Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (67,038)

Search Parameters:
Keywords = sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 736 KiB  
Article
Evaluating Deep Learning Networks Versus Hybrid Network for Smart Monitoring of Hydropower Plants
by Fatemeh Hajimohammadali, Emanuele Crisostomi, Mauro Tucci and Nunzia Fontana
Energies 2024, 17(22), 5670; https://doi.org/10.3390/en17225670 (registering DOI) - 13 Nov 2024
Abstract
One of the main goals of the International Energy Agency (IEA) is to manage and utilize clean energy to achieve net zero emissions by 2050. Hydropower plants can significantly contribute to this goal as they are vital components of the global energy infrastructure, [...] Read more.
One of the main goals of the International Energy Agency (IEA) is to manage and utilize clean energy to achieve net zero emissions by 2050. Hydropower plants can significantly contribute to this goal as they are vital components of the global energy infrastructure, providing a clean, safe, and sustainable power source. Accordingly, there is great interest in developing methods to prevent errors and anomalies and ensure full operational availability. With modern hydropower plants equipped with sensors that capture extensive data, machine learning algorithms utilizing these data to detect and predict anomalies have gained research attention. This paper demonstrates that deep learning algorithms are particularly powerful in predicting time series. Three well-known deep learning networks are examined and compared to previous approaches, followed by the introduction of a new, innovative hybrid network. Using real-world data from two hydropower plants, the hybrid model outperforms individual deep learning models by achieving more accurate fault detection, reducing false positives, offering early fault prediction, and identifying faults several weeks before occurrence. These results showcase the hybrid network’s potential to enhance maintenance planning, reduce downtime, and improve operational efficiency in energy systems. Full article
(This article belongs to the Special Issue Intelligent Analysis and Control of Modern Power Systems)
Show Figures

Figure 1

13 pages, 4619 KiB  
Article
Research on Voltage Self-Calibration Sensing Technology Based on Measurement Circuit Topology Changes
by Shangpeng Sun, Zhenhui Qiu, Shijun Song, Jianjian He, Feiyue Ma and Qing Yang
Energies 2024, 17(22), 5672; https://doi.org/10.3390/en17225672 (registering DOI) - 13 Nov 2024
Abstract
In capacitance-coupled voltage-sensing technology, the degree of coupling capacitance is affected by the sensing area, relative position deviation, and other factors, and thus the measurement coefficient is often difficult to determine accurately and presents greater implementation difficulties in actual deployment. This paper proposes [...] Read more.
In capacitance-coupled voltage-sensing technology, the degree of coupling capacitance is affected by the sensing area, relative position deviation, and other factors, and thus the measurement coefficient is often difficult to determine accurately and presents greater implementation difficulties in actual deployment. This paper proposes a dynamic reconfiguration based on the measurement circuit topology of the voltage sensor adaptive calibration method in order to measure voltage sensor gain in the process of automatic measuring. Firstly, the basic principle of voltage measurement is introduced, and the self-calibration method is proposed, considering the influence of the sensing area and the relative position error on the change in the coupling capacitance. On this basis, the influence of calibration accuracy on sensor structure parameters is analyzed using network sensitivity analysis, and the parameter selection principle is given, according to which the selection criterion of parameter optimization is formulated to complete the sensor design. By analyzing the coupling effect of the three-phase measurement, the installation method of the sensing structure is proposed. An experimental platform is built to test the accuracy of the voltage measurement of the sensor under laboratory conditions. The experimental results show that the maximum relative error of the voltage measurement amplitude is 2.24%. In order to verify the feasibility of the sensor technology designed, the measurement models that integrate communication, acquisition, and processing are installed on both ends of the circuit breaker wire, and the voltage waveform generated during the circuit breaker closing process is recorded in real time. The experimental results show that the sensor technology can accurately record the voltage waveform of the signal to be measured, and the feasibility of its application in switchgear equipment signal measurement is preliminarily verified by the results. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

30 pages, 4171 KiB  
Review
Animal-Morphing Bio-Inspired Mechatronic Systems: Research Framework in Robot Design to Enhance Interplanetary Exploration on the Moon
by José Cornejo, Cecilia E. García Cena and José Baca
Biomimetics 2024, 9(11), 693; https://doi.org/10.3390/biomimetics9110693 (registering DOI) - 13 Nov 2024
Abstract
Over the past 50 years, the space race has potentially grown due to the development of sophisticated mechatronic systems. One of the most important is the bio-inspired mobile-planetary robots, actually for which there is no reported one that currently works physically on the [...] Read more.
Over the past 50 years, the space race has potentially grown due to the development of sophisticated mechatronic systems. One of the most important is the bio-inspired mobile-planetary robots, actually for which there is no reported one that currently works physically on the Moon. Nonetheless, significant progress has been made to design biomimetic systems based on animal morphology adapted to sand (granular material) to test them in analog planetary environments, such as regolith simulants. Biomimetics and bio-inspired attributes contribute significantly to advancements across various industries by incorporating features from biological organisms, including autonomy, intelligence, adaptability, energy efficiency, self-repair, robustness, lightweight construction, and digging capabilities-all crucial for space systems. This study includes a scoping review, as of July 2024, focused on the design of animal-inspired robotic hardware for planetary exploration, supported by a bibliometric analysis of 482 papers indexed in Scopus. It also involves the classification and comparison of limbed and limbless animal-inspired robotic systems adapted for movement in soil and sand (locomotion methods such as grabbing-pushing, wriggling, undulating, and rolling) where the most published robots are inspired by worms, moles, snakes, lizards, crabs, and spiders. As a result of this research, this work presents a pioneering methodology for designing bio-inspired robots, justifying the application of biological morphologies for subsurface or surface lunar exploration. By highlighting the technical features of actuators, sensors, and mechanisms, this approach demonstrates the potential for advancing space robotics, by designing biomechatronic systems that mimic animal characteristics. Full article
Show Figures

Figure 1

23 pages, 8520 KiB  
Article
Fall Detection in Q-eBall: Enhancing Gameplay Through Sensor-Based Solutions
by Zeyad T. Aklah, Hussein T. Hassan, Amean Al-Safi and Khalid Aljabery
J. Sens. Actuator Netw. 2024, 13(6), 77; https://doi.org/10.3390/jsan13060077 (registering DOI) - 13 Nov 2024
Abstract
The field of physically interactive electronic games is rapidly evolving, driven by the fact that it combines the benefits of physical activities and the attractiveness of electronic games, as well as advancements in sensor technologies. In this paper, a new game was introduced, [...] Read more.
The field of physically interactive electronic games is rapidly evolving, driven by the fact that it combines the benefits of physical activities and the attractiveness of electronic games, as well as advancements in sensor technologies. In this paper, a new game was introduced, which is a special version of Bubble Soccer, which we named Q-eBall. It creates a dynamic and engaging experience by combining simulation and physical interactions. Q-eBall is equipped with a fall detection system, which uses an embedded electronic circuit integrated with an accelerometer, a gyroscopic, and a pressure sensor. An evaluation of the performance of the fall detection system in Q-eBall is presented, exploring its technical details and showing its performance. The system captures the data of players’ movement in real-time and transmits it to the game controller, which can accurately identify when a player falls. The automated fall detection process enables the game to take the required actions, such as transferring possession of the visual ball or applying fouls, without the need for manual intervention. Offline experiments were conducted to assess the performance of four machine learning models, which were K-Nearest Neighbors (KNNs), Support Vector Machine (SVM), Random Forest (RF), and Long Short-Term Memory (LSTM), for falls detection. The results showed that the inclusion of pressure sensor data significantly improved the performance of all models, with the SVM and LSTM models reaching 100% on all metrics (accuracy, precision, recall, and F1-score). To validate the offline results, a real-time experiment was performed using the pre-trained SVM model, which successfully recorded all 150 falls without any false positives or false negatives. These findings prove the reliability and effectiveness of the Q-eBall fall detection system in real time. Full article
Show Figures

Figure 1

35 pages, 6818 KiB  
Review
Advancements in Binary Solvent-Assisted Hydrogel Composites for Wearable Sensing Applications
by Garam Choi, Fathilah Ali, Kyoungho Kim and Minsoo P. Kim
Materials 2024, 17(22), 5535; https://doi.org/10.3390/ma17225535 (registering DOI) - 13 Nov 2024
Abstract
The advancement of wearable sensing technologies has been pivotal in revolutionizing healthcare, environmental monitoring, and personal fitness. Among the diverse materials employed in these technologies, multifunctional hydrogel composites have emerged as critical components due to their unique properties, including high water content, flexibility, [...] Read more.
The advancement of wearable sensing technologies has been pivotal in revolutionizing healthcare, environmental monitoring, and personal fitness. Among the diverse materials employed in these technologies, multifunctional hydrogel composites have emerged as critical components due to their unique properties, including high water content, flexibility, and biocompatibility. This review provides a comprehensive overview of the state-of-the-art in binary solvent-assisted hydrogel composites for wearable sensing applications. It begins by defining hydrogel composites and their essential attributes for wearable sensors, specifically focusing on binary solvent-assisted methods that enhance their performance and functionality. The review then delves into the applications of these composites in health monitoring, environmental detection, and sports and fitness, highlighting their role in advancing wearable technologies. Despite their promising features, there are significant challenges related to durability, sensitivity, and integration that need to be addressed to fully exploit these materials in wearable devices. This review discusses these challenges and presents potential solutions, including the development of new materials, improvement in fabrication processes, and strategies for achieving multifunctionality and sustainable design. Looking forward, the paper outlines future directions for research in this field, emphasizing the need for innovative materials and technologies that can lead to more effective, reliable, and eco-friendly wearable sensors. This review aims to inspire further research and development in the field of wearable sensing, paving the way for new applications and advancements in healthcare, environmental monitoring, and personal fitness technologies. Full article
(This article belongs to the Special Issue Recent Progress in Functional Materials and Their Applications)
Show Figures

Graphical abstract

26 pages, 6826 KiB  
Article
A Coverage Hole Recovery Method for 3D UWSNs Based on Virtual Force and Energy Balance
by Luoheng Yan and Zhongmin Huangfu
Electronics 2024, 13(22), 4446; https://doi.org/10.3390/electronics13224446 (registering DOI) - 13 Nov 2024
Abstract
Underwater wireless sensor networks (UWSNs) have been applied in lots of fields. However, coverage holes are usually caused by complex underwater environment. Coverage holes seriously affect UWSNs’ performance and quality of service; thus, their recovery is crucial for 3D UWSNs. Although most of [...] Read more.
Underwater wireless sensor networks (UWSNs) have been applied in lots of fields. However, coverage holes are usually caused by complex underwater environment. Coverage holes seriously affect UWSNs’ performance and quality of service; thus, their recovery is crucial for 3D UWSNs. Although most of the current research recovery algorithms demand hole detection, the number of additional mobile nodes is too large, the communication and computing costs are high, and the coverage and energy balance are poor. Therefore, these methods are not suitable for UWSN hole repairing. In order to enhance the performance of hole recovery, a coverage hole recovery method for 3D UWSNs in complex underwater environments based on virtual force guidance and energy balance is proposed. The proposed method closely combines the node energy and considers complex environmental factors. A series of multi-dimensional virtual force models are established based on energy between nodes, area boundaries, zero-energy holes, low-energy coverage holes, underwater terrain, and obstacle forces. Then, a coverage hole recovery method for 3D UWSNs based on virtual force guidance and energy balance (CHRVE) is proposed. In this method, the direction and step size of mobile repairing node movement is guided by distributed computation of virtual forces, and the nodes are driven towards the target location by means of AUV or other carrier devices. The optimal position to improve coverage rate and node force balance is obtained. Simulation experiments show good adaptability and robustness to complex underwater terrain and different environments. The algorithm does not require precise coverage hole boundary detection. Furthermore, it balances network energy distribution significantly. Therefore, this method reduces the frequency of coverage hole emergence and network maintenance costs. Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

17 pages, 7504 KiB  
Article
Multi-Frequency Microwave Sensing System with Frequency Selection Method for Pulverized Coal Concentration
by Haoyu Tian, Feng Gao, Yuwei Meng, Xiaoyan Jia, Rongdong Yu, Zhan Wang and Zicheng Liu
Sensors 2024, 24(22), 7245; https://doi.org/10.3390/s24227245 (registering DOI) - 13 Nov 2024
Abstract
The accurate measurement of pulverized coal concentration (PCC) is crucial for optimizing the production efficiency and safety of coal-fired power plants. Traditional microwave attenuation methods typically rely on a single frequency for analysis while neglecting valuable information in the frequency domain, making them [...] Read more.
The accurate measurement of pulverized coal concentration (PCC) is crucial for optimizing the production efficiency and safety of coal-fired power plants. Traditional microwave attenuation methods typically rely on a single frequency for analysis while neglecting valuable information in the frequency domain, making them susceptible to the varying sensitivity of the signal at different frequencies. To address this issue, we proposed an innovative frequency selection method based on principal component analysis (PCA) and orthogonal matching pursuit (OMP) algorithms and implemented a multi-frequency microwave sensing system for PCC measurement. This method transcended the constraints of single-frequency analysis by employing a developed hardware system to control multiple working frequencies and signal paths. It measured insertion loss data across the sensor cross-section at various frequencies and utilized PCA to reduce the dimensionality of high-dimensional full-path insertion loss data. Subsequently, the OMP algorithm was applied to select the optimal frequency signal combination based on the contribution rates of the eigenvectors, enhancing the measurement accuracy through multi-dimensional fusion. The experimental results demonstrated that the multi-frequency microwave sensing system effectively extracted features from the high-dimensional PCC samples and selected the optimal frequency combination. Filed experiments conducted on five coal mills showed that, within a common PCC range of 0–0.5 kg/kg, the system achieved a minimum mean absolute error (MAE) of 1.41% and a correlation coefficient of 0.85. These results indicate that the system could quantitatively predict PCC and promptly detect PCC fluctuations, highlighting its immediacy and reliability. Full article
Show Figures

Figure 1

19 pages, 2484 KiB  
Article
Validation of Multi-Frequency Inductive-Loop Measurement System for Parameters of Moving Vehicle Based on Laboratory Model
by Zbigniew Marszalek and Krzysztof Duda
Sensors 2024, 24(22), 7244; https://doi.org/10.3390/s24227244 (registering DOI) - 13 Nov 2024
Abstract
The paper presents research on a system for measuring the parameters of a vehicle in motion and the process of validating it under laboratory conditions. The measurement system uses four inductive-loop (IL) sensors, two slim ILs and two wide ILs. The vehicle speed, [...] Read more.
The paper presents research on a system for measuring the parameters of a vehicle in motion and the process of validating it under laboratory conditions. The measurement system uses four inductive-loop (IL) sensors, two slim ILs and two wide ILs. The vehicle speed, wheelbase, length, and overhangs are all determined on the basis of a vehicle magnetic profile (VMP) waveform. VMPs are captured from the continuous IL-based impedance measurement. The impedance measurement for a single IL is performed simultaneously at three carrier frequencies. The uncontrolled measurement conditions in the field on a real road test bed (RTB), including the speed of passing vehicles, motivated the development of a laboratory test bed (LTB). This LTB serves as a model of an existing measurement setup installed on the road, i.e., the RTB. The LTB includes IL sensors and a movable model of the vehicle made in 1:50 scale. The LTB enables validation of the whole measurement system in the vehicle speed range from 10 km/h up to 150 km/h in 5 km/h increments in fully controlled conditions. The measurement results are presented in the distance domain, calculated from the VMPs and the measured speed. The largest errors in estimating vehicle-model body parameters, on a natural scale, do not exceed 4.3 cm. Full article
(This article belongs to the Collection Sensors and Actuators for Intelligent Vehicles)
Show Figures

Figure 1

17 pages, 3162 KiB  
Article
Enhancing the Reliability of NO2 Monitoring Using Low-Cost Sensors by Compensating for Temperature and Humidity Effects
by Daniellys Alejo Sánchez, Olivier Schalm, Arianna Álvarez Cruz, Erik Hernández Rodríguez, Alain Martínez Laguardia, David Kairuz Cabrera and Mayra C. Morales Pérez
Atmosphere 2024, 15(11), 1365; https://doi.org/10.3390/atmos15111365 (registering DOI) - 13 Nov 2024
Abstract
The study investigates methods to enhance the reliability of NO2 monitoring using low-cost electrochemical sensors to measure gaseous pollutants in air by addressing the impacts of temperature and relative humidity. The temperature within a plastic container was controlled using an internal mica [...] Read more.
The study investigates methods to enhance the reliability of NO2 monitoring using low-cost electrochemical sensors to measure gaseous pollutants in air by addressing the impacts of temperature and relative humidity. The temperature within a plastic container was controlled using an internal mica heater, an external hot air blower, or cooling packs, while relative humidity was adjusted using glycerine solutions. Findings indicated that the auxiliary electrode signal is susceptible to temperature and moderately affected by relative humidity. In contrast, the working electrode signal is less affected by temperature and relative humidity; however, adjustments are still required to determine gas concentrations accurately. Tests involving on/off cycles showed that the auxiliary electrode signal experiences exponential decay before stabilizing, requiring the exclusion of initial readings during monitoring activities. Additionally, calibration experiments in zero air allowed the determination of the compensation factor nT across different temperatures and humidity levels. These results highlight the importance of compensating for temperature and humidity effects to improve the accuracy and reliability of NO2 measurements using low-cost electrochemical sensors. This refinement makes the calibration applicable across a broader range of environmental conditions. However, the experiments also show a lack of repeatability in the zero air calibration. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

42 pages, 3233 KiB  
Systematic Review
A Systematic Review of Techno-Economic, Environmental and Socioeconomic Assessments for Vibration Induced Energy Harvesting
by Bjarnhedinn Gudlaugsson, Bethany Marguerite Bronkema, Ivana Stepanovic and David Christian Finger
Energies 2024, 17(22), 5666; https://doi.org/10.3390/en17225666 (registering DOI) - 13 Nov 2024
Viewed by 42
Abstract
There is a growing need to ensure the resilience of energy and water systems through digitalization, retrofit these systems for cleaner energy systems, and protect public safety in terms of water quality. This resilience requires a reliable power supply that could be provided [...] Read more.
There is a growing need to ensure the resilience of energy and water systems through digitalization, retrofit these systems for cleaner energy systems, and protect public safety in terms of water quality. This resilience requires a reliable power supply that could be provided by harnessing unexploited energy hidden in the current water infrastructure through the deployment of vortex-induced vibration energy harvesters. Therefore, being able to understand the feasibility of deploying these devices across technical, socioeconomic and environmental scales could further enhance successful deployment and integration of these devices. This paper aims to provide a systematic review investigating the development of energy harvester technologies to understand the key methods used to assess their application feasibility. This study used the PRISMA guidelines, and 139 articles were reviewed and synthesized. The trends were visualized, illustrating the current direction in energy harvesting development and application and methods used to assess the feasibility of these devices and technology. The majority of the reviewed studies focused on technical feasibility, design configuration, limitation, and identification of the most optimal application environment. The results revealed a huge opportunity for energy harvesters, especially as a power supply for monitoring sensors. Nevertheless, the results also identified a knowledge gap when it comes to assessing the overall application feasibility of energy harvesting as most studies currently neglect economic feasibility, environmental impacts, social aspects and energy resilience. Assessment tools will help fill this knowledge gap by identifying the key barriers and benefits gained from integrating this technology into existing energy systems and water systems. Full article
(This article belongs to the Section B2: Clean Energy)
Show Figures

Figure 1

15 pages, 3407 KiB  
Article
Minimalist Design for Multi-Dimensional Pressure-Sensing and Feedback Glove with Variable Perception Communication
by Hao Ling, Jie Li, Chuanxin Guo, Yuntian Wang, Tao Chen and Minglu Zhu
Actuators 2024, 13(11), 454; https://doi.org/10.3390/act13110454 (registering DOI) - 13 Nov 2024
Viewed by 43
Abstract
Immersive human–machine interaction relies on comprehensive sensing and feedback systems, which enable transmission of multiple pieces of information. However, the integration of increasing numbers of feedback actuators and sensors causes a severe issue in terms of system complexity. In this work, we propose [...] Read more.
Immersive human–machine interaction relies on comprehensive sensing and feedback systems, which enable transmission of multiple pieces of information. However, the integration of increasing numbers of feedback actuators and sensors causes a severe issue in terms of system complexity. In this work, we propose a pressure-sensing and feedback glove that enables multi-dimensional pressure sensing and feedback with a minimalist design of the functional units. The proposed glove consists of modular strain and pressure sensors based on films of liquid metal microchannels and coin vibrators. Strain sensors located at the finger joints can simultaneously project the bending motion of the individual joint into the virtual space or robotic hand. For subsequent tactile interactions, the design of two symmetrically distributed pressure sensors and vibrators at the fingertips possesses capabilities for multi-directional pressure sensing and feedback by evaluating the relationship of the signal variations between two sensors and tuning the feedback intensities of two vibrators. Consequently, both dynamic and static multi-dimensional pressure communication can be realized, and the vibrational actuation can be monitored by a liquid-metal-based sensor via a triboelectric sensing mechanism. A demonstration of object interaction indicates that the proposed glove can effectively detect dynamic force in varied directions at the fingertip while offering the reconstruction of a similar perception via the haptic feedback function. This device introduces an approach that adopts a minimalist design to achieve a multi-functional system, and it can benefit commercial applications in a more cost-effective way. Full article
Show Figures

Figure 1

28 pages, 10542 KiB  
Article
Heat Transfer Efficiency While Cooling with a Water Spray, Air-Assisted Water Spray and Water Jet Under Boiling and Single-Phase Forced Convection Conditions
by Elżbieta Jasiewicz, Beata Hadała, Agnieszka Cebo-Rudnicka, Zbigniew Malinowski, Kamil Jasiewicz and Dmytro Svyetlichnyy
Appl. Sci. 2024, 14(22), 10428; https://doi.org/10.3390/app142210428 (registering DOI) - 13 Nov 2024
Viewed by 127
Abstract
The main purpose of this paper was to determine and compare the boundary conditions of heat transfer on the cooled surface of a cylindrical sensor made of Inconel 600 alloy while cooling with a water jet, water spray and air-assisted water spray under [...] Read more.
The main purpose of this paper was to determine and compare the boundary conditions of heat transfer on the cooled surface of a cylindrical sensor made of Inconel 600 alloy while cooling with a water jet, water spray and air-assisted water spray under high-temperature conditions. The inverse method for the heat conduction equation was used to determine the boundary conditions. Experimental tests were carried out, including temperature measurements at several points inside the cylinder while cooling with all the tested systems from a temperature of 900 °C for three values of water pressure: 0.05 MPa, 0.1 MPa and 0.2 MPa. Temperature measurements were used as the input data to identify the heat transfer boundary conditions. The temperature field of the axially symmetric sensor was determined using the finite element method. The boundary conditions were determined as average values of the heat transfer coefficient and heat flux and local values of the heat transfer coefficient. A comparison of the amount of thermal energy dissipating from the sensor surface as a result of boiling and a forced single-phase convection is also presented in the paper. The highest uniformity of cooling was obtained during air-assisted water spray-cooling. Full article
Show Figures

Figure 1

16 pages, 4465 KiB  
Article
Demonstration of a Validated Direct Current Wearable Device for Monitoring Sweat Rate in Sports
by Xing Xuan, Daniel Rojas, Isabel Maria Diaz Lozano, Maria Cuartero and Gastón A. Crespo
Sensors 2024, 24(22), 7243; https://doi.org/10.3390/s24227243 (registering DOI) - 13 Nov 2024
Viewed by 87
Abstract
Sweat rate magnitude is a desired outcome for any wearable sensing patch dedicated to sweat analysis. Indeed, sweat rate values can be used two-fold: self-diagnosis of dehydration and correction/normalization of other physiological metrics, such as Borg scale, VO2, and different chemical species concentrations. [...] Read more.
Sweat rate magnitude is a desired outcome for any wearable sensing patch dedicated to sweat analysis. Indeed, sweat rate values can be used two-fold: self-diagnosis of dehydration and correction/normalization of other physiological metrics, such as Borg scale, VO2, and different chemical species concentrations. Herein, a reliable sweat rate belt device for sweat rate monitoring was developed. The device measures sweat rates in the range from 1.0 to 5.0 µL min−1 (2 to 10 µL min−1 cm−2), which covers typical values for humans. The working mechanism is based on a new direct current (DC) step protocol activating a series of differential resistance measurements (spatially separated by 800 µm) that is gradually initiated by the action of sweat, which flows along a customized microfluidic track (~600 µm in width, 10 mm in length, and 235 µm in thickness). The device has a volumetric capacity of ~16 µL and an acquisition frequency between 0.010 and 0.043 Hz within the measured sweat rate range. Importantly, instead of using a typical and rather complex AC signal interrogation and acquisition, we put forward the DC approach, offering several benefits, such as simplified circuit design for easier fabrication and lower costs, as well as reduced power consumption and suitability for wearable applications. For the validation, either the commercial sweat collector (colorimetric) or the developed device was performed. In five on-body tests, an acceptable variation of ca. 10% was obtained. Overall, this study demonstrates the potential of the DC-based device for the monitoring of sweat rate and also its potential for implementation in any wearable sweat platform. Full article
(This article belongs to the Section Wearables)
Show Figures

Graphical abstract

14 pages, 5445 KiB  
Article
Project Report: Thermal Performance of FIRSTLIFE House
by Jan Tywoniak, Zdenko Malík, Kamil Staněk and Kateřina Sojková
Buildings 2024, 14(11), 3600; https://doi.org/10.3390/buildings14113600 (registering DOI) - 13 Nov 2024
Viewed by 78
Abstract
The paper deals with selected thermal properties of a small building that was built during the international student competition Solar Decathlon 2021/2022 and is now part of the Living Lab in Wuppertal. It summarizes the essential information about the overall design of this [...] Read more.
The paper deals with selected thermal properties of a small building that was built during the international student competition Solar Decathlon 2021/2022 and is now part of the Living Lab in Wuppertal. It summarizes the essential information about the overall design of this wooden building with construction and technologies corresponding to the passive building standard. Built-in sensors and other equipment enable long-term monitoring of thermal parameters. Part of the information comes from the building operation control system. The thermal transmittance value for the perimeter wall matches calculated expectation well, even from a short period of time and not at an achievable perfectly steady state boundary condition. The (positive) difference between the calculated values and the measured ones did not exceed 0.015 W/(m2K). It was proven that even for such a small building with a very small heat demand, the heat transfer coefficient can be estimated alternatively from a co-heating test (measured electricity power for a fan heater) and from energy delivered to underfloor heating (calorimeter in heating system). Differences among both measurement types and calculation matched in the range ± 10%. In the last section, the dynamic response test is briefly described. The measured indoor air temperature curves under periodic dynamic loads (use of fan heater) are compared with the simulation results. The simulation model working with lumped parameters for each element of the building envelope was able to replicate the measured situation well, while its use does not require special knowledge of the user. In the studied case, the differences between measured and simulated air temperatures were less than 1 Kelvin if the first two to three days of the test period are ignored due to large thermal inertia. Finally, the measurement campaign program for the next period is outlined. Full article
(This article belongs to the Special Issue Constructions in Europe: Current Issues and Future Challenges)
Show Figures

Figure 1

19 pages, 15364 KiB  
Article
Influence of Soil Plugging on Dynamic Soil Response During Simulated Pipe Pile Driving Model Test in Sands
by Songchao Lin, Ye Lu and Chong Zhao
Appl. Sci. 2024, 14(22), 10425; https://doi.org/10.3390/app142210425 (registering DOI) - 13 Nov 2024
Viewed by 125
Abstract
The squeezing effect and strike-induced vibration generated by pile driving pose a threat to adjacent structures. To mitigate the squeezing effect, open-ended pipe piles were implemented. However, this type of pile brings a degree of soil-plugging effect, particularly in sandy soil, which complicates [...] Read more.
The squeezing effect and strike-induced vibration generated by pile driving pose a threat to adjacent structures. To mitigate the squeezing effect, open-ended pipe piles were implemented. However, this type of pile brings a degree of soil-plugging effect, particularly in sandy soil, which complicates the squeezing effect and the dynamic responses of the pile during pile driving. In this study, model experiments were conducted using both open-ended piles and open-ended piles with different fixed-length soil plugs to investigate the squeezing effect and dynamic responses of the piles. Moreover, spectrum analysis was performed to explore the patterns of vibration waves in the open-ended pipe pile during the striking process. For open-ended pipe piles, acceleration fluctuations were detectable solely when the pile reached the sensor depth and at the end of the pile driving process, which revealed that the hammering energy was mainly consumed by pile settlement and the formation of the soil plug. When the formation of the soil plug was completed, the majority of the energy was converted into propagating vibration, resulting in the emergence of another crest of acceleration. The spectrum analysis revealed that the maximum amplitude occurred when the penetration depth was equal to half of the pile length. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

Back to TopTop