Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (17,466)

Search Parameters:
Keywords = sodium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3011 KiB  
Review
Sodium Chloride Cotransporter in Hypertension
by Annalisa Castagna, Gabriele Mango, Nicola Martinelli, Luigi Marzano, Sara Moruzzi, Simonetta Friso and Francesca Pizzolo
Biomedicines 2024, 12(11), 2580; https://doi.org/10.3390/biomedicines12112580 - 11 Nov 2024
Abstract
The sodium chloride cotransporter (NCC) is essential for electrolyte balance, blood pressure regulation, and pathophysiology of hypertension as it mediates the reabsorption of ultrafiltered sodium in the renal distal convoluted tubule. Given its pivotal role in the maintenance of extracellular fluid volume, the [...] Read more.
The sodium chloride cotransporter (NCC) is essential for electrolyte balance, blood pressure regulation, and pathophysiology of hypertension as it mediates the reabsorption of ultrafiltered sodium in the renal distal convoluted tubule. Given its pivotal role in the maintenance of extracellular fluid volume, the NCC is regulated by a complex network of cellular pathways, which eventually results in either its phosphorylation, enhancing sodium and chloride ion absorption from urines, or dephosphorylation and ubiquitination, which conversely decrease NCC activity. Several factors could influence NCC function, including genetic alterations, hormonal stimuli, and pharmacological treatments. The NCC’s central role is also highlighted by several abnormalities resulting from genetic mutations in its gene and consequently in its structure, leading to dysregulation of blood pressure control. In the last decade, among other improvements, the acquisition of knowledge on the NCC and other renal ion channels has been favored by studies on extracellular vesicles (EVs). Dietary sodium and potassium intake are also implicated in the tuning of NCC activity. In this narrative review, we present the main cornerstones and recent evidence related to NCC control, focusing on the context of blood pressure pathophysiology, and promising new therapeutical approaches. Full article
Show Figures

Figure 1

23 pages, 2994 KiB  
Article
Intraperitoneal Administration of S100A8 Ameliorates Experimental Acute Colitis in Rats
by Kano Matsuo, Masaki Ikemoto and Kohki Okada
Biology 2024, 13(11), 916; https://doi.org/10.3390/biology13110916 (registering DOI) - 11 Nov 2024
Abstract
S100A8 is a protein that is abundant in neutrophils and macrophages (MΦ), but its role in inflammation remains unclear. This study aimed to assess the immunological role(s) of S100A8 in acute intestinal inflammation in rats and its role in MΦ. Rat recombinant S100A8 [...] Read more.
S100A8 is a protein that is abundant in neutrophils and macrophages (MΦ), but its role in inflammation remains unclear. This study aimed to assess the immunological role(s) of S100A8 in acute intestinal inflammation in rats and its role in MΦ. Rat recombinant S100A8 (rr-S100A8, 1.0 mg/kg) was intraperitoneally administered daily to rats with 3% dextran sulfate sodium (DSS) (DSS + A8 group)-induced experimental acute colitis. The histological severity score (6.50 ± 0.51, p = 0.038) in the DSS + A8 group rats remained lower than that (9.75 ± 1.48) of the rats without S100A8 (DSS group) administration. The tumor necrosis factor-alpha (TNF-α) production in the colon tissues of the rats in the DSS + A8 group (4.76 ± 0.90 pg/mL/g, p = 0.042) was significantly suppressed, compared with that of the DSS group (10.45 ± 2.04 pg/mL/g). To stimulate rat peritoneal MΦ, rr-S100A8, the anti-rat S100A8 antibody, and a lipopolysaccharide (LPS) were used in the in vitro experiments. In the MΦ stimulated with rr-S100A8 for 2 h, the mRNA level of intracellular S100A8 (47.41 ± 24.44, p = 0.002) increased in an autocrine manner, whereas that of S100A9 (0.24 ± 0.43, p = 0.782) was not significant. The TNF-α mRNA level in the MΦ treated with LPS and the anti-rat S100A8 antibody significantly increased (102.26 ± 18.60, p = 0.001) compared to that with LPS alone (16.9 ± 8.56). These results indicate that S100A8 can serve as an anti-inflammatory protein in acute inflammation by negatively regulating S100A9 and TNF-α production through inflammatory signaling pathways in MΦ. Full article
(This article belongs to the Section Medical Biology)
35 pages, 7085 KiB  
Article
Developing and Characterizing a Biocompatible Hydrogel Obtained by Cross-Linking Gelatin with Oxidized Sodium Alginate for Potential Biomedical Applications
by Chahrazed Mahmoudi, Naïma Tahraoui Douma, Hacene Mahmoudi, Camelia Elena Iurciuc (Tincu), Marcel Popa, Mihaela Hamcerencu and Călin Vasile Andrițoiu
Polymers 2024, 16(22), 3143; https://doi.org/10.3390/polym16223143 - 11 Nov 2024
Abstract
The main goal of this research was to create biocompatible hydrogels using gelatin and a double cross-linking technique involving both covalent and ionic bonds to immobilize propolis. The covalent bonds were formed through Schiff base cross-links between protein-free amino groups (NH2) [...] Read more.
The main goal of this research was to create biocompatible hydrogels using gelatin and a double cross-linking technique involving both covalent and ionic bonds to immobilize propolis. The covalent bonds were formed through Schiff base cross-links between protein-free amino groups (NH2) from the lysine residue and aldehyde groups (CHO) produced by oxidizing sodium alginate with NaIO4, while the ionic bonds were achieved using Mg2+ ions. Hydrogel films were obtained by varying the molar ratios of –CHO/–NH2 under different pH conditions (3.5 and 5.5). The presence of aldehyde groups in the oxidized sodium alginate (OSA) was confirmed using FTIR and NMR spectroscopy. The oxidation degree was monitored over 48 h, and the influence of temperature was examined. Results showed that higher –CHO/–NH2 molar ratios led to increased conversion index values of NH2 groups, and a decrease in swelling degree values was observed in mediums with pH values of 5.5 and 7.4. The encapsulation and release efficiency of propolis decreased with an increase in the hydrogel cross-linking degree. UV irradiation enhanced the antioxidant activity of both free and encapsulated propolis. These findings offer valuable insights for the biomedical and pharmaceutical fields into designing biocompatible hydrogels for propolis immobilization, with potential for controlled release. Full article
(This article belongs to the Section Polymer Networks)
Show Figures

Figure 1

13 pages, 3308 KiB  
Article
Metal Acetate-Enhanced Microwave Pyrolysis of Waste Textiles for Efficient Syngas Production
by Bo Zhang, Lei Wu, Fei Li, Wuwan Xiong, Peiyu Yao, Yang Zhang and Xiang Li
Processes 2024, 12(11), 2505; https://doi.org/10.3390/pr12112505 - 11 Nov 2024
Abstract
The production of waste textiles has increased rapidly in the past two decades along with the rapid development of the economy, the majority of which has been either landfilled or incinerated, resulting in energy loss and environmental pollution. Microwave pyrolysis, which can transform [...] Read more.
The production of waste textiles has increased rapidly in the past two decades along with the rapid development of the economy, the majority of which has been either landfilled or incinerated, resulting in energy loss and environmental pollution. Microwave pyrolysis, which can transform heterogeneous and complex waste feedstocks into value-added products, is considered one of the most competitive technologies for processing waste textiles. However, achieving selective product formation during the microwave pyrolysis of waste textiles remains a significant challenge. Herein, sodium acetate, potassium acetate, and nickel acetate were introduced into waste textiles through an impregnation method as raw materials to improve the pyrolysis efficiency. The optimized process parameters indicated that nickel acetate had the most favorable promotional effect of the three acetates. Notably, the waste textiles containing 1.0% Ni exhibited the highest gas production rate, with the hydrogen-containing combustible gas reaching 81.1% and 61.0%, respectively. Using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy to characterize the waste textiles before and after pyrolysis, it was found that nickel acetate was converted into metallic nickel (Ni0) during microwave pyrolysis. This active site significantly enhanced the pyrolysis process, and as the gas yield increased, the disorder of the resulting pyrolytic carbon also rose. The proposed Ni0-enhanced microwave pyrolysis mediated by nickel acetate offers a novel method for the efficient disposal and simultaneous resource recovery of waste textiles. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

30 pages, 3612 KiB  
Article
Edible Alginate–Lecithin Films Enriched with Different Coffee Bean Extracts: Formulation, Non-Cytotoxic, Anti-Inflammatory and Antimicrobial Properties
by Robert Socha, Aleksandra Such, Anna Wisła-Świder, Lesław Juszczak, Ewelina Nowak, Karol Bulski, Krzysztof Frączek, Ivo Doskocil, Barbora Lampova and Aneta Koronowicz
Int. J. Mol. Sci. 2024, 25(22), 12093; https://doi.org/10.3390/ijms252212093 - 11 Nov 2024
Viewed by 36
Abstract
The aim of this study was to analyze the functional properties of newly obtained films based on sodium alginate and lecithin with the addition of antioxidant-rich coffee extracts and to verify their potential as safe edible food packaging materials. In our study, we [...] Read more.
The aim of this study was to analyze the functional properties of newly obtained films based on sodium alginate and lecithin with the addition of antioxidant-rich coffee extracts and to verify their potential as safe edible food packaging materials. In our study, we developed alginate–lecithin films enriched with green or roasted coffee bean extracts. The roasting process of coffee beans had a significant impact on the total phenolic content (TPC) in the studied extracts. The highest value of TPC (2697.2 mg GAE/dm3), as well as antioxidant activity (AA) (17.6 mM T/dm3), was observed for the extract of light-roasted coffee beans. Films with the addition of medium-roasted coffee extracts and baseline films had the highest tensile strength (21.21 ± 0.73 N). The addition of coffee extract improved the barrier properties of the films against UV light with a decrease in the transmittance values (200–400 nm), regardless of the type of extract added. Studies on Caco-2, HepG2 and BJ cells showed that digestated films were non-cytotoxic materials (100–0.1 μg/cm3) and had no negative effect on cell viability; an increase was noted for all cell lines, the highest after 48 h in a dose of 1 μg/cm3 for a film with medium-roasted coffee (194.43 ± 38.30) for Caco-2. The tested films at 20% digestate concentrations demonstrated the ability to reduce nitric oxide (NO) production in the RAW264.7 cell line by 25 to 60% compared to the control. Each of the tested films with coffee extracts had growth inhibitory properties towards selected species of bacteria. Full article
Show Figures

Figure 1

16 pages, 2378 KiB  
Article
Adjuvants for Drone-Based Aerial Chemical Applications to Mitigate Off-Target Drift
by Narayanan Kannan, Daniel Martin, Rajani Srinivasan and Weiqiang Zhang
Drones 2024, 8(11), 667; https://doi.org/10.3390/drones8110667 - 11 Nov 2024
Viewed by 113
Abstract
Off-target drift from aerial pesticide applications in croplands can be a major source of pesticide exposure to pollinators. Pesticide adjuvants (PAs) are added to pesticides but can be as toxic as pesticides’ active ingredients. Ongoing experiments have identified sodium alginate (SA) as a [...] Read more.
Off-target drift from aerial pesticide applications in croplands can be a major source of pesticide exposure to pollinators. Pesticide adjuvants (PAs) are added to pesticides but can be as toxic as pesticides’ active ingredients. Ongoing experiments have identified sodium alginate (SA) as a drift-reducing PA less toxic to honeybees. Hence, SA and fenugreek polymer (FP) have been tested as drift-reducing PAs for aerial applications using the Remotely Piloted Aerial Application System (RPAAS). Two spray experiments were carried out in the field: (i) water only (W) and (ii) water and adjuvant (WA). Droplet spectrum and on-target coverage were collected using a VisiSize P15 image analyzer and kromekote cards, respectively. The drift reduction potentials (DRPs) of the adjuvants were analyzed based on droplet size (diameters of 10%, 50%, and 90% volume) and the proportion of driftable volume with droplets < 200 µm. Compared to the W only, the W-A treatment produced larger droplets, suggesting the presence of DRP. There were 14.5%, 8.3% to 14.4%, and 2.3% to 7.7% driftable fines in the W, WA (SA), and WA (FP) treatments, respectively. The FP treatment improved the on-target coverage (3.0% to 3.1%) compared to water (2.7%). Our results indicate that SA and FP have the potential to mitigate off-target drift and protect pollinator health. Full article
(This article belongs to the Section Drones in Agriculture and Forestry)
Show Figures

Figure 1

25 pages, 4332 KiB  
Article
Development and Characterization of Sodium Bicarbonate-Based Gel for Cytolytic Vaginosis
by Carlos Gaspar, Ana Sofia Agonia, Sara Felício, Mariana Tomás, Diana Esteves, Rita Palmeira-de-Oliveira, Gilbert G. G. Donders, José Martinez-de-Oliveira and Ana Palmeira-de-Oliveira
Pharmaceutics 2024, 16(11), 1436; https://doi.org/10.3390/pharmaceutics16111436 - 11 Nov 2024
Viewed by 130
Abstract
Background/Objectives: Cytolytic vaginosis or, classically, Doderlein’s cytolysis is characterized by significant growth of species of the Lactobacillus genus, which leads to high amounts of lactic acid in the vaginal environment. Lactobacillus crispatus has been proposed as a key pathogen in this clinical condition. [...] Read more.
Background/Objectives: Cytolytic vaginosis or, classically, Doderlein’s cytolysis is characterized by significant growth of species of the Lactobacillus genus, which leads to high amounts of lactic acid in the vaginal environment. Lactobacillus crispatus has been proposed as a key pathogen in this clinical condition. The symptomatology of cytolytic vaginosis is commonly confused with that of vulvovaginal candidosis, leading to inadequate and ineffective azole therapies. Nevertheless, historically, the use of sodium bicarbonate intimate baths was an effective way to reduce the symptoms of cytolytic vaginosis. Methods: In this study, four HPMC gel prototypes were developed, containing sodium bicarbonate concentrations ranging from 4% to 7% (w/w). These gels were evaluated for their physicochemical properties, antimicrobial activity, interference with lactobacilli adhering to cells, and cellular and tissue biocompatibility. Results: The gels presented pH values of around 9.0, and osmolality between 706 mOsm/kg (F4) and 1065 mOsm/kg (F7). The viscosity upon heating to physiologic temperature and dilution with simulated vaginal fluid was highly affected by the concentration of sodium bicarbonate. Gels with higher sodium bicarbonate concentrations (F6 and F7) were not shown to be stable in these conditions. All formulations exhibited effective antimicrobial activity against seven L. crispatus strains, with MIC values ranging from 6.25% to 25% (v/v) in terms of dilution. Additionally, the 4% (w/w) gel significantly interfered with the adhesion of L. crispatus to epithelial cells in competition and exclusion assays, reducing adhesion by more than 90% in relation to the control. Cytotoxicity tests on the Hec-1A, HeLa, and VK2/E6E7 cell lines indicated that the F4 and F5 gels demonstrated lower cytotoxicity levels compared to those with higher concentrations. Furthermore, ex vivo assays using porcine vaginal tissue confirmed that the 4% gel was non-toxic at a 25% (v/v) dilution. Conclusions: Based on these results, the 4% (w/w) sodium bicarbonate gel (F4) emerges as a promising therapeutic option for cytolytic vaginosis, offering effective bacterial interference, favourable physicochemical properties, and biocompatibility suitable for vaginal application. Full article
Show Figures

Figure 1

13 pages, 3087 KiB  
Article
Mixed Adsorption Mono- and Multilayers of ß-Lactoglobulin Fibrils and Sodium Polystyrene Sulfonate
by A. G. Bykov, G. Loglio, R. Miller, E. A. Tsyganov, Z. Wan and B. A. Noskov
Colloids Interfaces 2024, 8(6), 61; https://doi.org/10.3390/colloids8060061 - 11 Nov 2024
Viewed by 126
Abstract
The formation of beta-lactoglobulin (BLG)/sodium polystyrene sulfonate (PSS) complexes decelerates the change in the surface properties of the mixed solutions with the surface age and increases the steady-state dilational surface elasticity in a narrow PSS concentration range. At the same time, the changes [...] Read more.
The formation of beta-lactoglobulin (BLG)/sodium polystyrene sulfonate (PSS) complexes decelerates the change in the surface properties of the mixed solutions with the surface age and increases the steady-state dilational surface elasticity in a narrow PSS concentration range. At the same time, the changes in the surface properties are accelerated in the dispersions of BLG fibrils with and without PSS due to the influence of small peptides coexisting with fibrils. A decrease in the peptide concentration as a result of the dispersion purification leads to slower changes in the surface properties at low PSS concentrations. The increase in the polyelectrolyte concentration results in an increase in the steady-state surface elasticity due to the fibril/PSS complex formation and in very slow changes in the surface properties if the polyelectrolyte exceeds a certain critical value. The latter effect is a consequence of the formation of large aggregates and of an increase in the electrostatic adsorption barrier. The consecutive adsorption of BLG fibrils and PSS leads to the formation of regular multilayers at the liquid–gas interface. The multilayer properties change noticeably with an increase in the number of layers from four to six in agreement with previous results on the multilayers of PSS with an oppositely charged synthetic polyelectrolyte, presumably due to the heterogeneity of the first PSS layer. The dynamic elasticity of the multilayers approaches 250 mN/m, indicating that they can effectively stabilize foams and emulsions. Full article
Show Figures

Figure 1

10 pages, 3000 KiB  
Article
Polymerization of Sodium 4-Styrenesulfonate Inside Filter Paper via Dielectric Barrier Discharge Plasma
by Samira Amiri Khoshkar Vandani, Lian Farhadian, Alex Pennycuick and Hai-Feng Ji
Plasma 2024, 7(4), 867-876; https://doi.org/10.3390/plasma7040047 (registering DOI) - 11 Nov 2024
Viewed by 136
Abstract
This work explores the polymerization of sodium 4-styrenesulfonate (NaSS) inside filter paper using dielectric barrier discharge (DBD) plasma and its application in the environmental field. The plasma-based technique, performed under mild conditions, solves common problems associated with conventional polymerization inside porous materials. The [...] Read more.
This work explores the polymerization of sodium 4-styrenesulfonate (NaSS) inside filter paper using dielectric barrier discharge (DBD) plasma and its application in the environmental field. The plasma-based technique, performed under mild conditions, solves common problems associated with conventional polymerization inside porous materials. The polymerization process was monitored using Fourier-transform infrared (FTIR) spectroscopy, which confirmed the consumption of double bonds, particularly in NaSS samples containing the optimal concentration of crosslinker divinyl benzene (DVB) (0.25% wt). Our work demonstrates the effectiveness and promise of DBD plasma as a substitute polymerization approach, especially for those in porous materials. Full article
(This article belongs to the Special Issue Dielectric Barrier Discharges 2024)
Show Figures

Graphical abstract

19 pages, 7466 KiB  
Article
Study on Flame Retardancy of Cotton Fabric Modified by Sulfonic Groups Chelated with Ba2+
by Lingling Guo, Hongqin Lin, Zhenming Qi, Jiang Pan, Haiyan Mao, Chunmei Huang, Guoqiang Li and Chunxia Wang
Molecules 2024, 29(22), 5306; https://doi.org/10.3390/molecules29225306 - 10 Nov 2024
Viewed by 461
Abstract
A simple and innovative method was introduced for the production of green and recoverable flame-retardant cotton fabrics, where sulfonated cotton fabric (COT-SC) was synthesized by oxidizing cotton fabric with sodium periodate, followed by a sulfonation step with sodium bisulfite to provide active sites, [...] Read more.
A simple and innovative method was introduced for the production of green and recoverable flame-retardant cotton fabrics, where sulfonated cotton fabric (COT-SC) was synthesized by oxidizing cotton fabric with sodium periodate, followed by a sulfonation step with sodium bisulfite to provide active sites, which further chelated barium ions (Ba2+) to achieve flame retardancy. The morphological and structural characterizations of the fabricated cotton fabrics (COT-SC-Ba) demonstrated that the cleavage of C2-C3 free hydroxy groups within the cellulose macromolecule was chemically modified for grafting a considerable number of sulfonic acid groups, and Ba2+ ions were effectively immobilized on the macromolecule of the cotton fabric through a chelation effect. Results from cone calorimeter tests (CCTs) revealed that COT-SC-Ba became nonflammable, displayed a delayed ignition time, and decreased the values of the heat release rate (HRR), total smoke release (TSR), effective heat of combustion (EHC), and CO/CO2 ratio. TG/DTG analysis demonstrated that COT-SC-Ba possessed greater thermal stability, fewer flammable volatiles, and more of a char layer during burning than that of the original cotton fabric. Its residual mass was increased from 0.02% to 26.9% in air and from 8.05% to 26.76% in N2, respectively. The COT-SC-Ba not only possessed a limiting oxygen index (LOI) of up to 34.4% but could also undergo vertical burning tests evidenced by results such as the non-afterflame, non-afterglow, and a mere 75 mm char length. Those results demonstrated that the combination of SO3 and Ba2+ promoted the formation of a char layer. Moreover, cotton fabric regained its superior flame retardancy after being washed and re-chelated with Ba2+. Additional characteristics of the cotton fabric, such as the rupture strength, white degree, and hygroscopicity, were maintained at an acceptable level. In conclusion, this research can offer a fresh perspective on the design and development of straightforward, efficient, eco-friendly, and recoverable fire-retardant fabrics. Full article
Show Figures

Figure 1

19 pages, 8091 KiB  
Article
The Role of Freeze-Drying as a Multifunctional Process in Improving the Properties of Hydrogels for Medical Use
by Kacper Odziomek, Anna K. Drabczyk, Paulina Kościelniak, Patryk Konieczny, Mateusz Barczewski and Katarzyna Bialik-Wąs
Pharmaceuticals 2024, 17(11), 1512; https://doi.org/10.3390/ph17111512 - 10 Nov 2024
Viewed by 285
Abstract
Background/Objectives: Freeze-drying is a dehydration method that extends the shelf life and stability of drugs, vaccines, and biologics. Recently, its role has expanded beyond preservation to improve novel pharmaceuticals and their carriers, such as hydrogels, which are widely studied for both drug delivery [...] Read more.
Background/Objectives: Freeze-drying is a dehydration method that extends the shelf life and stability of drugs, vaccines, and biologics. Recently, its role has expanded beyond preservation to improve novel pharmaceuticals and their carriers, such as hydrogels, which are widely studied for both drug delivery and wound healing. The main aim of this study was to explore the multifunctional role of freeze-drying in improving the physicochemical properties of sodium alginate/poly(vinyl alcohol)-based hydrogels for medical applications. Methods: The base matrix and hydrogels containing a nanocarrier-drug system, were prepared by chemical cross-linking and then freeze-dried for 24 h at −53 °C under 0.2 mBa. Key analyses included determination of gel fraction, swelling ratio, FT-IR, SEM, TG/DTG, in vitro drug release and kinetics, and cytotoxicity assessment. Results: Freeze-drying caused an increase in the gel fraction of the hydrogel with the dual drug delivery system from 55 ± 1.6% to 72 ± 0.5%. Swelling ability was pH-dependent and remained in the same range (175–282%). Thermogravimetric analysis showed that freeze-dried hydrogels exhibited higher thermal stability than their non-freeze-dried equivalents. The temperature at 10% weight loss increased from 194.0 °C to 198.9 °C for the freeze-dried drug-loaded matrix, and from 188.4 °C to 203.1 °C for the freeze-dried drug-free matrix. The average pore size of the freeze-dried hydrogels was in the range of 1.07 µm ± 0.54 to 1.74 µm ± 0.92. In vitro drug release revealed that active substances were released in a controlled and prolonged way, according to the Korsmeyer–Peppas model. The cumulative amount of salicylic acid released at pH = 9.0 after 96 h was 63%, while that of fluocinolone acetonide reached 73%. Both hydrogels were non-toxic to human fibroblast cells, maintaining over 90% cell viability after 48 h of incubation. Conclusions: The results show a high potential for commercialisation of the obtained hydrogels as medical dressings. Full article
(This article belongs to the Special Issue Progress of Hydrogel Applications in Novel Drug Delivery Platforms)
Show Figures

Figure 1

21 pages, 2519 KiB  
Article
Sustainable Wheat Cultivation in Sandy Soils: Impact of Organic and Biofertilizer Use on Soil Health and Crop Yield
by Ibrahim El-Akhdar, Mahmoud M. A. Shabana, Nagwa M. M. El-Khateeb, Nevien Elhawat and Tarek Alshaal
Plants 2024, 13(22), 3156; https://doi.org/10.3390/plants13223156 - 10 Nov 2024
Viewed by 249
Abstract
Sandy soils are widespread globally and are increasingly utilized to meet the demands of a growing population and urbanization for food, fiber, energy, and other essential services. However, their poor water and nutrient retention makes crop cultivation challenging. This study evaluated the effects [...] Read more.
Sandy soils are widespread globally and are increasingly utilized to meet the demands of a growing population and urbanization for food, fiber, energy, and other essential services. However, their poor water and nutrient retention makes crop cultivation challenging. This study evaluated the effects of integrating compost and plant growth-promoting rhizobacteria (PGPR; Azospirillum brasilense SWERI 111 and Azotobacter chroococcum OR512393) on wheat (Triticum aestivum L. var. Misr 1) grown in sandy soil under varying levels of recommended NPK (50%, 75%, and 100%) fertilization. Conducted over two growing seasons, the experiment aimed to assess soil health, nutrient uptake, microbial activity, and plant productivity in response to compost and PGPR treatments. The results demonstrated that combining compost and PGPR significantly improved soil chemical properties, such as reducing soil pH, electrical conductivity (ECe), and sodium adsorption ratio (SAR), while enhancing soil organic matter (SOM). Additionally, compost and PGPR improved soil nutrient content (N, P, K) and boosted the total bacterial and fungal counts. The combined treatment also increased urease and phosphatase enzyme activities, contributing to enhanced nutrient availability. Notably, plant productivity was enhanced with compost and PGPR, reflected by increased chlorophyll and reduced proline content, along with improved grain and straw yields. Overall, the results underscore the potential of compost and PGPR as effective, sustainable soil amendments to support wheat growth under varying NPK levels. Full article
(This article belongs to the Special Issue Plant-Soil Interaction Response to Global Change—2nd Edition)
Show Figures

Figure 1

13 pages, 897 KiB  
Article
Controlled Coffee Intake Enhances Erythrocyte Deformability, Na,K-ATPase Activity, and GSH/GSSG Ratio in Healthy Young Adults
by Dominika Radosinska, Tomas Jasenovec, Alzbeta Golianova, Ivan Szadvari, Rastislav Vazan, Ivona Kovacicova, Denisa Snurikova, Norbert Vrbjar and Jana Radosinska
Biomedicines 2024, 12(11), 2570; https://doi.org/10.3390/biomedicines12112570 - 9 Nov 2024
Viewed by 396
Abstract
Background: Published studies suggest that regular coffee consumption may reduce the risk of various diseases. However, many of these studies relied on questionnaire-based data, limiting their ability to identify the specific biological mechanisms behind the observed effects. This study focuses on controlled coffee [...] Read more.
Background: Published studies suggest that regular coffee consumption may reduce the risk of various diseases. However, many of these studies relied on questionnaire-based data, limiting their ability to identify the specific biological mechanisms behind the observed effects. This study focuses on controlled coffee consumption among healthy young adults to clarify its effects on erythrocyte properties. The functional condition of erythrocytes is important as it affects both macro- and microcirculation. Additionally, since erythrocytes are not true cells, they are particularly sensitive to biochemical and biophysical changes when exposed to biologically active substances. Methods: After a washout period, 33 healthy young volunteers were asked to consume a standardized dose of a coffee beverage daily for 3 weeks. Basic hematological and body composition parameters were recorded before and after the intervention. Erythrocyte functional status was evaluated based on the following measurements: deformability, osmotic resistance, Na,K-ATPase activity, and nitric oxide production, along with monitoring oxidative stress markers. Results: After a coffee consumption period, both erythrocyte count and hematocrit value increased, while body composition remained unchanged. Erythrocyte deformability improved across a range of shear stress values typical of human circulation. This improvement was accompanied with enhanced Na,K-ATPase activity in erythrocyte membranes in the wide range of sodium ion concentrations, as well as increased nitric oxide production by erythrocytes. Additionally, a higher GSH/GSSG ratio, indicating a shift towards a more favorable antioxidant balance, was observed in erythrocytes following the coffee intake period. Conclusions: The results of this study suggest that controlled coffee intake in healthy young adults can positively influence various indices of erythrocyte functional status. Although the observed statistically significant changes were modest, the findings consistently indicate a positive modulation of erythrocyte properties—cell deformability, oxidative resilience, and active membrane transport of cations—following coffee consumption. Full article
(This article belongs to the Special Issue Microcirculation in Health and Diseases)
Show Figures

Figure 1

14 pages, 8379 KiB  
Article
Effects of Mechanized Irrigation Protocols on Endodontic Obturation Using Calcium Silicate-Based Sealer
by Lucas David Galvani, Antonia Patricia Oliveira Barros, Joatan Lucas de Sousa Gomes Costa, Eliane Cristina Gulin de Oliveira, Ester Alves Ferreira Bordini, Luís Geraldo Vaz and Milton Carlos Kuga
Appl. Sci. 2024, 14(22), 10317; https://doi.org/10.3390/app142210317 - 9 Nov 2024
Viewed by 452
Abstract
The aim of this study was to evaluate the effects of mechanized final irrigation protocols (XPE, XP-Endo Finisher; XPC, XP-Clean; and ECL, Easy Clean) compared to PUI (passive ultrasonic irrigation) on the debris incidence and open dentinal tubules, and their effects on the [...] Read more.
The aim of this study was to evaluate the effects of mechanized final irrigation protocols (XPE, XP-Endo Finisher; XPC, XP-Clean; and ECL, Easy Clean) compared to PUI (passive ultrasonic irrigation) on the debris incidence and open dentinal tubules, and their effects on the adhesion interface after 48 h and 6 months. One hundred twenty maxillary central incisors were submitted to chemical–mechanical preparation using a rotary instrument and 2.5% sodium hypochlorite. Specimens were distributed in 4 groups (n = 30) in accordance with the mechanized final irrigation protocol: XPE, XPC, ECL, or PUI. Forty specimens (n = 10/group) were submitted to SEM analysis to evaluate the residue incidence and dentin open tubules. The other specimens were obturated using Bio-C Sealer and submitted to push-out bond strength and adhesive failure mode evaluations in the cervical, middle, and apical thirds after 48 h or 6 months (n = 10/group). Only in the apical third, ECL presented the highest residue incidence and fewer open dentinal tubules when compared to the XPE, XPC, and PUI groups (p < 0.05). In the cervical and middle root thirds, no significant differences were observed regardless of the group evaluated (p > 0.05). After 48 h, ECL resulted in the lowest bond strength only in the apical third (p < 0.05), while the XPE, XPC, and PUI groups remained similar in the cervical and middle thirds (p > 0.05). At 6 months, all groups showed lower bond strength values regardless of the root third evaluated, but ECL showed the lowest bond strength in the apical and middle root thirds when compared to the other groups (p < 0.05). The ECL protocol did not provide adequate residue removal on the apical radicular third and negatively affected the longevity of endodontic obturation using a calcium silicate-based sealer. Full article
Show Figures

Figure 1

20 pages, 609 KiB  
Article
Diet Quality and Dietary Intake in Breast Cancer Survivors Suffering from Chronic Pain: An Explorative Case-Control Study
by Sevilay Tümkaya Yılmaz, Ömer Elma, Jo Nijs, Peter Clarys, Iris Coppieters, Tom Deliens, Patrick Calders, Eline Naert and Anneleen Malfliet
Nutrients 2024, 16(22), 3844; https://doi.org/10.3390/nu16223844 - 9 Nov 2024
Viewed by 384
Abstract
Background/Objectives: Dietary factors may significantly influence pain management in cancer survivors. However, a substantial gap exists regarding the relationship between nutrition and chronic pain in this population. This study examined differences in diet quality and dietary intake between breast cancer survivors (BCS) experiencing [...] Read more.
Background/Objectives: Dietary factors may significantly influence pain management in cancer survivors. However, a substantial gap exists regarding the relationship between nutrition and chronic pain in this population. This study examined differences in diet quality and dietary intake between breast cancer survivors (BCS) experiencing chronic pain and healthy controls (HC). It also aimed to understand the associations between dietary elements and pain-related outcomes within the BCS group. Methods: A case-control study was conducted with 12 BCS experiencing chronic pain and 12 HC (ages 18–65). Data collection included body composition, experimental pain assessments, pain-related questionnaires, and a 3-day food diary to calculate diet quality using the Healthy Eating Index-2015 (HEI-2015) and Dietary Inflammatory Index (DII). Statistical analyses evaluated group differences and associations between dietary factors and pain within the BCS group. Results: There were no significant differences in HEI-2015 scores between BCS and HC, but BCS had a significantly lower DII score (p = 0.041), indicating a more anti-inflammatory diet. BCS also showed higher intake of omega-3, vitamins B6, B12, A, D, and magnesium (p < 0.05). While total diet quality scores did not correlate with pain outcomes, several HEI-2015 and DII components, such as dairy, sodium, protein, vitamin C, and vitamin D, showed moderate positive or negative correlations with pain measures. Conclusions: Despite no overall differences in diet quality, BCS with chronic pain consumed more anti-inflammatory nutrients than HC. Complex correlations between specific dietary components and pain outcomes emphasise the need for further research to explore these links for chronic pain management in BCS. Full article
Show Figures

Graphical abstract

Back to TopTop