Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,450)

Search Parameters:
Keywords = sesquiterpene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3713 KiB  
Article
An Unprecedented 4,8-Cycloeudesmane, Further New Sesquiterpenoids, a Triterpene, Steroids, and a Lignan from the Resin of Commiphora myrrha and Their Anti-Inflammatory Activity In Vitro
by Anna Unterholzner, Katrin Kuck, Anna Weinzierl, Bartosz Lipowicz and Jörg Heilmann
Molecules 2024, 29(18), 4315; https://doi.org/10.3390/molecules29184315 (registering DOI) - 11 Sep 2024
Viewed by 161
Abstract
Myrrh has a long tradition in the treatment of inflammatory diseases. However, many of its (active) constituents are still unknown. In the present study, secondary metabolites were isolated from an ethanolic extract by various separation methods (liquid–liquid partition, silica and RP18 flash chromatography, [...] Read more.
Myrrh has a long tradition in the treatment of inflammatory diseases. However, many of its (active) constituents are still unknown. In the present study, secondary metabolites were isolated from an ethanolic extract by various separation methods (liquid–liquid partition, silica and RP18 flash chromatography, CPC, and preparative HPLC), their structures were elucidated with NMR spectroscopy and mass spectrometry, and the selected compounds were tested for their effect on LPS-induced NO production by RAW 264.7 murine macrophages. Among the isolated substances are 17 sesquiterpenes (117) including the first 4,8-cycloeudesmane (1), a triterpene (38), two phytosterols (39, 40) and one lignan (43), which were previously unknown as natural products. Numerous compounds are described for the first time for the genus Commiphora. Eight of the eleven compounds tested (1, 29, 31, 32, 3437) showed a statistically significant, concentration-dependent weak to moderate anti-inflammatory effect on NO production in the LPS-stimulated RAW 264.7 macrophages in vitro. For the reference substance, furanoeudesma-1,3-diene, an IC50 of 46.0 µM was determined. These sesquiterpenes might therefore be part of the multi-target molecular principles behind the efficacy of myrrh in inflammatory diseases. Full article
Show Figures

Figure 1

22 pages, 9389 KiB  
Article
Comparative Analysis of Volatile Components in Chi-Nan and Ordinary Agarwood Aromatherapies: Implications for Sleep Improvement
by Zixiao Jiang, Junyu Mou, Jian Feng, Shunan Zhang, Dan Li and Yangyang Liu
Pharmaceuticals 2024, 17(9), 1196; https://doi.org/10.3390/ph17091196 - 11 Sep 2024
Viewed by 190
Abstract
Agarwood, a precious traditional medicinal herb and fragrant material, is known for its sedative and sleep-improving properties. This study explores the mechanisms underlying the aromatherapy effects of Chi-Nan agarwood and ordinary agarwood in improving sleep. Using a combination of gas chromatography–mass spectrometry (GC-MS), [...] Read more.
Agarwood, a precious traditional medicinal herb and fragrant material, is known for its sedative and sleep-improving properties. This study explores the mechanisms underlying the aromatherapy effects of Chi-Nan agarwood and ordinary agarwood in improving sleep. Using a combination of gas chromatography–mass spectrometry (GC-MS), network pharmacology, and molecular docking techniques, we identified and c ompared the chemical compositions and potential molecular targets of both types of agarwood. The GC-MS analysis detected 87 volatile components across six types of agarwood aromatherapy, with 51 shared between Chi-Nan and ordinary agarwood, while each type also had 18 unique components. Ordinary agarwood was found to be richer in sesquiterpenes and small aromatic molecules, whereas Chi-Nan agarwood contained higher levels of chromones. These differences in chemical composition are likely responsible for the distinct sleep-improving effects observed between the two types of agarwood. Through network pharmacology, 100, 65, and 47 non-repetitive target genes related to sleep improvement were identified for components shared by both types of agarwood (CSBTs), components unique to common agarwood (CUCMs), and components unique to Chi-Nan agarwood (CUCNs), respectively. The constructed protein–protein interaction (PPI) networks revealed that key targets such as MAOA, MAOB, SLC6A4, and ESR1 are involved in the sleep-improving mechanisms of agarwood aromatherapy. Molecular docking further confirmed the strong binding affinities of major active components, such as 5-Isopropylidene-6-methyldeca-369-trien-2-one and 2-(2-Phenylethyl)chromone, with these core targets. The results suggest that agarwood aromatherapy enhances sleep quality through both hormonal and neurotransmitter pathways, with ordinary agarwood more deeply mediating hormonal regulation, while Chi-Nan agarwood predominantly influences neurotransmitter pathways, particularly those involving serotonin and GABA. This study provides valuable insights into the distinct therapeutic potentials of Chi-Nan and ordinary agarwood, highlighting their roles in sleep improvement and offering a foundation for future research in the clinical application of agarwood-based aromatherapy. Full article
(This article belongs to the Special Issue Neuropharmacology of Plant Extracts and Their Active Compounds)
Show Figures

Figure 1

25 pages, 13094 KiB  
Essay
Integrated Analysis of the Transcriptome and Metabolome Reveals Genes Involved in the Synthesis of Terpenoids in Rhododendron fortunei Lindl.
by Yi Qin, Guoxia Yang, Dongbin Li, Danyidie Zhang, Zhihui Chen, Zhongyi Yang, Kaitai Yang, Xiaohong Xie and Yueyan Wu
Horticulturae 2024, 10(9), 959; https://doi.org/10.3390/horticulturae10090959 - 9 Sep 2024
Viewed by 320
Abstract
Rhododendron, a globally popular ornamental flower, is nevertheless limited in our understanding of the mechanisms underlying its fragrance formation. Notably, terpenoids are the most prevalent volatile metabolite produced by plants. In this study, gas chromatography–mass spectrometry (GC–MS), liquid chromatography–mass spectrometry (LC–MS) and [...] Read more.
Rhododendron, a globally popular ornamental flower, is nevertheless limited in our understanding of the mechanisms underlying its fragrance formation. Notably, terpenoids are the most prevalent volatile metabolite produced by plants. In this study, gas chromatography–mass spectrometry (GC–MS), liquid chromatography–mass spectrometry (LC–MS) and transcriptomics sequencing were conducted to analyze the synthesis mechanisms of terpenoid fragrance compounds of petals in fragrant R. fortunei Lindl. (YJ) and non-fragrant R. “Nova Zembla” (NW). The results identified that (-)-myrtenol, linalool, pinene, myrtenyl acetate, and terpineol were key floral aroma substances in YJ. Furthermore, an analysis of KEGG enrichment and differentially expressed genes (DEGs) revealed that the bud and decay stages exhibited the highest number of enriched DEGs among different aroma types, indicating these as critical stages for the synthesis of terpenoid floral compounds. In this study, a structural gene, denoted as RfFDPS, was identified as a negative regulatory gene for monoterpene accumulation and a positive regulatory gene for sesquiterpene accumulation in YJ. Utilizing subcellular localization technology, we determined that RfFDPS proteins are located in the cytoplasm. A functional analysis through transient expression and gene silencing of RfFDPS demonstrated its ability to regulate the accumulation of monoterpenes and sesquiterpenes. The overexpression of RfFDPS led to an increase in the expression of structural genes related to terpenoid synthesis, resulting in a decrease in monoterpenes and an increase in sesquiterpenes. Conversely, gene silencing had the opposite effect. In conclusion, RfFDPS plays a pivotal role in the synthesis and release of terpenoid volatile compounds in YJ petals, laying a solid theoretical foundation for the cultivation and enhancement of aromatic R. species. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

19 pages, 3450 KiB  
Article
The Content of Volatile Organic Compounds in Calypogeia suecica (Calypogeiaceae, Marchantiophyta) Confirms Genetic Differentiation of This Liverwort Species into Two Groups
by Rafał Wawrzyniak, Wiesław Wasiak, Małgorzata Guzowska, Alina Bączkiewicz and Katarzyna Buczkowska
Molecules 2024, 29(17), 4258; https://doi.org/10.3390/molecules29174258 - 8 Sep 2024
Viewed by 351
Abstract
Calypogeia is a genus of liverworts in the family Calypogeiaceae. The subject of this study was Calypogeia suecica. Samples of the liverwort Calypogeia suecica were collected from various places in southern Poland. A total of 25 samples were collected in 2021, and [...] Read more.
Calypogeia is a genus of liverworts in the family Calypogeiaceae. The subject of this study was Calypogeia suecica. Samples of the liverwort Calypogeia suecica were collected from various places in southern Poland. A total of 25 samples were collected in 2021, and 25 samples were collected in 2022. Volatile organic compounds (VOCs) from liverworts were analyzed by gas chromatography–mass spectrometry (GC–MS). A total of 107 compounds were detected, of which 38 compounds were identified. The identified compounds were dominated by compounds from the sesquiterpene group (up to 34.77%) and sesquiterpenoids (up to 48.24%). The tested samples of Calypogeia suecica also contained compounds belonging the aromatic classification (up to 5.46%), aliphatic hydrocarbons (up to 1.66%), and small amounts of monoterpenes (up to 0.17%) and monoterpenoids (up to 0.30%). Due to the observed differences in the composition of VOCs, the tested plant material was divided into two groups, in accordance with genetic diversity. Full article
(This article belongs to the Special Issue Study on Extraction and Chemical Constituents of Natural Extracts)
Show Figures

Graphical abstract

17 pages, 13641 KiB  
Review
The Recent Progress of Tricyclic Aromadendrene-Type Sesquiterpenoids: Biological Activities and Biosynthesis
by Xiaoguang Yan, Jiaqi Lin, Ziming Liu, Sichone Daniel David, Dongmei Liang, Shengxin Nie, Mingyue Ge, Zhaohui Xue, Weiguo Li and Jianjun Qiao
Biomolecules 2024, 14(9), 1133; https://doi.org/10.3390/biom14091133 - 7 Sep 2024
Viewed by 405
Abstract
The tricyclic-aromadendrene-type sesquiterpenes are widely distributed and exhibit a range of biological activities, including anti-inflammatory, analgesic, antioxidant, antibacterial, insecticidal and cytotoxic properties. Several key sesquiterpene synthases (STSs) of this type have been identified, of which, viridiflorol synthase has been engineered for efficiently biosynthesizing [...] Read more.
The tricyclic-aromadendrene-type sesquiterpenes are widely distributed and exhibit a range of biological activities, including anti-inflammatory, analgesic, antioxidant, antibacterial, insecticidal and cytotoxic properties. Several key sesquiterpene synthases (STSs) of this type have been identified, of which, viridiflorol synthase has been engineered for efficiently biosynthesizing viridiflorol in an Escherichia coli strain. This paper comprehensively summarizes the distribution and biological activity of aromadendrene-type sesquiterpenes in plant essential oils and microorganisms. The progress in aromadendrene-type sesquiterpene biosynthesis research, including the modifications of key STSs and the optimization of synthetic pathways, is reviewed. Finally, the prospects and associated challenges for the application and biosynthesis of these natural products are also discussed. Full article
(This article belongs to the Section Synthetic Biology and Bioengineering)
Show Figures

Figure 1

21 pages, 3998 KiB  
Article
From Leaves to Reproductive Organs: Chemodiversity and Chemophenetics of Essential Oils as Important Tools to Evaluate Piper mollicomum Kunth Chemical Ecology Relevance in the Neotropics
by Daniel de Brito Machado, Jéssica Sales Felisberto, George Azevedo de Queiroz, Elsie Franklin Guimarães, Ygor Jessé Ramos and Davyson de Lima Moreira
Plants 2024, 13(17), 2497; https://doi.org/10.3390/plants13172497 - 6 Sep 2024
Viewed by 247
Abstract
Piper mollicomum Kunth (Piperaceae) plays a vital role in the preservation of the Brazilian Atlantic Forest by contributing to the regeneration of deforested areas. Recent scientific investigations have analyzed the chemical constituents and seasonal dynamics of essential oils (EO) from various Piper L. [...] Read more.
Piper mollicomum Kunth (Piperaceae) plays a vital role in the preservation of the Brazilian Atlantic Forest by contributing to the regeneration of deforested areas. Recent scientific investigations have analyzed the chemical constituents and seasonal dynamics of essential oils (EO) from various Piper L. species, highlighting the need to elucidate their chemical–ecological interactions. This study aims to expand the chemical–ecological knowledge of this important taxon in neotropical forests, using P. mollicomum as a model. The methodologies employed include the collection of plant material, EO extraction by hydrodistillation, analysis of EO by gas chromatography–mass spectrometry (GC–MS) and gas chromatography–flame ionization detector (GC–FID), recording the frequency of visits by potential pollinators and microclimatic variables, and by conducting calculations of chemodiversity and chemophenetic indices. Chemical analyses indicated that the diversity of EO and environmental factors are linked to the activities of potential pollinators. In the Tijuca Forest, P. mollicomum revealed significant interactions between its volatile constituents and microclimatic variables, showing that the chemodiversity of the leaves and reproductive organs correlates with pollinator visitation. Additionally, a notable difference in chemical evenness was observed between these vegetative structures. The chemophenetic indices by Ramos and Moreira also revealed correlations with chemical diversity. Full article
(This article belongs to the Special Issue Plant–Insect Interactions II)
Show Figures

Figure 1

48 pages, 5981 KiB  
Review
An Overview of Secondary Metabolites from Soft Corals of the Genus Capnella over the Five Decades: Chemical Structures, Pharmacological Activities, NMR Data, and Chemical Synthesis
by Can-Qi Liu, Qi-Bin Yang, Ling Zhang and Lin-Fu Liang
Mar. Drugs 2024, 22(9), 402; https://doi.org/10.3390/md22090402 - 2 Sep 2024
Viewed by 720
Abstract
There has been no specific review on the secondary metabolites from soft corals of the genus Capnella till now. In this work, all secondary metabolites from different species of the title genus were described. It covered the first work from 1974 to May [...] Read more.
There has been no specific review on the secondary metabolites from soft corals of the genus Capnella till now. In this work, all secondary metabolites from different species of the title genus were described. It covered the first work from 1974 to May 2024, spanning five decades. In the viewpoint of the general structural features, these chemical constituents were classified into four groups: sesquiterpenes, diterpenes, steroids, and lipids. Additionally, the 1H and 13C NMR data of these metabolites were provided when available in the literature. Among them, sesquiterpenes were the most abundant chemical compositions from soft corals of the genus Capnella. A variety of pharmacological activities of these compounds were evaluated, such as cytotoxic, antibacterial, antifungal, and anti-inflammatory activities. In addition, the chemical synthesis works of several representative sesquiterpenes were provided. This review aims to provide an up-to-date knowledge of the chemical structures, pharmacological activities, and chemical synthesis of the chemical constituents from soft corals of the genus Capnella. Full article
(This article belongs to the Special Issue Bioactive Compounds from Soft Corals and Their Derived Microorganisms)
Show Figures

Figure 1

13 pages, 9556 KiB  
Article
Seasonality’s Effects on the Chemical Composition and Antiradical Capacity of the Floral Essential Oil of Acmella oleracea (L.) R.K. Jansen Cultivated in the Brazilian Amazon
by Lucas Botelho Jerônimo, José Augusto C. de Araújo, Joyce Kelly R. da Silva, Rosa Helena V. Mourão, William N. Setzer and Pablo Luis B. Figueiredo
Horticulturae 2024, 10(9), 925; https://doi.org/10.3390/horticulturae10090925 - 29 Aug 2024
Viewed by 316
Abstract
For the first time, this work reports the seasonal influence on the chemical composition and antiradical capacity of Acmella oleracea floral essential oil, produced from a perennial herb of great nutritional and pharmacological importance in the Amazon region. The species was cultivated and [...] Read more.
For the first time, this work reports the seasonal influence on the chemical composition and antiradical capacity of Acmella oleracea floral essential oil, produced from a perennial herb of great nutritional and pharmacological importance in the Amazon region. The species was cultivated and the plantation was monitored from May to September 2022 between the rainy and dry seasons. The essential oils were obtained by hydrodistillation, analyzed by gas chromatography coupled with a mass spectrometer, and subjected to the free radical inhibition assay using the DPPH method. The highest oil yield (1.61%) occurred in May (rainy season), and the lowest (0.68%) occurred in September (dry season). Despite the difference in the oil yield between the rainy and dry seasons, no significant correlation with weather conditions (p > 0.05) occurred. During the collection period, the class of sesquiterpene hydrocarbons was predominant (16.35–46.01%). The main constituents of A. oleracea were E-caryophyllene (13.57–25.74%), caryophyllene oxide (0.88–31.72%), 1-pentadecene (5.42–16.58%), germacrene D (0.14–15.17%), and myrcene (1.08–11.99%), and a low concentration of its main bioactive spilanthol (0.66–5.2%) was also observed. The antiradical capacity was considered low, with inhibition of 7.96 to 7.53% of free radicals and a Trolox equivalence of 68.4 to 64.7 mg·ET/g. Although there were some changes in the levels of chemical components in A. oleracea essential oils, the species can be considered an alternative source of pharmacologically active compounds such as E-caryophyllene and caryophyllene oxide, in addition to presenting amounts of other bioactive molecules. Full article
Show Figures

Figure 1

18 pages, 3450 KiB  
Article
Analysis of the Volatile and Enantiomeric Compounds Emitted by Plumeria rubra L. Flowers Using HS-SPME–GC
by James Calva, Jhoyce Celi and Ángel Benítez
Plants 2024, 13(17), 2367; https://doi.org/10.3390/plants13172367 - 25 Aug 2024
Viewed by 350
Abstract
The volatile components emitted by fresh aromatic flowers of Plumeria rubra L., harvested in southern Ecuador during three different months were determined to evaluate the fluctuation of secondary metabolites. The volatile compounds were analyzed using headspace solid-phase microextraction (HS-SPME) followed by gas chromatography [...] Read more.
The volatile components emitted by fresh aromatic flowers of Plumeria rubra L., harvested in southern Ecuador during three different months were determined to evaluate the fluctuation of secondary metabolites. The volatile compounds were analyzed using headspace solid-phase microextraction (HS-SPME) followed by gas chromatography coupled to mass spectrometry (GC–MS) and a flame ionization detector (GC–FID) using two types of columns: a non-polar (DB-5ms) and polar column (HP-INNOWax). The principal chemical groups were hydrocarbon sesquiterpenes (43.5%; 40.0%), oxygenated sesquiterpenes (23.4%; 26.4%), oxygenated monoterpenes (14.0%; 11.2%), and hydrocarbon monoterpenes (12.7%; 9.3%). The most representative constituents were (E,E)-α-Farnesene (40.9–41.2%; 38.5–50.6%), (E)-nerolidol (21.4–32.6%; 23.2–33.0%), (E)-β-ocimene (4.2–12.5%; 4.5–9.1%), (Z)-dihydro-apofarnesol (6.5–9.9%; 7.6–8.6%), linalool (5.6–8.3%; 3.3–7.8%), and perillene (3.1–5.9%; 3.0–3.2%) in DB-5ms and HP-INNOWax, respectively. Finally, we reported for the first time the enantiomeric distribution of P. rubra flowers, where the enantiomers (1R,5R)-(+)-α-pinene, (S)-(−)-limonene, (S)-(+)-Linalool, and (1S,2R,6R,7R,8R)-(+)-α-copaene were present as enantiomerically pure substances, whereas (S)-(+)-(E)-Nerolidol and (R)-(+)-(E)-Nerolidol were observed as scalemic mixtures. This study provides the first comprehensive and comparative aroma profile of Plumeria rubra cultivated in southern Ecuador and gave us a clue to the variability of P. rubra chemotypes depending on the harvesting time, which could be used for future quality control or applications in phytopharmaceutical and food industries. Full article
(This article belongs to the Special Issue Extraction, Composition and Comparison of Plant Volatile Components)
Show Figures

Figure 1

14 pages, 6572 KiB  
Article
Cacalol Acetate as Anticancer Agent: Antiproliferative, Pro-Apoptotic, Cytostatic, and Anti-Migratory Effects
by Gareth Omar Rostro-Alonso, Alejandro Israel Castillo-Montoya, Juan Carlos García-Acosta, Erick Fernando Aguilar-Llanos, Laura Itzel Quintas-Granados, Edgar Yebrán Villegas-Vazquez, Rosario García-Aguilar, Samantha Andrea Porras-Vázquez, Lilia Patricia Bustamante-Montes, Jesús J. Alvarado-Sansininea, Manuel Jiménez-Estrada, Lizbeth Cariño-Calvo, Manuel González-del Carmen, Hernán Cortés, Gerardo Leyva-Gómez, Gabriela Figueroa-González and Octavio Daniel Reyes-Hernández
Curr. Issues Mol. Biol. 2024, 46(9), 9298-9311; https://doi.org/10.3390/cimb46090550 - 23 Aug 2024
Viewed by 378
Abstract
Cacalol (C), a sesquiterpene isolated from Psacalium decompositum, has demonstrated anti-inflammatory and antioxidant activities. Its cytotoxic, antiproliferative, and pro-apoptotic effects have been previously shown in an in vitro breast cancer model. A derivative, cacalol acetate (CA), shows potential in regulating these processes, [...] Read more.
Cacalol (C), a sesquiterpene isolated from Psacalium decompositum, has demonstrated anti-inflammatory and antioxidant activities. Its cytotoxic, antiproliferative, and pro-apoptotic effects have been previously shown in an in vitro breast cancer model. A derivative, cacalol acetate (CA), shows potential in regulating these processes, which has not been previously reported. This study focused on an in vitro cervical cancer model, assessing CA’s antiproliferative, pro-apoptotic, cytostatic, and anti-migratory activities using the HeLa cell line. The natural anticancer agent indole-3-carbinol (I3C) was used as a control for comparison. CA demonstrated significant antitumor activities, including inhibiting cell growth, inducing apoptosis, arresting cells in the G2 phase of the cell cycle, and inhibiting cell migration. These effects were notably greater compared to I3C. I3C, while following a similar trend, did not induce Cas-3 expression, suggesting a different apoptotic pathway. Neither CA nor I3C increased p62 and LC3B levels, indicating they do not stimulate autophagy marker expression. Both compounds inhibited HeLa cell migration and induced cell cycle arrest. Despite both holding promise as anticancer agents for cervical cancer, CA’s lower cytotoxicity and stronger regulation of tumor phenotypes make it a more promising agent compared to I3C. Full article
(This article belongs to the Special Issue Phytochemicals in Cancer Chemoprevention and Treatment)
Show Figures

Figure 1

10 pages, 1359 KiB  
Article
EDBD—3,6-Epidioxy-1,10-Bisaboladiene—An Endoperoxide Sesquiterpene Obtained from Drimys brasiliensis (Winteraceae) Exhibited Potent Preclinical Efficacy against Schistosoma mansoni Infection
by Eric Umehara, Thainá R. Teixeira, Rayssa A. Cajás, Monique C. Amaro, Josué de Moraes and João Henrique G. Lago
Antibiotics 2024, 13(8), 779; https://doi.org/10.3390/antibiotics13080779 - 18 Aug 2024
Viewed by 565
Abstract
Schistosomiasis, a neglected tropical disease impacting over 250 million individuals globally, remains a major public health challenge due to its prevalence and significant impact on affected communities. Praziquantel, the sole available treatment, highlights the urgency of the need for novel anthelmintic agents to [...] Read more.
Schistosomiasis, a neglected tropical disease impacting over 250 million individuals globally, remains a major public health challenge due to its prevalence and significant impact on affected communities. Praziquantel, the sole available treatment, highlights the urgency of the need for novel anthelmintic agents to achieve the World Health Organization (WHO) goal of schistosomiasis elimination. Previous studies reported the promising antiparasitic activity of different terpenoids against Schistosoma mansoni Sambon (Diplostomida: Schistosomatidae). In the present work, the hexane extract from branches of Drimys brasiliensis afforded a diastereomeric mixture of endoperoxide sesquiterpenes, including 3,6-epidioxy-bisabola-1,10-diene (EDBD). This compound was evaluated in vitro and in vivo against S. mansoni. EDBD exhibited a significant reduction in S. mansoni viability in vitro, with an effective concentration (EC50) value of 4.1 µM. Additionally, EDBD demonstrated no toxicity to mammalian cells. In silico analysis predicted good drug-likeness properties, adhering to pharmaceutical industry standards, including favorable ADME profiles. Furthermore, oral treatment of S. mansoni-infected mice with EDBD (400 mg/kg) resulted in a remarkable egg burden reduction (98% and 99% in tissues and feces, respectively) surpassing praziquantel’s efficacy. These findings suggest the promising potential of EDBD as a lead molecule for developing a novel schistosomiasis treatment. Full article
(This article belongs to the Special Issue Antiparasitic Natural Products)
Show Figures

Figure 1

12 pages, 1545 KiB  
Article
Lippia origanoides and Thymus vulgaris Essential Oils Synergize with Ampicillin against Extended-Spectrum Beta-Lactamase-Producing Escherichia coli
by Levi Jafet Bastida-Ramírez, Leticia Buendía-González, Euridice Ladisu Mejía-Argueta, Antonio Sandoval-Cabrera, María Magdalena García-Fabila, Sergio Humberto Pavón-Romero, Monica Padua-Ahumada and Jonnathan Guadalupe Santillán-Benítez
Microorganisms 2024, 12(8), 1702; https://doi.org/10.3390/microorganisms12081702 - 17 Aug 2024
Viewed by 631
Abstract
(1) Background: Could compounds such as monoterpenes and sesquiterpenes present in essential plant oils inhibit bacterial growth as an alternative to help mitigate bacterial resistance? The purpose of this study is evaluating the in vitro antibacterial effect of Lippia organoides EO (LEO) and [...] Read more.
(1) Background: Could compounds such as monoterpenes and sesquiterpenes present in essential plant oils inhibit bacterial growth as an alternative to help mitigate bacterial resistance? The purpose of this study is evaluating the in vitro antibacterial effect of Lippia organoides EO (LEO) and Thymus vulgaris EO (TEO), individually and in combination with ampicillin, against extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli strains; (2) Methods: Experimental in vitro design with post-test. The EOs were obtained by hydrodistillation and were analyzed by GC. ESBL-producing E. coli strains used were selected from urine cultures and the blaCTX-M and blaTEM resistance genes were identified by end point PCR. The disk diffusion method was used for the susceptibility tests. The MICs and MBCs were determined by microdilution test. Finally, the interaction effect was observed by checkerboard assay; (3) Results: A 39.9% decrease in the growth of the strain thymol in TEO and 70.4% in carvacrol in LEO was shown, observing inhibition halos of 32 mm for both EOs. MICs of 632 and 892 μg/mL for LEO and 738 and 940 μg/mL for TEO were determined. Finally, it was observed that, at low doses, there is a synergistic effect between TEO + LEO and EOs + ampicillin; (4) Conclusions: The findings demonstrate that TEO and LEO have an inhibitory effect on ESBL-producing E. coli, suggesting that they are candidates for further studies in the formulation of antibiotics to reduce bacterial resistance to traditional antibiotics. Full article
(This article belongs to the Special Issue ß-Lactamases 3.0)
Show Figures

Figure 1

21 pages, 1081 KiB  
Review
Artemisinin and Its Derivatives as Potential Anticancer Agents
by Luan Wen, Ben Chung-Lap Chan, Ming-Hua Qiu, Ping-Chung Leung and Chun-Kwok Wong
Molecules 2024, 29(16), 3886; https://doi.org/10.3390/molecules29163886 - 16 Aug 2024
Viewed by 503
Abstract
Artemisinin is a natural sesquiterpene lactone obtained from the traditional Chinese medicinal herb Artemisia annua L. (qinghao). Artemisinin and its derivatives share an unusual endoperoxide bridge and are extensively used for malaria treatment worldwide. In addition to antimalarial activities, artemisinin and [...] Read more.
Artemisinin is a natural sesquiterpene lactone obtained from the traditional Chinese medicinal herb Artemisia annua L. (qinghao). Artemisinin and its derivatives share an unusual endoperoxide bridge and are extensively used for malaria treatment worldwide. In addition to antimalarial activities, artemisinin and its derivatives have been reported to exhibit promising anticancer effects in recent decades. In this review, we focused on the research progress of artemisinin and its derivatives with potential anticancer activities. The pharmacological effects, potential mechanisms, and clinical trials in cancer therapy of artemisinin and its derivatives were discussed. This review may facilitate the future exploration of artemisinin and its derivatives as effective anticancer agents. Full article
(This article belongs to the Special Issue Exploring the Potential of Plant-Derived Natural Anticancer Agents)
Show Figures

Figure 1

13 pages, 11706 KiB  
Article
Chemical Profile and Potential Applications of Sclerocarya birrea (A.Rich.) Hochst. subsp. caffra (Sond.) Kokwaro Kernel Oils: Analysis of Volatile Compounds and Fatty Acids
by Callistus Bvenura and Learnmore Kambizi
Molecules 2024, 29(16), 3815; https://doi.org/10.3390/molecules29163815 - 11 Aug 2024
Viewed by 699
Abstract
Sclerocarya birrea kernel volatile compounds and fatty acid methyl esters (FAMEs) from the Bubi district in Matabeleland North province of Zimbabwe were characterised by GC–MS. The volatile compounds of the oil include 65 different compounds from 24 distinct classes, dominated by 13 alcohols [...] Read more.
Sclerocarya birrea kernel volatile compounds and fatty acid methyl esters (FAMEs) from the Bubi district in Matabeleland North province of Zimbabwe were characterised by GC–MS. The volatile compounds of the oil include 65 different compounds from 24 distinct classes, dominated by 13 alcohols and 14 aldehydes (42%). Other classes include carboxylic acids, phenols, sesquiterpenes, lactones, pyridines, saturated fatty acids, ketones, and various hydrocarbons. The kernel oils revealed essential fatty acids such as polyunsaturated (α-linolenic and linoleic acids) and monounsaturated fatty acids (palmitic, palmitoleic, and oleic acids). Notably, oleic acid is the predominant fatty acid at 521.61 mg/g, constituting approximately 73% of the total fatty acids. Linoleic acid makes up 8%, and saturated fatty acids make up about 7%, including significant amounts of stearic (42.45 mg/g) and arachidic (3.46 mg/g) acids. These results validate the use of marula oils in food, pharmaceutical, and health industries, as well as in the multibillion USD cosmetics industry. Therefore, the potential applications of S. berria kernel oils are extensive, necessitating further research and exploration to fully unlock their capabilities. Full article
(This article belongs to the Special Issue Functional Evaluation of Bioactive Compounds from Natural Sources)
21 pages, 4169 KiB  
Article
Kalanchoe tomentosa: Phytochemical Profiling, and Evaluation of Its Biological Activities In Vitro, In Vivo, and In Silico
by Jorge L. Mejía-Méndez, Gildardo Sánchez-Ante, Yulianna Minutti-Calva, Karen Schürenkämper-Carrillo, Diego E. Navarro-López, Ricardo E. Buendía-Corona, Ma. del Carmen Ángeles González-Chávez, Angélica Lizeth Sánchez-López, J. Daniel Lozada-Ramírez, Eugenio Sánchez-Arreola and Edgar R. López-Mena
Pharmaceuticals 2024, 17(8), 1051; https://doi.org/10.3390/ph17081051 - 9 Aug 2024
Viewed by 1058
Abstract
In this work, the leaves of K. tomentosa were macerated with hexane, chloroform, and methanol, respectively. The phytochemical profiles of hexane and chloroform extracts were unveiled using GC/MS, whereas the chemical composition of the methanol extract was analyzed using UPLC/MS/MS. The antibacterial activity [...] Read more.
In this work, the leaves of K. tomentosa were macerated with hexane, chloroform, and methanol, respectively. The phytochemical profiles of hexane and chloroform extracts were unveiled using GC/MS, whereas the chemical composition of the methanol extract was analyzed using UPLC/MS/MS. The antibacterial activity of extracts was determined against gram-positive and gram-negative strains through the minimal inhibitory concentration assay, and in silico studies were implemented to analyze the interaction of phytoconstituents with bacterial peptides. The antioxidant property of extracts was assessed by evaluating their capacity to scavenge DPPH, ABTS, and H2O2 radicals. The toxicity of the extracts was recorded against Artemia salina nauplii and Caenorhabditis elegans nematodes. Results demonstrate that the hexane and chloroform extracts contain phytosterols, triterpenes, and fatty acids, whereas the methanol extract possesses glycosidic derivatives of quercetin and kaempferol together with sesquiterpene lactones. The antibacterial performance of extracts against the cultured strains was appraised as weak due to their MIC90 values (>500 μg/mL). As antioxidants, treatment with extracts executed high and moderate antioxidant activities within the range of 50–300 μg/mL. Extracts did not decrease the viability of A. salina, but they exerted a high toxic effect against C. elegans during exposure to treatment. Through in silico modeling, it was recorded that the flavonoids contained in the methanol extract can hamper the interaction of the NAM/NAG peptide, which is of great interest since it determines the formation of the peptide wall of gram-positive bacteria. This study reports for the first time the biological activities and phytochemical content of extracts from K. tomentosa and proposes a possible antibacterial mechanism of glycosidic derivatives of flavonoids against gram-positive bacteria. Full article
Show Figures

Figure 1

Back to TopTop