Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,264)

Search Parameters:
Keywords = state space model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
55 pages, 903 KiB  
Article
Random Transitions of a Binary Star in the Canonical Ensemble
by Pierre-Henri Chavanis
Entropy 2024, 26(9), 757; https://doi.org/10.3390/e26090757 - 4 Sep 2024
Abstract
After reviewing the peculiar thermodynamics and statistical mechanics of self-gravitating systems, we consider the case of a “binary star” consisting of two particles of size a in gravitational interaction in a box of radius R. The caloric curve of this system displays [...] Read more.
After reviewing the peculiar thermodynamics and statistical mechanics of self-gravitating systems, we consider the case of a “binary star” consisting of two particles of size a in gravitational interaction in a box of radius R. The caloric curve of this system displays a region of negative specific heat in the microcanonical ensemble, which is replaced by a first-order phase transition in the canonical ensemble. The free energy viewed as a thermodynamic potential exhibits two local minima that correspond to two metastable states separated by an unstable maximum forming a barrier of potential. By introducing a Langevin equation to model the interaction of the particles with the thermal bath, we study the random transitions of the system between a “dilute” state, where the particles are well separated, and a “condensed” state, where the particles are bound together. We show that the evolution of the system is given by a Fokker–Planck equation in energy space and that the lifetime of a metastable state is given by the Kramers formula involving the barrier of free energy. This is a particular case of the theory developed in a previous paper (Chavanis, 2005) for N Brownian particles in gravitational interaction associated with the canonical ensemble. In the case of a binary star (N=2), all the quantities can be calculated exactly analytically. We compare these results with those obtained in the mean field limit N+. Full article
(This article belongs to the Special Issue Statistical Mechanics of Self-Gravitating Systems)
Show Figures

Figure 1

16 pages, 579 KiB  
Article
Fuzzy Modelling Algorithms and Parallel Distributed Compensation for Coupled Electromechanical Systems
by Christian Reyes, Julio C. Ramos-Fernández, Eduardo S. Espinoza and Rogelio Lozano
Algorithms 2024, 17(9), 391; https://doi.org/10.3390/a17090391 - 3 Sep 2024
Viewed by 163
Abstract
Modelling and controlling an electrical Power Generation System (PGS), which consists of an Internal Combustion Engine (ICE) linked to an electric generator, poses a significant challenge due to various factors. These include the non-linear characteristics of the system’s components, thermal effects, mechanical vibrations, [...] Read more.
Modelling and controlling an electrical Power Generation System (PGS), which consists of an Internal Combustion Engine (ICE) linked to an electric generator, poses a significant challenge due to various factors. These include the non-linear characteristics of the system’s components, thermal effects, mechanical vibrations, electrical noise, and the dynamic and transient impacts of electrical loads. In this study, we introduce a fuzzy modelling identification approach utilizing the Takagi–Sugeno (T–S) structure, wherein model and control parameters are optimized. This methodology circumvents the need for deriving a mathematical model through energy balance considerations involving thermodynamics and the non-linear representation of the electric generator. Initially, a non-linear mathematical model for the electrical power system is obtained through the fuzzy c-means algorithm, which handles both premises and consequents in state space, utilizing input–output experimental data. Subsequently, the Particle Swarm Algorithm (PSO) is employed for optimizing the fuzzy parameter m of the c-means algorithm during the modelling phase. Additionally, in the design of the Parallel Distributed Compensation Controller (PDC), the optimization of parameters pertaining to the poles of the closed-loop response is conducted also by using the PSO method. Ultimately, numerical simulations are conducted, adjusting the power consumption of an inductive load. Full article
(This article belongs to the Special Issue Algorithms for PID Controller 2024)
Show Figures

Figure 1

13 pages, 1860 KiB  
Article
A New Approach to Examine the Dynamics of Switched-Mode Step-Up DC–DC Converters—A Switched State-Space Model
by Adam Tomaszuk and Kamil Borawski
Energies 2024, 17(17), 4413; https://doi.org/10.3390/en17174413 - 3 Sep 2024
Viewed by 183
Abstract
Power electronic converters are important elements of many modern devices. Therefore, there is a need for a thorough analysis of their behavior and the ability to properly control them. Typically, the converter’s dynamics are investigated using the small-signal averaging method, which does not [...] Read more.
Power electronic converters are important elements of many modern devices. Therefore, there is a need for a thorough analysis of their behavior and the ability to properly control them. Typically, the converter’s dynamics are investigated using the small-signal averaging method, which does not provide detailed information about the converter. In particular, it does not account for the switching ripple effect. In this paper, a novel switched state–space model of the interleaved step-up DC–DC converter is introduced. That model incorporates high-frequency information, which allows for a more in-depth dynamics analysis. The results, i.e., step and frequency responses, obtained from both theoretical models are compared to the interleaved step-up DC–DC converter model implemented in PSpice ver. 16.6 from Cadence Design Systems. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

21 pages, 2031 KiB  
Article
ConvMambaSR: Leveraging State-Space Models and CNNs in a Dual-Branch Architecture for Remote Sensing Imagery Super-Resolution
by Qiwei Zhu, Guojing Zhang, Xuechao Zou, Xiaoying Wang, Jianqiang Huang and Xilai Li
Remote Sens. 2024, 16(17), 3254; https://doi.org/10.3390/rs16173254 - 2 Sep 2024
Viewed by 443
Abstract
Deep learning-based super-resolution (SR) techniques play a crucial role in enhancing the spatial resolution of images. However, remote sensing images present substantial challenges due to their diverse features, complex structures, and significant size variations in ground objects. Moreover, recovering lost details from low-resolution [...] Read more.
Deep learning-based super-resolution (SR) techniques play a crucial role in enhancing the spatial resolution of images. However, remote sensing images present substantial challenges due to their diverse features, complex structures, and significant size variations in ground objects. Moreover, recovering lost details from low-resolution remote sensing images with complex and unknown degradations, such as downsampling, noise, and compression, remains a critical issue. To address these challenges, we propose ConvMambaSR, a novel super-resolution framework that integrates state-space models (SSMs) and Convolutional Neural Networks (CNNs). This framework is specifically designed to handle heterogeneous and complex ground features, as well as unknown degradations in remote sensing imagery. ConvMambaSR leverages SSMs to model global dependencies, activating more pixels in the super-resolution task. Concurrently, it employs CNNs to extract local detail features, enhancing the model’s ability to capture image textures and edges. Furthermore, we have developed a global–detail reconstruction module (GDRM) to integrate diverse levels of global and local information efficiently. We rigorously validated the proposed method on two distinct datasets, RSSCN7 and RSSRD-KQ, and benchmarked its performance against state-of-the-art SR models. Experiments show that our method achieves SOTA PSNR values of 26.06 and 24.29 on these datasets, respectively, and is visually superior, effectively addressing a variety of scenarios and significantly outperforming existing methods. Full article
(This article belongs to the Special Issue Image Enhancement and Fusion Techniques in Remote Sensing)
Show Figures

Figure 1

23 pages, 3710 KiB  
Article
A Novel Hybrid Internal Pipeline Leak Detection and Location System Based on Modified Real-Time Transient Modelling
by Seyed Ali Mohammad Tajalli, Mazda Moattari, Seyed Vahid Naghavi and Mohammad Reza Salehizadeh
Modelling 2024, 5(3), 1135-1157; https://doi.org/10.3390/modelling5030059 - 2 Sep 2024
Viewed by 140
Abstract
A This paper proposes a modified real-time transient modelling (MRTTM) framework to address the critical challenge of leak detection and localization in pipeline transmission systems. Pipelines are essential infrastructure for transporting liquids and gases, but they are susceptible to leaks, with severe environmental [...] Read more.
A This paper proposes a modified real-time transient modelling (MRTTM) framework to address the critical challenge of leak detection and localization in pipeline transmission systems. Pipelines are essential infrastructure for transporting liquids and gases, but they are susceptible to leaks, with severe environmental and economic impacts. MRTTM tackles this challenge with a three-stage operational process. First, “Data Collection” gathers sensor data from designated observation points. Second, the “Detection” stage identifies leaks. Finally, “Decision-Making” utilizes MRTTM to pinpoint the exact leak magnitude and location. This paper introduces an innovative method designed to significantly enhance pipeline leak detection and localization through the application of artificial intelligence and advanced signal processing techniques. The improved MRTTM framework integrates AI for pattern recognition, state space modelling for leak segment identification, and an extended Kalman filter (EKF) for precise leak location estimation, addressing the limitations of traditional methods. This paper showcases the application of MRTTM through a case study using the K-nearest neighbors (KNN) method on a water transmission pipeline for leak detection. KNN aids in classifying leak patterns and identifying the most likely leak location. Additionally, MRTTM incorporates the EKF, enabling real-time updates during transient events for faster leak identification. Preprocessing sensor data before comparison with the leakage pattern bank (LPB) minimizes false alarms and enhances detection reliability. Overall, the AI-powered MRTTM framework offers a powerful solution for swift and precise leak detection and localization in pipeline systems. The functionality of the framework is examined, and the results effectively approve the effectiveness of this methodology. The experimental results validate the practical utility of the MRTTM framework in real-world applications, demonstrating up to 90% detection accuracy and an F1 score of 0.92. Full article
(This article belongs to the Topic Oil and Gas Pipeline Network for Industrial Applications)
Show Figures

Figure 1

18 pages, 5652 KiB  
Article
LDMNet: Enhancing the Segmentation Capabilities of Unmanned Surface Vehicles in Complex Waterway Scenarios
by Tongyang Dai, Huiyu Xiang, Chongjie Leng, Song Huang, Guanghui He and Shishuo Han
Appl. Sci. 2024, 14(17), 7706; https://doi.org/10.3390/app14177706 - 31 Aug 2024
Viewed by 457
Abstract
Semantic segmentation-based Complex Waterway Scene Understanding has shown great promise in the environmental perception of Unmanned Surface Vehicles. Existing methods struggle with estimating the edges of obstacles under conditions of blurred water surfaces. To address this, we propose the Lightweight Dual-branch Mamba Network [...] Read more.
Semantic segmentation-based Complex Waterway Scene Understanding has shown great promise in the environmental perception of Unmanned Surface Vehicles. Existing methods struggle with estimating the edges of obstacles under conditions of blurred water surfaces. To address this, we propose the Lightweight Dual-branch Mamba Network (LDMNet), which includes a CNN-based Deep Dual-branch Network for extracting image features and a Mamba-based fusion module for aggregating and integrating global information. Specifically, we improve the Deep Dual-branch Network structure by incorporating multiple Atrous branches for local fusion; we design a Convolution-based Recombine Attention Module, which serves as the gate activation condition for Mamba-2 to enhance feature interaction and global information fusion from both spatial and channel dimensions. Moreover, to tackle the directional sensitivity of image serialization and the impact of the State Space Model’s forgetting strategy on non-causal data modeling, we introduce a Hilbert curve scanning mechanism to achieve multi-scale feature serialization. By stacking feature sequences, we alleviate the local bias of Mamba-2 towards image sequence data. LDMNet integrates the Deep Dual-branch Network, Recombine Attention, and Mamba-2 blocks, effectively capturing the long-range dependencies and multi-scale global context information of Complex Waterway Scene images. The experimental results on four benchmarks show that the proposed LDMNet significantly improves obstacle edge segmentation performance and outperforms existing methods across various performance metrics. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

22 pages, 5383 KiB  
Article
The Ecological Risks in Arid Zones from a Production–Living–Ecological Space Perspective: A Case Study of the Tuha Region in Xinjiang, China
by Weiting Yuan, Linyan Bai, Xiangwei Gao, Kefa Zhou, Yue Gao, Xiaozhen Zhou, Ziyun Qiu, Yanfei Kou, Zhihong Lv, Dequan Zhao and Qing Zhang
Remote Sens. 2024, 16(17), 3224; https://doi.org/10.3390/rs16173224 - 30 Aug 2024
Viewed by 506
Abstract
The ecological and environmental problems of arid zones have become an urgent global concern. Current research on ecological risk is based mainly on the dominant functions of land use, with a primary focus on land use landscape projections and less consideration of potential [...] Read more.
The ecological and environmental problems of arid zones have become an urgent global concern. Current research on ecological risk is based mainly on the dominant functions of land use, with a primary focus on land use landscape projections and less consideration of potential risks to ecosystems, system resilience and interactions between nature and future sustainable development. In this study, a potential–connectivity–resilience ecological risk assessment model based on the SDGs was constructed using multisource data to spatially quantify indicators at the grid scale in the Turpan and Hami regions of Xinjiang, China. This model was used as a basis for studying ecological risk in arid zones from a production–living–ecological space (PLES) perspective. The results revealed that, during the period 2000–2020, PLESs in the Turpan and Hami regions presented significant spatial similarity, with an increasing trend in overall risk. The production space in the Turpan and Hami regions showed a parabolic trend of increasing and then decreasing, whereas the living space and ecological space in the Hami region showed continuous linear upward trends. The state of ecological security in the Turpan and Hami regions is gradually deteriorating, and comprehensive ecological protection and restoration measures are urgently needed to rationally allocate the structure and layout of the production-–living-–ecological space. The study of ecological risk from a PLES perspective not only helps in fully understanding the development trend of the arid zone; it also provides new ideas and methods for evaluating regional ecological environmental safety and scientific references for formulating regional sustainable development, ecological risk prevention and control and the rational allocation of resources. Full article
Show Figures

Figure 1

12 pages, 1880 KiB  
Article
The Impacts of COVID-19 Lockdowns on Road Transport Air Pollution in London: A State-Space Modelling Approach
by Hajar Hajmohammadi and Hamid Salehi
Int. J. Environ. Res. Public Health 2024, 21(9), 1153; https://doi.org/10.3390/ijerph21091153 - 30 Aug 2024
Viewed by 338
Abstract
The emergence of the COVID-19 pandemic in 2020 led to the implementation of legal restrictions on individual activities, significantly impacting traffic and air pollution levels in urban areas. This study employs a state-space intervention method to investigate the effects of three major COVID-19 [...] Read more.
The emergence of the COVID-19 pandemic in 2020 led to the implementation of legal restrictions on individual activities, significantly impacting traffic and air pollution levels in urban areas. This study employs a state-space intervention method to investigate the effects of three major COVID-19 lockdowns in March 2020, November 2020, and January 2021 on London’s air quality. Data were collected from 20 monitoring stations across London (central, ultra-low emission zone, and greater London), with daily measurements of NOx, PM10, and PM2.5 for four years (January 2019–December 2022). Furthermore, the developed model was adjusted for seasonal effects, ambient temperature, and relative humidity. This study found significant reductions in the NOx levels during the first lockdown: 49% in central London, 33% in the ultra-low emission zone (ULEZ), and 37% in greater London. Although reductions in NOx were also observed during the second and third lockdowns, they were less than the first lockdown. In contrast, PM10 and PM2.5 increased by 12% and 1%, respectively, during the first lockdown, possibly due to higher residential energy consumption. However, during the second lockdown, PM10 and PM2.5 levels decreased by 11% and 13%, respectively, and remained unchanged during the third lockdown. These findings highlight the complex dynamics of urban air quality and underscore the need for targeted interventions to address specific pollution sources, particularly those related to road transport. The study provides valuable insights into the effectiveness of lockdown measures and informs future air quality management strategies. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

27 pages, 14789 KiB  
Article
RTCA-Net: A New Framework for Monitoring the Wear Condition of Aero Bearing with a Residual Temporal Network under Special Working Conditions and Its Interpretability
by Tongguang Yang, Xingyuan Huang, Yongjian Zhang, Jinglan Li, Xianwen Zhou and Qingkai Han
Mathematics 2024, 12(17), 2687; https://doi.org/10.3390/math12172687 - 29 Aug 2024
Viewed by 249
Abstract
The inter-shaft bearing is the core component of a high-pressure rotor support system of a high-thrust aero engine. One of the most challenging tasks for a PHM is monitoring its working condition. However, considering that in the bearing rotor system of a high-thrust [...] Read more.
The inter-shaft bearing is the core component of a high-pressure rotor support system of a high-thrust aero engine. One of the most challenging tasks for a PHM is monitoring its working condition. However, considering that in the bearing rotor system of a high-thrust aero engine bearings are prone to wear failure due to unbalanced or misaligned faults of the rotor system, especially in harsh environments, such as those at high operating loads and high rotation speeds, bearing wear can easily evolve into serious faults. Compared with aero engine fault diagnosis and RUL prediction, relatively little research has been conducted on bearing condition monitoring. In addition, considering how to evaluate future performance states with limited time series data is a key problem. At the same time, the current deep neural network model has the technical challenge of poor interpretability. In order to fill the above gaps, we developed a new framework of a residual space–time feature fusion focusing module named RTCA-Net, which focuses on solving the key problem. It is difficult to accurately monitor the wear state of aero engine inter-shaft bearings under special working conditions in practical engineering. Specifically, firstly, a residual space–time structure module was innovatively designed to capture the characteristic information of the metal dust signal effectively. Secondly, a feature-focusing module was designed. By adjusting the change in the weight coefficient during training, the RTCA-Net framework can select the more useful information for monitoring the wear condition of inter-shaft bearings. Finally, the experimental dataset of metal debris was verified and compared with seven other methods, such as the RTC-Net. The results showed that the proposed RTCA-Net framework has good generalization, superiority, and credibility. Full article
Show Figures

Figure 1

14 pages, 3386 KiB  
Article
Research on an Autonomous Localization Method for Trains Based on Pulse Observation in a Tunnel Environment
by Jianqiang Shi, Youpeng Zhang, Guangwu Chen and Yongbo Si
Sensors 2024, 24(17), 5556; https://doi.org/10.3390/s24175556 - 28 Aug 2024
Viewed by 188
Abstract
China’s rail transit system is developing rapidly, but achieving seamless high-precision localization of trains throughout the entire route in closed environments such as tunnels and culverts still faces significant challenges. Traditional localization technologies cannot meet current demands, and the present paper proposes an [...] Read more.
China’s rail transit system is developing rapidly, but achieving seamless high-precision localization of trains throughout the entire route in closed environments such as tunnels and culverts still faces significant challenges. Traditional localization technologies cannot meet current demands, and the present paper proposes an autonomous localization method for trains based on pulse observation in a tunnel environment. First, the Letts criterion is used to eliminate abnormal gyro data, the CEEMDAN method is employed for signal decomposition, and the decomposed signals are classified using the continuous mean square error and norm method. Noise reduction is performed using forward linear filtering and dynamic threshold filtering, respectively, maximizing the retention of its effective signal components. A SINS/OD integrated localization model is established, and an observation equation is constructed based on velocity matching, resulting in an 18-dimensional complex state space model. Finally, the EM algorithm is used to address Non-Line-Of-Sight and multipath effect errors. The optimized model is then applied in the Kalman filter to better adapt to the system’s observation conditions. By dynamically adjusting the noise covariance, the localization system can continue to maintain continuous high-precision position information output in a tunnel environment. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

23 pages, 16203 KiB  
Article
Predictive Models for Aggregate Available Capacity Prediction in Vehicle-to-Grid Applications
by Luca Patanè, Francesca Sapuppo, Giuseppe Napoli and Maria Gabriella Xibilia
J. Sens. Actuator Netw. 2024, 13(5), 49; https://doi.org/10.3390/jsan13050049 - 27 Aug 2024
Viewed by 357
Abstract
The integration of vehicle-to-grid (V2G) technology into smart energy management systems represents a significant advancement in the field of energy suppliers for Industry 4.0. V2G systems enable a bidirectional flow of energy between electric vehicles and the power grid and can provide ancillary [...] Read more.
The integration of vehicle-to-grid (V2G) technology into smart energy management systems represents a significant advancement in the field of energy suppliers for Industry 4.0. V2G systems enable a bidirectional flow of energy between electric vehicles and the power grid and can provide ancillary services to the grid, such as peak shaving, load balancing, and emergency power supply during power outages, grid faults, or periods of high demand. In this context, reliable prediction of the availability of V2G as an energy source in the grid is fundamental in order to optimize both grid stability and economic returns. This requires both an accurate modeling framework that includes the integration and pre-processing of readily accessible data and a prediction phase over different time horizons for the provision of different time-scale ancillary services. In this research, we propose and compare two data-driven predictive modeling approaches to demonstrate their suitability for dealing with quasi-periodic time series, including those dealing with mobility data, meteorological and calendrical information, and renewable energy generation. These approaches utilize publicly available vehicle tracking data within the floating car data paradigm, information about meteorological conditions, and fuzzy weekend and holiday information to predict the available aggregate capacity with high precision over different time horizons. Two data-driven predictive modeling approaches are then applied to the selected data, and the performance is compared. The first approach is Hankel dynamic mode decomposition with control (HDMDc), a linear state-space representation technique, and the second is long short-term memory (LSTM), a deep learning method based on recurrent nonlinear neural networks. In particular, HDMDc performs well on predictions up to a time horizon of 4 h, demonstrating its effectiveness in capturing global dynamics over an entire year of data, including weekends, holidays, and different meteorological conditions. This capability, along with its state-space representation, enables the extraction of relationships among exogenous inputs and target variables. Consequently, HDMDc is applicable to V2G integration in complex environments such as smart grids, which include various energy suppliers, renewable energy sources, buildings, and mobility data. Full article
(This article belongs to the Special Issue Fault Diagnosis in the Internet of Things Applications)
Show Figures

Figure 1

18 pages, 6989 KiB  
Article
Pre-Compensation Strategy for Tracking Error and Contour Error by Using Friction and Cross-Coupled Control
by Minghao Liu, Yongmin Zhu, Hongliang Xu, Weirui Liu, Hui Yang and Xingjun Gao
Machines 2024, 12(9), 593; https://doi.org/10.3390/machines12090593 - 26 Aug 2024
Viewed by 287
Abstract
This paper focuses on improving the tracking accuracy for servo systems and increasing the contouring performance of precision machining. The dynamic friction during precision machining is analyzed using the LuGre model. The dynamic and static parameters in the friction model are efficiently and [...] Read more.
This paper focuses on improving the tracking accuracy for servo systems and increasing the contouring performance of precision machining. The dynamic friction during precision machining is analyzed using the LuGre model. The dynamic and static parameters in the friction model are efficiently and accurately identified using the improved Drosophila swarm algorithm based on cross-mutation. The friction tracking error can be deduced from the friction state space and an expression is derived. To compensate for the tracking error caused by friction, a feedforward compensation control is designed to avoid signal lag in traditional friction controllers. Furthermore, the factors of multi-axis parameter mismatching that impact the machining profile accuracy are analyzed for multi-axis control. An adaptive cross-coupled control-based pre-compensation strategy of contour error is designed to reduce both the tracking error and the contour error. The effectiveness of the proposed method is validated through several experiments, which demonstrate a remarkable improvement in tracking performance and contour accuracy. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

20 pages, 4526 KiB  
Article
Enhanced Safety in Autonomous Driving: Integrating a Latent State Diffusion Model for End-to-End Navigation
by De-Tian Chu, Lin-Yuan Bai, Jia-Nuo Huang, Zhen-Long Fang, Peng Zhang, Wei Kang and Hai-Feng Ling
Sensors 2024, 24(17), 5514; https://doi.org/10.3390/s24175514 - 26 Aug 2024
Viewed by 380
Abstract
Ensuring safety in autonomous driving is crucial for effective motion planning and navigation. However, most end-to-end planning methodologies lack sufficient safety measures. This study tackles this issue by formulating the control optimization problem in autonomous driving as Constrained Markov Decision Processes (CMDPs). We [...] Read more.
Ensuring safety in autonomous driving is crucial for effective motion planning and navigation. However, most end-to-end planning methodologies lack sufficient safety measures. This study tackles this issue by formulating the control optimization problem in autonomous driving as Constrained Markov Decision Processes (CMDPs). We introduce an innovative, model-based approach for policy optimization, employing a conditional Value-at-Risk (VaR)-based soft actor-critic (SAC) to handle constraints in complex, high-dimensional state spaces. Our method features a worst-case actor to ensure strict compliance with safety requirements, even in unpredictable scenarios. The policy optimization leverages the augmented Lagrangian method and leverages latent diffusion models to forecast and simulate future trajectories. This dual strategy ensures safe navigation through environments and enhances policy performance by incorporating distribution modeling to address environmental uncertainties. Empirical evaluations conducted in both simulated and real environments demonstrate that our approach surpasses existing methods in terms of safety, efficiency, and decision-making capabilities. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

14 pages, 2577 KiB  
Article
xLSTMTime: Long-Term Time Series Forecasting with xLSTM
by Musleh Alharthi and Ausif Mahmood
AI 2024, 5(3), 1482-1495; https://doi.org/10.3390/ai5030071 - 23 Aug 2024
Viewed by 359
Abstract
In recent years, transformer-based models have gained prominence in multivariate long-term time series forecasting (LTSF), demonstrating significant advancements despite facing challenges such as high computational demands, difficulty in capturing temporal dynamics, and managing long-term dependencies. The emergence of LTSF-Linear, with its straightforward linear [...] Read more.
In recent years, transformer-based models have gained prominence in multivariate long-term time series forecasting (LTSF), demonstrating significant advancements despite facing challenges such as high computational demands, difficulty in capturing temporal dynamics, and managing long-term dependencies. The emergence of LTSF-Linear, with its straightforward linear architecture, has notably outperformed transformer-based counterparts, prompting a reevaluation of the transformer’s utility in time series forecasting. In response, this paper presents an adaptation of a recent architecture, termed extended LSTM (xLSTM), for LTSF. xLSTM incorporates exponential gating and a revised memory structure with higher capacity that has good potential for LTSF. Our adopted architecture for LTSF, termed xLSTMTime, surpasses current approaches. We compare xLSTMTime’s performance against various state-of-the-art models across multiple real-world datasets, demonstrating superior forecasting capabilities. Our findings suggest that refined recurrent architectures can offer competitive alternatives to transformer-based models in LTSF tasks, potentially redefining the landscape of time series forecasting. Full article
Show Figures

Figure 1

23 pages, 4137 KiB  
Article
Mars Exploration: Research on Goal-Driven Hierarchical DQN Autonomous Scene Exploration Algorithm
by Zhiguo Zhou, Ying Chen, Jiabao Yu, Bowen Zu, Qian Wang, Xuehua Zhou and Junwei Duan
Aerospace 2024, 11(8), 692; https://doi.org/10.3390/aerospace11080692 - 22 Aug 2024
Viewed by 387
Abstract
In the non-deterministic, large-scale navigation environment under the Mars exploration mission, there is a large space for action and many environmental states. Traditional reinforcement learning algorithms that can only obtain rewards at target points and obstacles will encounter the problems of reward sparsity [...] Read more.
In the non-deterministic, large-scale navigation environment under the Mars exploration mission, there is a large space for action and many environmental states. Traditional reinforcement learning algorithms that can only obtain rewards at target points and obstacles will encounter the problems of reward sparsity and dimension explosion, making the training speed too slow or even impossible. This work proposes a deep layered learning algorithm based on the goal-driven layered deep Q-network (GDH-DQN), which is more suitable for mobile robots to explore, navigate, and avoid obstacles without a map. The algorithm model is designed in two layers. The lower layer provides behavioral strategies to achieve short-term goals, and the upper layer provides selection strategies for multiple short-term goals. Use known position nodes as short-term goals to guide the mobile robot forward and achieve long-term obstacle avoidance goals. Hierarchical execution not only simplifies tasks but also effectively solves the problems of reward sparsity and dimensionality explosion. In addition, each layer of the algorithm integrates a Hindsight Experience Replay mechanism to improve performance, make full use of the goal-driven function of the node, and effectively avoid the possibility of misleading the agent by complex processes and reward function design blind spots. The agent adjusts the number of model layers according to the number of short-term goals, further improving the efficiency and adaptability of the algorithm. Experimental results show that, compared with the hierarchical DQN method, the navigation success rate of the GDH-DQN algorithm is significantly improved, and it is more suitable for unknown scenarios such as Mars exploration. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

Back to TopTop