Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,359)

Search Parameters:
Keywords = shear failure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 7160 KiB  
Article
Experimental Analysis of the Mechanical Behavior of Shear Connectors for Precast Sandwich Wall Panels When Subjected to the Push-Out Tests
by John Kennedy Fonsêca Silva and Rodrigo de Melo Lameiras
Buildings 2024, 14(10), 3246; https://doi.org/10.3390/buildings14103246 - 14 Oct 2024
Viewed by 121
Abstract
Precast concrete sandwich panels consist of two outer layers connected by a central connector and an inner insulating layer that enhances thermal and acoustic performance. A key challenge with these panels is eliminating thermal bridges caused by metallic connectors, which reduce energy efficiency. [...] Read more.
Precast concrete sandwich panels consist of two outer layers connected by a central connector and an inner insulating layer that enhances thermal and acoustic performance. A key challenge with these panels is eliminating thermal bridges caused by metallic connectors, which reduce energy efficiency. PERFOFRP connectors, made from perforated glass fiber-reinforced polymer (GFRP) sheets, have been proposed to address this issue. These connectors feature holes that allow concrete to pass through, creating anchoring pins that enhance shear resistance and prevent the separation of the concrete layers. This research aimed to evaluate the effect of the diameter and number of holes on the mechanical strength of PERFOFRP connectors. Three diameters not previously reported in the literature were selected: 12.70 mm, 15.88 mm, and 19.05 mm. A total of 18 specimens, encompassing 6 different configurations with varying numbers of holes, underwent push-out tests. The most significant resistance increase was a 15% gain over non-perforated connectors, observed in the configuration featuring three holes of 19.05 mm. The connections exhibited rigid and nearly linear behavior until failure. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 9738 KiB  
Article
Formability and Failure Mechanisms of Continuous Glass Fiber-Reinforced Polypropylene Composite Laminates in Thermoforming Below the Melting Temperature
by Qihui Ying, Zhixin Jia, Di Rong, Lijun Liu and Jiqiang Li
Polymers 2024, 16(20), 2885; https://doi.org/10.3390/polym16202885 - 14 Oct 2024
Viewed by 129
Abstract
In this study, the thermoforming formability of continuous glass fiber-reinforced polypropylene (CGFRPP) laminates below the melting temperature were investigated. The forming limits of CGFRPP laminates were explored using flexural tests, Erichsen tests and deep drawing tests. The failure mechanism of CGFRPP in thermoforming [...] Read more.
In this study, the thermoforming formability of continuous glass fiber-reinforced polypropylene (CGFRPP) laminates below the melting temperature were investigated. The forming limits of CGFRPP laminates were explored using flexural tests, Erichsen tests and deep drawing tests. The failure mechanism of CGFRPP in thermoforming was investigated by observing typical failure specimens using a microscope. The results show that the flexural performance and Erichsen performance are optimal at 130 °C and 2 mm/min. At 160 °C and 100 mm/min, the deep drawing performance is optimal. The restriction of fibers by the matrix is affected by the deformation temperature, and the creation of defects is affected by the deformation rate. During forming, the CGFRPP laminates undergo shear and extrusion deformations, resulting in wrinkles, delamination, and fiber aggregation. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

29 pages, 15583 KiB  
Article
Advanced Structural Monitoring Technologies in Assessing the Performance of Retrofitted Reinforced Concrete Elements
by Maria C. Naoum, Nikos A. Papadopoulos, George M. Sapidis and Constantin E. Chalioris
Appl. Sci. 2024, 14(20), 9282; https://doi.org/10.3390/app14209282 (registering DOI) - 12 Oct 2024
Viewed by 384
Abstract
Climate change induces extreme effects with lower-than-designed restoration periods, imposing the necessity of strengthening the structural integrity of existing and mainly older RC structures, which are often demonstrated to be under-reinforced in terms of the shear capacity, mainly due to outdated and old [...] Read more.
Climate change induces extreme effects with lower-than-designed restoration periods, imposing the necessity of strengthening the structural integrity of existing and mainly older RC structures, which are often demonstrated to be under-reinforced in terms of the shear capacity, mainly due to outdated and old design codes/standards. Thus, finding cost-effective and feasible methods to strengthen RC elements is becoming increasingly important. Thin RC layers for jacketing represent a modern advancement in repairing and retrofitting RC members. In this context, U-shaped mortar jackets were employed to strengthen three shear-critical beams. In addition, a critical aspect in the success of any jacketing method is the degree of bonding and interaction between the original member and the new jacket. Additionally, the performance of these U-shaped jackets was assessed using an Electro-Mechanical-Impedance-based (EMI-based) method using a Piezoelectric-Transducer-enabled (PZT-enabled) technique. The integration of advanced monitoring technologies in retrofitting applications offers valuable insights into the performance and longevity of the retrofit system. Therefore, this study aims to experimentally investigate the cohesion between construction materials and assess the effectiveness of U-shaped jackets. Through the proposed Structural Health Monitoring (SHM) technique, any degradation at the interface or slippage of the retrofitting jacket can be promptly detected, restraining further damage development and potential failure of the structure. Full article
(This article belongs to the Collection Nondestructive Testing (NDT))
Show Figures

Figure 1

21 pages, 3647 KiB  
Article
Constitutive Damage Model for Rubber Fiber-Reinforced Expansive Soil under Freeze–Thaw Cycles
by Rongchang Wang, Zhongnian Yang, Xianzhang Ling, Wei Shi, Zhenxing Sun and Xipeng Qin
Materials 2024, 17(20), 4979; https://doi.org/10.3390/ma17204979 - 11 Oct 2024
Viewed by 332
Abstract
To elucidate the degradation mechanism of expansive soil–rubber fiber (ESR) under freeze–thaw cycles, freeze–thaw cycle tests and consolidated undrained tests were conducted on the saturated ESR. The study quantified the elastic modulus and damage variables of ESR under different numbers of freeze–thaw cycles [...] Read more.
To elucidate the degradation mechanism of expansive soil–rubber fiber (ESR) under freeze–thaw cycles, freeze–thaw cycle tests and consolidated undrained tests were conducted on the saturated ESR. The study quantified the elastic modulus and damage variables of ESR under different numbers of freeze–thaw cycles and confining pressure, and proposed a damage constitutive model for ESR. The primary findings indicate that: (1) The effective stress paths of ESR exhibit similarity across different numbers of freeze–thaw cycles, the critical stress ratio slightly decreased by 8.8%, while the normalized elastic modulus experienced a significant reduction, dropping to 42.1%. (2) When considering the damage threshold, the shear process of ESR can be divided into three stages: weak damage, damage development, and failure. As strain increases, the microdefects of ESR gradually develop, penetrating macroscopic cracks and converging to form the main rupture surface. Eventually, the damage value reaches 1. (3) Due to the effect of freeze–thaw cycles, initial damage exists for ESR, which is positively correlated with the number of freeze–thaw cycles. The rubber fibers act as tensile elements, and the ESR damage evolution curves intersect one after another, showing obvious plastic characteristics in the late stage of shear. (4) Confining pressure plays a role in limiting the development of ESR microcracks. The damage deterioration of ESR decreases with an increase in confining pressure, leading to an increase in ESR strength. (5) Through a comparison of the test curve and the theoretical curve, this study validates the rationality of the damage constitutive model of ESR under established freeze–thaw cycles. Furthermore, it accurately describes the nonlinear impact of freeze–thaw cycles and confining pressure on the ESR total damage. Full article
Show Figures

Graphical abstract

26 pages, 7527 KiB  
Article
Ultrasonic Weld Quality Inspection Involving Strength Prediction and Defect Detection in Data-Constrained Training Environments
by Reenu Mohandas, Patrick Mongan and Martin Hayes
Sensors 2024, 24(20), 6553; https://doi.org/10.3390/s24206553 - 11 Oct 2024
Viewed by 485
Abstract
Welding is an extensively used technique in manufacturing, and as for every other process, there is the potential for defects in the weld joint that could be catastrophic to the manufactured products. Different welding processes use different parameter settings, which greatly impact the [...] Read more.
Welding is an extensively used technique in manufacturing, and as for every other process, there is the potential for defects in the weld joint that could be catastrophic to the manufactured products. Different welding processes use different parameter settings, which greatly impact the quality of the final welded products. The focus of research in weld defect detection is to develop a non-destructive testing method for weld quality assessment based on observing the weld with an RGB camera. Deep learning techniques have been widely used in the domain of weld defect detection in recent times, but the majority of them use, for example, X-ray images. An RGB image-based solution is attractive, as RGB cameras are comparatively inexpensive compared to X-ray image solutions. However, the number of publicly available RGB image datasets for weld defect detection is comparatively lower than that of X-ray image datasets. This work achieves a complete weld quality assessment involving lap shear strength prediction and visual weld defect detection from an extremely limited dataset. First, a multimodal dataset is generated by the fusion of image data features extracted using a convolutional autoencoder (CAE) designed in this experiment and input parameter settings data. The fusion of the dataset reduced lap shear strength (LSS) prediction errors by 34% compared to prediction errors using only input parameter settings data. This is a promising result, considering the extremely small dataset size. This work also achieves visual weld defect detection on the same limited dataset with the help of an ultrasonic weld defect dataset generated using offline and online data augmentation. The weld defect detection achieves an accuracy of 74%, again a promising result that meets standard requirements. The combination of lap shear strength prediction and visual defect detection leads to a complete inspection to avoid premature failure of the ultrasonic weld joints. The weld defect detection was compared against the publicly available image dataset for surface defect detection. Full article
(This article belongs to the Special Issue Deep-Learning-Based Defect Detection for Smart Manufacturing)
Show Figures

Figure 1

29 pages, 11973 KiB  
Article
Enhancing Load-Bearing Capacity of Weak Soils Using Geosynthetics: A Finite Element Analysis
by Hassan Tavassoli Rad, Farhad Mahmoudi Jalali, Mohammad Gheibi, Reza Yeganeh Khaksar, Andres Annuk and Reza Moezzi
Mining 2024, 4(4), 777-805; https://doi.org/10.3390/mining4040044 - 11 Oct 2024
Viewed by 297
Abstract
In the context of mining applications and the increasing demand for high load-bearing soils, utilizing weak soils poses a significant challenge. This study investigates the effectiveness of geosynthetics in stabilizing weak soils through numerical modeling using Abaqus software (R2016X)and validation via laboratory model [...] Read more.
In the context of mining applications and the increasing demand for high load-bearing soils, utilizing weak soils poses a significant challenge. This study investigates the effectiveness of geosynthetics in stabilizing weak soils through numerical modeling using Abaqus software (R2016X)and validation via laboratory model testing. We examined the impact of various geosynthetic lengths and embedment depths across three soil types: clay loam (ML), sand (SM), and well-graded sand (SW). Our results reveal that ML and SM soil types exhibit local shear failure, while SW soil types demonstrate general shear failure. Notably, the bearing capacity of soils increases with coarser particle sizes due to higher Meyerhof parameters, leading to soil failure at lower settlements. Optimal geotextile embedment depths were determined as H/B = 0.125 for ML soil, H/B = 0.250 for SM soil, and H/B = 0.5 for SW soil. Additionally, the effect of geotextile length on bearing capacity is more pronounced in ML soil, suggesting greater effectiveness in fine-grained soils. The optimal geotextile lengths for installation are approximately 1.5 times the width for ML soil, 1.0 times for SM soil, and 1.0 times for SW soil. We also found that SW soil typically fails at lower settlements compared to ML and SM soils. Consequently, geotextile placement at shallower depths is recommended for SW soil, where the soil experiences higher tension and pressure. These findings contribute to enhance soil stabilization and load management in mining geotechnics. Full article
Show Figures

Figure 1

29 pages, 6260 KiB  
Article
Experimental Study on Damage Constitutive Model of Rock under Thermo-Confining Pressure Coupling
by Yonglai Zheng, Zhengxie Zhang, Chenyu Hou, Tanbo Pan, Xin Lan and Yifan Ji
Appl. Sci. 2024, 14(19), 9122; https://doi.org/10.3390/app14199122 - 9 Oct 2024
Viewed by 349
Abstract
Underground engineering frequently encounters the challenges of high temperatures and high confining pressures. The combined effects of temperature and confining pressure can significantly alter the mechanical properties of rock. Evaluating the impact of these factors on rock is a crucial aspect of engineering. [...] Read more.
Underground engineering frequently encounters the challenges of high temperatures and high confining pressures. The combined effects of temperature and confining pressure can significantly alter the mechanical properties of rock. Evaluating the impact of these factors on rock is a crucial aspect of engineering. This study investigates the mechanical properties of rocks under various temperature and stress conditions, focusing on the deformation and failure characteristics of four typical rock types: granite, red sandstone, gray sandstone, and shale under temperature-confining pressure coupling. The results indicate that high temperatures cause internal structural damage and crack propagation in rocks, leading to a reduction in compressive strength and elastic modulus. Conversely, high confining pressures can inhibit crack propagation and enhance rock deformation capacity. Additionally, significant differences were observed in the mechanical responses of different rocks; red sandstone and shale predominantly exhibited shear failure under the coupled effects of temperature and confining pressure, whereas granite and gray sandstone exhibited bulging failure. Based on the experimental results, an elastic modulus fitting model considering the temperature-confining pressure coupling effect was proposed, and the parameters of the Drucker–Prager criterion were modified. A constitutive model was constructed to accurately reflect the stress–strain state of rocks under the coupled effects of temperature and confining pressure. The constitutive model results show good agreement with the experimental findings. Full article
(This article belongs to the Special Issue Effects of Temperature on Geotechnical Engineering)
Show Figures

Figure 1

22 pages, 18661 KiB  
Article
Experimental and Numerical Investigations on the Slate Shearing Mechanical Behavior
by Jinze Gu, Ming Huang, Fuqiang Ren, Chun Zhu, Zhanbo Cheng, Zhengxiong Bai and Zhiyu Song
Appl. Sci. 2024, 14(19), 9104; https://doi.org/10.3390/app14199104 - 9 Oct 2024
Viewed by 413
Abstract
Multi-scale assessment of shear behavior in the tunnel carbonaceous slate is critical for evaluating the stability of the surrounding rock. In this study, direct shear tests were conducted on carbonaceous slates from the Muzhailing Tunnel, considering five bedding dip angles (β) [...] Read more.
Multi-scale assessment of shear behavior in the tunnel carbonaceous slate is critical for evaluating the stability of the surrounding rock. In this study, direct shear tests were conducted on carbonaceous slates from the Muzhailing Tunnel, considering five bedding dip angles (β) and four normal stresses (σn). The micro-mechanism was also examined by combining acoustic emission (AE) and energy rate with PFC2D Version 5.0 (particle flow code 2D Version 5.0 software) numerical simulations. The results showed a linear relationship between peak shear stress and normal stress, with the rate of increase inversely related to β. Cohesion increased linearly with β, while internal friction angle and AE activity decreased; the energy release rate is 3.92 × 108 aJ/s at 0° and 1.93 × 108 aJ/s at 90°. Shearing along the preset fracture plane was the main failure mode. Increased normal stress led to lateral cracks perpendicular to or intersecting the shear plane. Cracks along the bedding plane formed a broad shear band with concentrated compressive force, and inclined bedding was accompanied by a dense tension chain along the bedding plane. Full article
(This article belongs to the Topic Complex Rock Mechanics Problems and Solutions)
Show Figures

Figure 1

13 pages, 6723 KiB  
Article
Study on Dynamic Mechanical Properties and Failure Pattern of Thin-Layered Schist
by Yaxiong Peng, Zehui Du, Peng Chen, Yingkang Yao, Guangjin Liu and Li Wu
Appl. Sci. 2024, 14(19), 9101; https://doi.org/10.3390/app14199101 - 8 Oct 2024
Viewed by 385
Abstract
This paper studies the effect of schistosity on the dynamic mechanical properties and failure pattern of thin-layered schist. Wudang Group schist with thin layers is selected as the research object, and the influence of the dynamic mechanical properties and failure pattern of schist [...] Read more.
This paper studies the effect of schistosity on the dynamic mechanical properties and failure pattern of thin-layered schist. Wudang Group schist with thin layers is selected as the research object, and the influence of the dynamic mechanical properties and failure pattern of schist under different angles and spacing is studied by combining an SHPB test and numerical simulation. The results indicate that under dynamic loading, the stress–strain curve demonstrates elastic compression, plastic deformation, and strain softening stages. Moreover, it is observed that the dynamic critical failure strength of schist exhibits typical “U”-type strength anisotropy. Specimens with a schistosity angle of 0° or 90° exhibit higher dynamic compressive strength under dynamic loading, with axial splitting and schistosity splitting as predominant failure modes. Conversely, when the schistosity angles are 30°, 45° or 60°, there is a noticeable decrease in compressive strength accompanied predominantly by shear failure along with local compressive shear failure. We additionally noted that as the spacing between schists decreases from 22 mm to 7 mm, there is a gradual reduction in dynamic compressive strength by approximately 20.3%. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

12 pages, 13676 KiB  
Article
Seismic Response of Foundation Settlement for Liquid Storage Structure in Collapsible Loess Areas
by Wenji Huang, Xianhui Cao, Hongyi Xie, Haodong Sun and Xuansheng Cheng
Appl. Sci. 2024, 14(19), 8993; https://doi.org/10.3390/app14198993 - 6 Oct 2024
Viewed by 336
Abstract
To investigate the impact of foundation settlement in loess areas on the dynamic response of liquid storage structure (LSS) under seismic motion, a finite element analysis model of the liquid–solid coupling of LSS was established using ADINA V9.6 software. By analyzing the dynamic [...] Read more.
To investigate the impact of foundation settlement in loess areas on the dynamic response of liquid storage structure (LSS) under seismic motion, a finite element analysis model of the liquid–solid coupling of LSS was established using ADINA V9.6 software. By analyzing the dynamic response patterns of LSS under seismic motion with foundation failure, this study examines the effects of foundation failure and the direction of seismic wave incidence on the equivalent stress, maximum shear stress, wall displacement, and liquid sloshing wave height of the structure. The results indicate that among the three foundation failure scenarios, foundation failure at the center of the tank bottom has the least impact on the structural dynamic response. In contrast, foundation failure affecting one-fourth of the tank base has the greatest impact. Furthermore, compared to seismic motion along the X-axis, the dynamic response of the structure is more significantly affected when seismic motion co-occurs along the X-Z-axis. Full article
(This article belongs to the Special Issue Structural Analysis and Seismic Resilience in Civil Engineering)
Show Figures

Figure 1

15 pages, 1817 KiB  
Article
Application of the Extension Strain Criterion for Sandstone Failure Evaluation under Tension and Shear Stress Conditions
by Jerzy Cieślik
Appl. Sci. 2024, 14(19), 8953; https://doi.org/10.3390/app14198953 - 4 Oct 2024
Viewed by 509
Abstract
The article discusses the possibility of analysing, in geomechanical terms, the applicability of the extension strain criterion to assessing the fracture and failure process of sandstone samples. The results of laboratory tests of indirect tension, as well as uniaxial and triaxial compression were [...] Read more.
The article discusses the possibility of analysing, in geomechanical terms, the applicability of the extension strain criterion to assessing the fracture and failure process of sandstone samples. The results of laboratory tests of indirect tension, as well as uniaxial and triaxial compression were used to identify various forms of the criterion. The criterion parameters for fracture initiation and advanced failure processes were presented, and the results in both cases are different. The possible ways of applying this criterion to assess crack initiation in a tension test and failure in a shear test were also presented. Digital image correlation (DIC) analyses were used to determine the deformations of sandstone samples in both test types. The results of these studies show the possibilities to use this condition, e.g., to assess the stability of large-diameter boreholes (for disposal of radioactive waste) and wellbore stability, and to monitor and track the behaviour of tunnels drilled in strong rocks. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

20 pages, 7079 KiB  
Article
Cement-Formation Debonding Due to Temperature Variation in Geothermal Wells: An Intensive Numerical Simulation Assessment
by Ionut Lambrescu, Khizar Abid and Catalin Teodoriu
Energies 2024, 17(19), 4953; https://doi.org/10.3390/en17194953 - 3 Oct 2024
Viewed by 659
Abstract
Geothermal wells are subjected to higher loads compared to conventional oil and gas wells due to the thermal cycles that occur during both production and non-production phases. These temperature variations can affect the cohesion of the cement within the formation and casing, creating [...] Read more.
Geothermal wells are subjected to higher loads compared to conventional oil and gas wells due to the thermal cycles that occur during both production and non-production phases. These temperature variations can affect the cohesion of the cement within the formation and casing, creating micro-annuli channels that can ultimately compromise the integrity of the well. Therefore, this study employs an intensive finite element methodology to analyze the debonding criteria of casing–cement systems in geothermal wells by examining over 36 independent models. The wellbore cooling and heating processes were simulated using three cohesive zone models (CZM): Type I (tensile), Type II (shear), and mixed (Type I and II simultaneously). The analysis revealed that Type I debonding occurs first during cooling at a temperature of around 10 °C, while Type II is the primary failure mode during heating. Evaluations of interfacial bonding shear strength (IBSS) values indicated that the debonding of the cement would even occur at high IBSS values (3 and 4 MPa) at a differential temperature of 300 °C, while the other IBSS of 1 MPa withstands only 60 °C. However, achieving an IBSS of 4 MPa with current technology is highly unlikely. Therefore, geothermal well operation and construction must be modified to keep the differential temperature below the critical temperature at which the debonding of the cement initiates. The study also found that debonding during cooling happens at lower differential temperatures due to generally lower values for interfacial bonding tensile strength (IBTS), typically less than 1 MPa. The novelty of the study is that it provides new insights into how specific temperatures trigger different types of debonding, highlights that high IBSS values may not prevent debonding at high differential temperatures, and recommends operational adjustments to maintain temperatures below critical levels to enhance cement integrity. Additionally, this study reveals that debonding during cooling occurs at a lower differential temperature change due to the reduced value of the interfacial bonding tensile strength (IBTS). Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

13 pages, 4296 KiB  
Article
Enhancing the Mechanical Properties of Injectable Nanocomposite Hydrogels by Adding Boronic Acid/Boronate Ester Dynamic Bonds at the Nanoparticle–Polymer Interface
by Jesús Sánchez, Jose Ulloa, Yessenia Oyarzún, Matías Ceballos, Carla Ruiz, Bruno Boury and Bruno F. Urbano
Gels 2024, 10(10), 638; https://doi.org/10.3390/gels10100638 - 2 Oct 2024
Viewed by 442
Abstract
Incorporating nanoparticles into injectable hydrogels is a well-known technique for improving the mechanical properties of these materials. However, significant differences in the mechanical properties of the polymer matrix and the nanoparticles can result in localized stress concentrations at the polymer–nanoparticle interface. This situation [...] Read more.
Incorporating nanoparticles into injectable hydrogels is a well-known technique for improving the mechanical properties of these materials. However, significant differences in the mechanical properties of the polymer matrix and the nanoparticles can result in localized stress concentrations at the polymer–nanoparticle interface. This situation can lead to problems such as particle–matrix debonding, void formation, and material failure. This work introduces boronic acid/boronate ester dynamic covalent bonds (DCBs) as energy dissipation sites to mitigate stress concentrations at the polymer–nanoparticle interface. Once boronic acid groups were immobilized on the surface of SiO2 nanoparticles (SiO2-BA) and incorporated into an alginate matrix, the nanocomposite hydrogels exhibited enhanced viscoelastic properties. Compared to unmodified SiO2 nanoparticles, introducing SiO2 nanoparticles with boronic acid on their surface improved the structural integrity and stability of the hydrogel. In addition, nanoparticle-reinforced hydrogels showed increased stiffness and deformation resistance compared to controls. These properties were dependent on nanoparticle concentration. Injectability tests showed shear-thinning behavior for the modified hydrogels with injection force within clinically acceptable ranges and superior recovery. Full article
Show Figures

Figure 1

21 pages, 8620 KiB  
Article
Calibration and Experimental Verification of Finite Element Parameters for Alfalfa Conditioning Model
by Qiao Jin, Yong You, Haiyi Wang, Xueting Ma, Liang Wang, Decheng Wang and Xianfa Fang
Agriculture 2024, 14(10), 1724; https://doi.org/10.3390/agriculture14101724 - 1 Oct 2024
Viewed by 432
Abstract
Conditioning is an important step in harvesting alfalfa hay, as squeezing and bending alfalfa stems can break down the stem fibers and accelerate the drying rate of alfalfa. The quality of alfalfa hay is directly affected by the conditioning effect. The finite element [...] Read more.
Conditioning is an important step in harvesting alfalfa hay, as squeezing and bending alfalfa stems can break down the stem fibers and accelerate the drying rate of alfalfa. The quality of alfalfa hay is directly affected by the conditioning effect. The finite element method (FEM) can quantitatively analyze the interaction relationship between alfalfa and conditioning rollers, which is of great significance for improving conditioning effects and optimizing conditioning systems. The accuracy of material engineering parameters directly affects the simulation results. Due to the small diameter and thin stem wall of alfalfa, some of its material parameters are difficult to measure or have low measurement accuracy. Based on this background, this study proposed a method for calibrating the finite element parameters of thin-walled plant stems. By conducting radial tensile, shear, bending, and radial compression tests on alfalfa stems and combining with the constitutive relationship of the material, the range of engineering parameters for the stems was preliminarily obtained. By conducting a Plackett–Burman experiment, the parameters that affect the maximum shearing force of stems were determined, including Poisson’s ratio in the isotropic plane, radial elastic modulus, and the sliding friction coefficient between the alfalfa stem and steel plate. By conducting the steepest ascent experiment and Box–Behnken experiment, the optimal values of Poisson’s ratio, radial elastic modulus, and sliding friction coefficient were obtained to be 0.42, 28.66 MPa, and 0.60, respectively. Finally, the double-shear experiment, radial compression experiment, and conditioning experiment were used to evaluate the accuracy of the parameters. The results showed that the average relative error between the maximum shear and the measured value was 0.88%, and the average relative error between the maximum radial contact force and the measured value was 2.13%. In the conditioning experiment, the load curve showed the same trend as the measured curve, and the simulation results could demonstrate the stress process and failure mode of alfalfa stems. The modeling and calibration method can effectively predict the stress and failure of alfalfa during conditioning. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

16 pages, 6942 KiB  
Article
A Numerical Study of the Mechanical Behavior of Jointed Soft Rocks under Triaxial Loading Using a Bonded Particle Model
by Mingxing Liu, Yijian Xu, Xiaohu Gao, Jie Fu, Xingyan Liu and Enlong Liu
Materials 2024, 17(19), 4842; https://doi.org/10.3390/ma17194842 - 30 Sep 2024
Viewed by 445
Abstract
In order to master the strength and deformation characteristics, including the macro–micro failure mechanism of soft rock samples with penetrating joints under triaxial loading, a series of numerical triaxial tests have been carried out. The strength and deformation characteristics, failure modes, crack propagation, [...] Read more.
In order to master the strength and deformation characteristics, including the macro–micro failure mechanism of soft rock samples with penetrating joints under triaxial loading, a series of numerical triaxial tests have been carried out. The strength and deformation characteristics, failure modes, crack propagation, distribution of force chains, and the influences of joint dip angles and confining pressures have been analyzed and compared with the laboratory test results. The results show that (1) the residual strength ratio of jointed rock samples generally increases first and then decreases with the increase in joint dip angles under the same confining pressure and reaches the maximum value around 23–24°. Poisson’s ratio increases with the increase in the confining pressure or the joint dip angle. The elastic modulus increases with the increase in the confining pressure and decreases with the increase in the joint dip angle. (2) The jointed rock samples with different joint dip angles compact with relatively small volumetric strains and then dilate up to failure with relatively large volume expansions. Lower confining pressure and smaller dip angles will lead to a more pronounced dilation phenomenon and less obvious volume shrinkage rules. (3) The low-angle jointed rock samples all exhibit the X-type shear failure. The jointed rock samples with a joint dip angle of 45° exhibit hybrid failure with both slippage and shearing, which are controlled by both the matrix and the joint. (4) The change in the number of cracks includes three stages: the slow crack initiation stage, rapid growth stage, and crack coalescence stage. The total number of shear or tensile cracks all decrease with an increase in the joint dip angles, with the number of tensile cracks being approximately twice that of shear cracks. The tension cracks are mostly horizontal, and the shear cracks are mostly vertical. (5) The number of force chains shows a decreasing trend after the cracks begin to grow. The jointed rock samples for the intact, 15° and 30° cases all form a main force chain during the failure process, while there is no main force chain for the 45° case. Full article
Show Figures

Figure 1

Back to TopTop