococcus pseudintermedius Isolated from Dogs with Pyoderma in Argentina and the United States: A Comparative Study
by Mariela E. Srednik, Claudia A. Perea, Gabriela I. Giacoboni, Jessica A. Hicks, Christine L. Foxx, Beth Harris and Linda K. Schlater
Int. J. Mol. Sci. 2023, 24(14), 11361; https://doi.org/10.3390/ijms241411361 - 12 Jul 2023
Cited by 6 | Viewed by 1458
Abstract
Staphylococcus pseudintermedius is the most common opportunistic pathogen in dogs and methicillin resistance (MRSP) has been identified as an emerging problem in canine pyoderma. Here, we evaluated the antimicrobial resistance (AMR) features and phylogeny of S. pseudintermedius isolated from canine pyoderma cases in [...] Read more.
Staphylococcus pseudintermedius is the most common opportunistic pathogen in dogs and methicillin resistance (MRSP) has been identified as an emerging problem in canine pyoderma. Here, we evaluated the antimicrobial resistance (AMR) features and phylogeny of S. pseudintermedius isolated from canine pyoderma cases in Argentina (n = 29) and the United States (n = 29). 62% of isolates showed multi-drug resistance. The AMR genes found: mecA, blaZ, ermB, dfrG, catA, tetM, aac(6′)-aph(2″), in addition to tetK and lnuA (only found in U.S. isolates). Two point mutations were detected: grlA(S80I)-gyrA(S84L), and grlA(D84N)-gyrA(S84L) in one U.S. isolate. A mutation in rpoB (H481N) was found in two isolates from Argentina. SCCmec type III, SCCmec type V, ΨSCCmec57395 were identified in the Argentinian isolates; and SCCmec type III, SCCmec type IVg, SCCmec type V, and SCCmec type VII variant in the U.S. cohort. Sequence type (ST) ST71 belonging to a dominant clone was found in isolates from both countries, and ST45 only in Argentinian isolates. This is the first study to comparatively analyze the population structure of canine pyoderma-associated S. pseudintermedius isolates in Argentina and in the U.S. It is important to maintain surveillance on S. pseudintermedius populations to monitor AMR and gain further understanding of its evolution and dissemination. Full article
(This article belongs to the Special Issue Antibiotic Resistance: Appearance, Evolution, and Spread 2.0)
Show Figures

Figure 1

Back to TopTop