Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = sliding spotlight

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 14003 KiB  
Article
Analysis of the Dihedral Corner Reflector’s RCS Features in Multi-Resource SAR
by Jie Liu, Tao Li, Sijie Ma, Yangmao Wen, Yanhao Xu and Guigen Nie
Appl. Sci. 2024, 14(12), 5054; https://doi.org/10.3390/app14125054 - 10 Jun 2024
Viewed by 816
Abstract
Artificial corner reflectors are widely used in the vegetated landslide for time series InSAR monitoring due to their permanent scattering features. This paper investigated the RCS features of a novel dihedral CR under multi-resource SAR datasets. An RCS reduction model for the novel [...] Read more.
Artificial corner reflectors are widely used in the vegetated landslide for time series InSAR monitoring due to their permanent scattering features. This paper investigated the RCS features of a novel dihedral CR under multi-resource SAR datasets. An RCS reduction model for the novel dihedral corner reflector has been proposed to evaluate the energy loss caused by the deviation between the SAR incident angle and the CR’s axis. On the Huangtupo slope, Badong county, Hubei province, tens of dihedral CRs had been installed and the TSX–spotlight and Sentinel-TOPS data had been collected. Based on the observation results of CRs with more than ten deviation angles, the proposed reduction model was tested with preferable consistency under a real dataset, while 2 dBsm of systematic bias was verified in those datasets. The maximum incident angle deviation in the Sentinel data overlapping area is over 12°, which leads to a 2.4 dBsm RCS decrease for horizontally placed dihedral CRs estimated by the proposed model, which has also been testified by the observed results. The testing results from the Sentinel data show that in high, vegetation-covered mountain areas like the Huangtupo slope, the dihedral CRs with a 0.4 m slide length can be achieve 1 mm precision accuracy, while a side length of 0.2 m can achieve the same accuracy under TSX–spotlight data. Full article
(This article belongs to the Special Issue Latest Advances in Radar Remote Sensing Technologies)
Show Figures

Figure 1

19 pages, 11004 KiB  
Article
System Design and Echo Preprocessing of Spaceborne Squinted Two-Dimensional Beam Scanning Synthetic Aperture Radar
by Wei Xu, Xuhang Lu, Pingping Huang, Weixian Tan, Zhiqi Gao and Yaolong Qi
Sensors 2023, 23(20), 8377; https://doi.org/10.3390/s23208377 - 10 Oct 2023
Viewed by 1146
Abstract
Conventional squinted sliding spotlight synthetic aperture radar (SAR) imaging suffers from substantial swath width reduction and complex processing requirements due to the continuous variation in the squint angle and the large range cell migration (RCM) throughout the data acquisition interval. A novel two-dimensional [...] Read more.
Conventional squinted sliding spotlight synthetic aperture radar (SAR) imaging suffers from substantial swath width reduction and complex processing requirements due to the continuous variation in the squint angle and the large range cell migration (RCM) throughout the data acquisition interval. A novel two-dimensional (2D) beam scanning mode for high-resolution wide swath (HRWS) imaging is proposed. The key to the novel imaging mode lies in the synchronous scanning of azimuth and range beams, allowing for a broader and more flexible imaging swath with a high geometric resolution. Azimuth beam scanning from fore to aft was used to improve the azimuth resolution, while range beam scanning was adopted to illuminate the oblique wide swath to avoid the large RCM and the serious swath width reduction. Compared with the conventional sliding spotlight mode, both the swath width and swath length could be extended. According to the echo model of this imaging mode, an echo signal preprocessing approach is proposed. The key points of this approach are range data extension and azimuth data upsampling. A designed system example with a resolution of 0.5 m, swath width of 60 km, and azimuth coverage length of 134 km is presented. Furthermore, a simulation experiment on point targets was carried out. Both the presented system example and imaging results of point targets validated the proposed imaging mode. Full article
(This article belongs to the Special Issue Recent Advancements in Radar Imaging and Sensing Technology II)
Show Figures

Figure 1

12 pages, 1085 KiB  
Communication
Accuracy Improvement of High-Resolution Wide-Swath Spaceborne Synthetic Aperture Radar Imaging with Low Pule Repetition Frequency
by Xiaofeng Wang, Yaduan Ruan and Xinggan Zhang
Remote Sens. 2023, 15(15), 3811; https://doi.org/10.3390/rs15153811 - 31 Jul 2023
Cited by 2 | Viewed by 997
Abstract
For a single-channel spaceborne synthetic aperture radar (SAR), the usage of a low pulse repetition frequency (PRF) is an effective technical way to extend the range swath. The sub-aperture imaging strategy is usually used to solve the problem of azimuth spectrum aliasing under [...] Read more.
For a single-channel spaceborne synthetic aperture radar (SAR), the usage of a low pulse repetition frequency (PRF) is an effective technical way to extend the range swath. The sub-aperture imaging strategy is usually used to solve the problem of azimuth spectrum aliasing under the condition of a low PRF. However, the required up-sampling processing before the coherent synthesis of sub-images will lead to spectrum discontinuity between adjacent sub-images, which leads to an obvious grating lobe phenomenon after the process of sub-image synthesis, resulting in a significant decrease in image quality. For this issue, a high-resolution wide-swath (HRWS) imaging algorithm for a spaceborne SAR with a low PRF is proposed in this paper based on optimal spectrum shift processing. First, each sub-aperture is imaged using the typical range migration algorithm (RMA), and then all sub-images are up-sampled at the same time. Then, based on the criterion of the minimum grating lobe, the optimal spectrum shift is estimated. Finally, the spectrum of all sub-images is shifted and then all the shifted sub-images are synthesized coherently. The simulation data processing results verify the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue Spaceborne High-Resolution SAR Imaging)
Show Figures

Figure 1

14 pages, 5258 KiB  
Article
System Design and Signal Processing in Spaceborne Squint Sliding Spotlight SAR with Sub-Aperture Block-Varying PRF
by Wei Xu, Zhuo Zhang, Pingping Huang, Weixian Tan and Yaolong Qi
Electronics 2023, 12(13), 2835; https://doi.org/10.3390/electronics12132835 - 27 Jun 2023
Cited by 1 | Viewed by 1158
Abstract
To tackle the problems of Doppler spectrum, aliasing caused by azimuth beam scanning and azimuthal serious non-uniform sampling in squint sliding spotlight synthetic aperture radar (SAR) with varying repetition frequency technology, the azimuth sampling method of sub-aperture block-varying pulse repetition frequency (SBV-PRF) is [...] Read more.
To tackle the problems of Doppler spectrum, aliasing caused by azimuth beam scanning and azimuthal serious non-uniform sampling in squint sliding spotlight synthetic aperture radar (SAR) with varying repetition frequency technology, the azimuth sampling method of sub-aperture block-varying pulse repetition frequency (SBV-PRF) is proposed, where the sub-aperture division judgement makes the azimuth acquisition time of each sub-block small enough so that the Doppler bandwidth caused by the Doppler center change can be ignored. Based on the echo signal characteristics of a SBV-PRF transmission scheme, an azimuth pre-processing method combining SBV-PRF transmission scheme with sub-aperture division is proposed. Using this method, de-skewing is first performed on each set of sub-aperture data to eliminate the additional Doppler bandwidth introduced by the squint angle, and then the azimuth signal resampling is performed to ensure different sub-aperture data have the same sampling rate. The SBV-PRF technology reduces the difficulty of azimuth signal pre-processing while ensuring the complete acquisition of the complete echo data of the squint sliding spotlight mode. The effectiveness of the SBV-PRF system design and the signal processing method is verified by the point target echo simulation and imaging simulation results. Full article
(This article belongs to the Topic Radar Signal and Data Processing with Applications)
Show Figures

Figure 1

21 pages, 6988 KiB  
Article
Azimuth Full-Aperture Processing of Spaceborne Squint SAR Data with Block Varying PRF
by Zhuo Zhang, Wei Xu, Pingping Huang, Weixian Tan, Zhiqi Gao and Yaolong Qi
Sensors 2022, 22(23), 9328; https://doi.org/10.3390/s22239328 - 30 Nov 2022
Cited by 4 | Viewed by 2114
Abstract
The block varying pulse repetition frequency (BV-PRF) scheme applied to spaceborne squint sliding-spotlight synthetic aperture radar (SAR) can resolve large-range cell migration (RCM) and reduce azimuth signal non-uniformity. However, in the BV-PRF scheme, different raw data blocks have different PRFs, and the raw [...] Read more.
The block varying pulse repetition frequency (BV-PRF) scheme applied to spaceborne squint sliding-spotlight synthetic aperture radar (SAR) can resolve large-range cell migration (RCM) and reduce azimuth signal non-uniformity. However, in the BV-PRF scheme, different raw data blocks have different PRFs, and the raw data in each block are insufficiently sampled. To resolve the two problems, a novel azimuth full-aperture pre-processing method is proposed to handle the SAR raw data formed by the BV-PRF scheme. The key point of the approach is the resampling of block data with different PRFs and the continuous splicing of azimuth data. The method mainly consists of four parts: de-skewing, resampling, azimuth continuous combination, and Doppler history recovery. After de-skewing, the raw data with different PRFs can be resampled individually to obtain a uniform azimuth sampling interval, and an appropriate azimuth time shift is introduced to ensure the continuous combination of the azimuth signal. Consequently, the resulting raw data are sufficiently and uniformly sampled in azimuth, which could be well handled by classical SAR-focusing algorithms. Simulation results on point targets validate the proposed azimuth pre-processing approach. Furthermore, compared with methods to process SAR data with continuous PRF, the proposed method is more effective. Full article
(This article belongs to the Special Issue Radar Technology and Data Processing)
Show Figures

Figure 1

24 pages, 7119 KiB  
Article
A Novel Frequency-Domain Focusing Method for Geosynchronous Low-Earth-Orbit Bistatic SAR in Sliding-Spotlight Mode
by Zhichao Sun, Tianfu Chen, Huarui Sun, Junjie Wu, Zheng Lu, Zhongyu Li, Hongyang An and Jianyu Yang
Remote Sens. 2022, 14(13), 3178; https://doi.org/10.3390/rs14133178 - 1 Jul 2022
Cited by 6 | Viewed by 2164
Abstract
The low-earth-orbit synthetic aperture radar (SAR) can achieve enhanced remote-sensing capabilities by exploiting the large-scale and long-duration beam coverage of a geosynchronous (GEO) SAR illuminator. Different bistatic imaging modes can be implemented by the steering of an antenna beam onboard the LEO receiver, [...] Read more.
The low-earth-orbit synthetic aperture radar (SAR) can achieve enhanced remote-sensing capabilities by exploiting the large-scale and long-duration beam coverage of a geosynchronous (GEO) SAR illuminator. Different bistatic imaging modes can be implemented by the steering of an antenna beam onboard the LEO receiver, such as high-resolution sliding-spotlight mode. In this paper, the accurate focusing of GEO-LEO bistatic SAR (GEO-LEO BiSAR) in sliding-spotlight mode is investigated. First, the two major problems of the accurate bistatic range model, i.e., curved trajectory within long integration time and ‘stop-and-go’ assumption error, for sliding-spotlight GEO-LEO BiSAR are analyzed. Then, a novel bistatic range model based on equivalent circular orbit trajectory is proposed to accurately represent the range history of GEO-LEO BiSAR in sliding-spotlight mode. Based on the proposed range model, a frequency-domain imaging method is put forward. First, a modified two-step preprocessing method is implemented to remove the Doppler aliasing caused by azimuth variance of Doppler centroid and beam steering. Then, an azimuth trajectory scaling is formulated to remove the azimuth variance of motion parameters due to curved trajectory. A modified frequency-domain imaging method is derived to eliminate the 2-D spatial variance and achieve accurate focusing of the echo data. Finally, imaging results and analysis on both simulated data and real data from an equivalent BiSAR experiment validate the effectiveness of the proposed method. Full article
Show Figures

Figure 1

27 pages, 9576 KiB  
Article
A Unified Algorithm for the Sliding Spotlight and TOPS Modes Data Processing in Bistatic Configuration of the Geostationary Transmitter with LEO Receivers
by Feng Tian, Zhiyong Suo, Yuekun Wang, Zheng Lu, Zhen Wang and Zhenfang Li
Remote Sens. 2022, 14(9), 2006; https://doi.org/10.3390/rs14092006 - 21 Apr 2022
Cited by 5 | Viewed by 1615
Abstract
This paper deals with the imaging problem for sliding spotlight (SS) and terrain observation by progressive scan (TOPS) modes in bistatic configuration of the geostationary (GEO) transmitter with a low earth orbit satellite (LEO) receiver, named GTLR-BiSAR system. A unified imaging algorithm is [...] Read more.
This paper deals with the imaging problem for sliding spotlight (SS) and terrain observation by progressive scan (TOPS) modes in bistatic configuration of the geostationary (GEO) transmitter with a low earth orbit satellite (LEO) receiver, named GTLR-BiSAR system. A unified imaging algorithm is proposed to process the GTLR-BiSAR data acquired in SS or TOPS modes. Our main contributions include four aspects. Firstly, the imaging geometry of this novel configuration is described in detail. Furthermore, the GTLR-BiSAR signal expressions were deduced in both time and frequency domains. These signal expressions provide great support for the design of processing the algorithm theoretically. Secondly, we present a unified deramping-based technique according to the special geometry of GTLR-BiSAR to overcome the azimuth spectrum aliasing phenomenon, which typically affects SS and TOPS data. Thirdly, the spatial variance of GTLR-BiSAR data were thoroughly analyzed based on the range-Doppler (RD) geolocation functions. On the basis of a former analysis, we put forward the azimuth variance correction strategy and modified the conventional chirp scaling function to solve the range variance problem. Finally, we completed the derivation of the two-dimensional spectrum after the range chirp scaling. On the basis of spectrum expressions, we compensated for the quadratic and residue phase, and the azimuth compression was completed by SPECAN operation. In addition, we provide a flow diagram to visually exhibit the processing procedures. At the end of this paper, the simulation and real data experiment results are presented to validate the effectiveness of the proposed algorithm. Full article
(This article belongs to the Special Issue Distributed Spaceborne SAR: Systems, Algorithms, and Applications)
Show Figures

Figure 1

14 pages, 13889 KiB  
Technical Note
Phase Mismatch Calibration for Dual-Channel Sliding Spotlight SAR-GMTI
by Zhenning Zhang, Weidong Yu, Mingjie Zheng, Liangbo Zhao and Zi-Xuan Zhou
Remote Sens. 2022, 14(3), 617; https://doi.org/10.3390/rs14030617 - 27 Jan 2022
Cited by 3 | Viewed by 2551
Abstract
This article investigates channel phase mismatch calibration during the application of displaced-phase-center antenna (DPCA) in dual-channel sliding spotlight synthetic aperture radar (SAR) for ground moving target indication (GMTI). In sliding spotlight SAR, the utilization of beam progressive sweeping in azimuth causes antenna phase [...] Read more.
This article investigates channel phase mismatch calibration during the application of displaced-phase-center antenna (DPCA) in dual-channel sliding spotlight synthetic aperture radar (SAR) for ground moving target indication (GMTI). In sliding spotlight SAR, the utilization of beam progressive sweeping in azimuth causes antenna phase centers to be misaligned from the sensor path, resulting in the phase mismatch between channels. Then, spatial channel co-registration required in the DPCA cannot be achieved directly by an azimuth time shift. In this study, a calibration method based on scanning geometry of the dual-channel sliding spotlight SAR is developed to address this issue. Moreover, the effect of the phase mismatch calibration on the estimation of azimuth time difference between the two channels is derived and analyzed in depth. The clutter suppression results processed from experimental data acquired by a C-band dual-channel SAR system (Gaofen-3) operated in sliding spotlight mode are shown for the first time to demonstrate the effective phase mismatch calibration. Full article
Show Figures

Figure 1

24 pages, 5190 KiB  
Article
A Novel Imaging Algorithm for High-Resolution Wide-Swath Space-Borne SAR Based on a Spatial-Variant Equivalent Squint Range Model
by Yanan Guo, Pengbo Wang, Jie Chen, Zhirong Men, Lei Cui and Lei Zhuang
Remote Sens. 2022, 14(2), 368; https://doi.org/10.3390/rs14020368 - 13 Jan 2022
Cited by 1 | Viewed by 1878
Abstract
High-Resolution Wide-Swath (HRWS) is an important development direction of space-borne Synthetic Aperture Radar (SAR). The two-dimensional spatial variation of the Doppler parameters is the most significant characteristic of the sliding spotlight space-borne SAR system under the requirements of HRWS. Therefore, the compensation of [...] Read more.
High-Resolution Wide-Swath (HRWS) is an important development direction of space-borne Synthetic Aperture Radar (SAR). The two-dimensional spatial variation of the Doppler parameters is the most significant characteristic of the sliding spotlight space-borne SAR system under the requirements of HRWS. Therefore, the compensation of the two-dimensional spatial variation is the most challenging problem faced in the imaging of HRWS situations. The compensatory approach is then proposed to address this problem in this paper. The spatial distribution of the Doppler parameters for the HRWS space-borne SAR data in the sliding spotlight working mode is firstly analyzed, based on which a Spatial-Variant Equivalent Slant Range Model (SV-ESRM) is put forward to accurately formulate the range history for the distributed target. By introducing an azimuth-varying term, the SV-ESRM can precisely describe the range history for not only central targets but also marginal targets, which is more adaptive to the HRWS space-borne SAR requirements. Based on the SV-ESRM, a Modified Hybrid Correlation Algorithm (MHCA) for HRWS space-borne SAR imaging is derived to focus the full-scene data on one single imaging processing. A Doppler phase perturbation incorporated with the sub-aperture method is firstly performed to eliminate the azimuth variation of the Doppler parameters and remove the Doppler spectrum aliasing. Then, an advanced hybrid correlation is employed to achieve the precise differential Range Cell Migration (RCM) correction and Doppler phase compensation. A range phase perturbation method is also utilized to eliminate the range profile defocusing caused by range-azimuth coupling for marginal targets. Finally, a de-rotation processing is performed to remove the azimuth aliasing and the residual azimuth-variance and obtain the precisely focused SAR image. Simulation shows that the SAR echoes for a 20 km × 20 km scene with a 0.25 m resolution in both the range and azimuth directions could be focused precisely via one single imaging processing, which validates the feasibility of the proposed algorithm. Full article
Show Figures

Graphical abstract

21 pages, 10375 KiB  
Article
An Improved Equivalent Squint Range Model and Imaging Approach for Sliding Spotlight SAR Based on Highly Elliptical Orbit
by Xinchang Hu, Pengbo Wang, Hongcheng Zeng and Yanan Guo
Remote Sens. 2021, 13(23), 4883; https://doi.org/10.3390/rs13234883 - 1 Dec 2021
Cited by 5 | Viewed by 2848
Abstract
As an emerging orbital system with flexibility and brand application prospects, the highly elliptical orbit synthetic aperture radar (HEO SAR) can achieve both a low orbit detailed survey and continuous earth surface observation in high orbit, which could be applied to marine reconnaissance [...] Read more.
As an emerging orbital system with flexibility and brand application prospects, the highly elliptical orbit synthetic aperture radar (HEO SAR) can achieve both a low orbit detailed survey and continuous earth surface observation in high orbit, which could be applied to marine reconnaissance and surveillance. However, due to its large eccentricity, two challenges have been faced in the signal processing of HEO SAR at present. The first challenge is that the traditional equivalent squint range model (ESRM) fails to accurately describe the entire range for the whole orbit period including the perigee, the apogee, and the squint subduction section. The second one is to exploit an efficient HEO SAR imaging algorithm in the squinted case which solves the problem that traditional imaging algorithm fails to achieve the focused imaging processing of HEO SAR during the entire orbit period. In this paper, a novel imaging algorithm for HEO SAR is presented. Firstly, the signal model based on the geometric configuration of the large elliptical orbit is established and the Doppler parameter characteristics of SAR are analyzed. Secondly, due to the particularity of Doppler parameters variation in the whole period of HEO, the equivalent velocity and equivalent squint angle used in MESRM can no longer be applied, a refined fourth-order equivalent squint range model(R4-ESRM) that is suitable for HEO SAR is developed by introducing fourth-order Doppler parameter into Modified ESRM (MESRM), which accurately reconstructs the range history of HEO SAR. Finally, a novel imaging algorithm combining azimuth resampling and time-frequency domain hybrid correlation based on R4-ESRM is derived. Simulation is performed to demonstrate the feasibility and validity of the presented algorithm and range model, showing that it achieves the precise phase compensation and well focusing. Full article
Show Figures

Graphical abstract

32 pages, 7144 KiB  
Article
Optimal Attitude Maneuvering Analyses for Imaging at Squint Staring and Sliding Spotlight Modes of SAR Satellite
by Hongrae Kim, Joonil Park, Young-Keun Chang and Soo-Ho Lee
Aerospace 2021, 8(10), 277; https://doi.org/10.3390/aerospace8100277 - 24 Sep 2021
Cited by 3 | Viewed by 3051
Abstract
In this study, we analyzed the imaging maneuver time, retargeting maneuver time, and attitude maneuvering characteristics in the imaging section (Phase 1) and retargeting maneuver section (Phase 2) when taking multiple-target images in squint spotlight mode in a single pass of a passive [...] Read more.
In this study, we analyzed the imaging maneuver time, retargeting maneuver time, and attitude maneuvering characteristics in the imaging section (Phase 1) and retargeting maneuver section (Phase 2) when taking multiple-target images in squint spotlight mode in a single pass of a passive SAR satellite. In particular, the synthetic aperture time and attitude maneuvering characteristics in the staring and sliding spotlight modes that can image the wider swath width while maintaining high resolution were compared and analyzed. In the sliding spotlight mode, the rotation center was located below the ground surface when the satellite was maneuvering towards the target. Steering and sliding maneuvers were performed when targeting, and the synthetic aperture time of the sliding spotlight was longer than that of the staring spotlight because overlapping imaging was performed on the point target. The satellite maneuvering during imaging can be considered as a time-fixed problem, because it was performed within synthetic aperture time according to resolution, incidence angle, swath width, etc., by minimizing the Doppler centroid variation. In order to optimize the retargeting maneuver time, an optimal analysis of the attitude maneuvering was carried out and the validity of the optimal analysis algorithm was confirmed. Finally, the scenario was analyzed by assuming a problem of imaging four targets with 5 × 5 km swath width in a 20 km × 20 km densely populated area. It was confirmed that if a squint angle of ±12 degrees is provided in a single pass, four high resolution images of 5 km × 5 km can be imaged in the sliding spotlight mode. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

15 pages, 2080 KiB  
Article
Improvement of Surface Roughness and Hydrophobicity in PETG Parts Manufactured via Fused Deposition Modeling (FDM): An Application in 3D Printed Self–Cleaning Parts
by Juan M. Barrios and Pablo E. Romero
Materials 2019, 12(15), 2499; https://doi.org/10.3390/ma12152499 - 6 Aug 2019
Cited by 55 | Viewed by 7360
Abstract
The fused deposition modeling (FDM) technique is used today by companies engaged in the fabrication of traffic signs for the manufacture of light-emitting diode LED spotlights. In this sector, the surface properties of the elements used (surface finish, hydrophobic features) are decisive because [...] Read more.
The fused deposition modeling (FDM) technique is used today by companies engaged in the fabrication of traffic signs for the manufacture of light-emitting diode LED spotlights. In this sector, the surface properties of the elements used (surface finish, hydrophobic features) are decisive because surfaces that retain little dirt and favor self–cleaning behavior are needed. A design of experiments (L27) with five factors and three levels has been carried out. The factors studied were: Layer height (LH), print temperature (T), print speed (PS), print acceleration (PA), and flow rate (F). Polyethylene terephthalate glycol (PETG) specimens of 25.0 × 25.0 × 2.4 mm have been printed and, in each of them, the surface roughness (Ra,0, Ra,90), sliding angle (SA0, SA90), and contact angle (CA0, CA90) in both perpendicular directions have been measured. Taguchi and ANOVA analysis shows that the most influential variables in this case are printing acceleration for Ra, 0 (p–value = 0.052) and for SA0 (p–value = 0.051) and flow rate for Ra, 90 (p–value = 0.001) and for SA90 (p–value = 0.012). Although the ANOVA results for the contact angle are not significant, specimen 8 (PA = 1500 mm/s2 and flow rate F = 110%) and specimen 10 (PA =1500 mm/s2 and F = 100%) have reached contact angle values above or near the limit value for hydrophobia, respectively. Full article
Show Figures

Graphical abstract

17 pages, 54265 KiB  
Article
Performance Analysis of Ionospheric Scintillation Effect on P-Band Sliding Spotlight SAR System
by Lei Yu, Yongsheng Zhang, Qilei Zhang, Yifei Ji and Zhen Dong
Sensors 2019, 19(9), 2161; https://doi.org/10.3390/s19092161 - 9 May 2019
Cited by 3 | Viewed by 3299
Abstract
The space-borne P-band synthetic aperture radar (SAR) maintains excellent penetration capability. However, the low carrier frequency restricts its imaging resolution. The sliding spotlight mode provides an operational solution to meet the requirement of high imaging resolution in P-band SAR design. Unfortunately, the space-borne [...] Read more.
The space-borne P-band synthetic aperture radar (SAR) maintains excellent penetration capability. However, the low carrier frequency restricts its imaging resolution. The sliding spotlight mode provides an operational solution to meet the requirement of high imaging resolution in P-band SAR design. Unfortunately, the space-borne P-band SAR will be inevitably deteriorated by the ionospheric scintillation. Compared with the stripmap mode, the sliding spotlight SAR will suffer more degradation when operating in the scintillation active regions due to its long integration time and complex imaging geometry. In this paper, both the imaging performance and scintillation effect for P-band sliding spotlight mode are studied. The theoretical analysis of scintillation effect is performed based on a refined model of the two-frequency and two-position coherence function (TFTPCF). A novel scintillation simulator based on the reverse back-projection (ReBP) algorithm is proposed to generate the SAR raw data for sliding spotlight mode. The proposed scintillation simulator can also be applied to predict the scintillation effect for other multi-mode SAR systems such as terrain observation by progressive scans (TOPS) and ScanSAR. Finally, a group of simulations are carried out to validate the theoretical analysis. Full article
(This article belongs to the Special Issue Synthetic Aperture Radar (SAR) Techniques and Applications)
Show Figures

Figure 1

26 pages, 8565 KiB  
Article
High-Resolution Spaceborne, Airborne and In Situ Landslide Kinematic Measurements of the Slumgullion Landslide in Southwest Colorado
by Austin Madson, Eric Fielding, Yongwei Sheng and Kyle Cavanaugh
Remote Sens. 2019, 11(3), 265; https://doi.org/10.3390/rs11030265 - 29 Jan 2019
Cited by 14 | Viewed by 4825
Abstract
The Slumgullion landslide, located in southwestern Colorado, has been active since the early 1700s and current data suggests that the most active portion of the slide creeps at a rate of ~1.5–2.0 cm/day. Accurate deformation measurement techniques are vital to the understanding of [...] Read more.
The Slumgullion landslide, located in southwestern Colorado, has been active since the early 1700s and current data suggests that the most active portion of the slide creeps at a rate of ~1.5–2.0 cm/day. Accurate deformation measurement techniques are vital to the understanding of persistent, yet slow-moving landslides like the Slumgullion. The factors that affect slope movements at the Slumgullion are on-time scales that are well suited towards a remotely sensed approach to constrain the 12 different kinematic units that make up the persistent creeping landslide. We derive a time series of motion vectors (magnitude and direction) using subpixel offset techniques from very high resolution TerraSAR-X Staring Spotlight ascending/descending data as well as from a novel high-resolution amalgamation of airborne lidar and unmanned aerial systems (UAS) Structure from Motion (SfM) digital surface model (DSM) hillshades. Deformation rates calculated from the spaceborne and airborne datasets show high agreement (mean difference of ~0.9 mm/day), further highlighting the potential for the monitoring of ongoing mass wasting events utilizing unmanned aircraft systems (UAS) We compare pixel offset results from an 11-day synthetic aperture radar (SAR) pair acquired in July of 2016 with motion vectors from a coincident low-cost L1 only Global Navigation Satellite System (GNSS) field campaign in order to verify the remotely sensed results and to derive the accuracy of the azimuth and range offsets. We find that the average azimuth and range pixel offset accuracies utilizing the methods herein are on the order of 1/18 and 1/20 of their along-track and slant range focused ground pixel spacing values of 16.8 cm and 45.5 cm, respectively. We utilize the SAR offset time series to add a twelfth kinematic unit to the previously established set of eleven unique regions at the site of an established minislide within the main landslide itself. Lastly, we compare the calculated rates and direction from all spaceborne- and airborne-derived motion vectors for each of the established kinematic zones within the active portion of the landslide. These comparisons show an overall increased magnitude and across-track component (i.e., more westerly angles of motion) for the descending SAR data as compared to their ascending counterparts. The processing techniques and subsequent results herein provide for an improved knowledge of the Slumgullion landslide’s kinematics and this increased knowledge has implications for the advancement of measurement techniques and the understanding of globally distributed creeping landslides. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Graphical abstract

17 pages, 4824 KiB  
Article
A New InSAR Phase Demodulation Technique Developed for a Typical Example of a Complex, Multi-Lobed Landslide Displacement Field, Fels Glacier Slide, Alaska
by Bernhard Rabus and Manuele Pichierri
Remote Sens. 2018, 10(7), 995; https://doi.org/10.3390/rs10070995 - 22 Jun 2018
Cited by 14 | Viewed by 4150
Abstract
Landslides can have complex, spatially strongly inhomogeneous surface displacement fields with discontinuities from multiple active lobes that are deforming while failing on nested slip surfaces at different depths. For synthetic aperture radar interferometry (InSAR), particularly at lower resolutions, these characteristics can cause significant [...] Read more.
Landslides can have complex, spatially strongly inhomogeneous surface displacement fields with discontinuities from multiple active lobes that are deforming while failing on nested slip surfaces at different depths. For synthetic aperture radar interferometry (InSAR), particularly at lower resolutions, these characteristics can cause significant aliasing of the wrapped phase. In combination with steep terrain and seasonal snow cover, causing layover and temporal decorrelation, respectively, traditional phase unwrapping can become unfeasible, even after topographic phase contributions have been removed with an external high-resolution digital surface model (DSM). We present a novel method: warp demodulation that reduces the complexity of the phase unwrapping problem for noisy and/or aliased, low-resolution interferograms of discontinuous landslide displacement. The key input to our warp demodulation method is a single (or several) reference interferogram(s) from a high-resolution sensor mode such as TerraSAR-X Staring Spotlight with short temporal baseline and good coherence to allow localization of phase discontinuities and accurate unwrapping. The task of constructing suitable phase surfaces to approximate individual to-be-demodulated interferograms from the reference interferogram is made difficult by strong and spatially inhomogeneous temporal, seasonal, and interannual variations of the landslide with individual lobes accelerating or decelerating at different rates. This prevents using simple global scaling of the reference. Instead, our method uses an irregular grid of small patches straddling strong spatial gradients and phase discontinuities in the reference to find optimum local scaling factors that minimize the residual phase gradients across the discontinuities after demodulation. Next, for each to-be-demodulated interferogram, from these measurements we interpolate a spatially smooth global scaling function, which is then used to scale the (discontinuous) reference. Demodulation with the scaled reference leads to a residual phase that is also spatially smooth, allowing it to be unwrapped robustly after low-pass filtering. A key assumption of warp demodulation is that the locations of the phase discontinuities can be mapped in the reference and that they are stationary in time at the scale of the image resolution. We carry out extensive tests with simulated data to establish the accuracy, robustness, and limitations of the new method with respect to relevant parameters, such as decorrelation noise and aliasing along phase discontinuities. A realistic parameterization of the method is demonstrated for the example of the Fels Glacier Slide in Alaska using a recent late-summer high-resolution staring spotlight interferometric image pair from TerraSAR-X to demodulate. We show warp demodulation results for also recent but early-summer, partially incoherent interferograms of the same sensor, as well as for older and coarser aliased interferograms from RADARSAT-2, ALOS-1, and ERS. Full article
(This article belongs to the Special Issue Ten Years of TerraSAR-X—Scientific Results)
Show Figures

Figure 1

Back to TopTop