Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,042)

Search Parameters:
Keywords = segmentation techniques

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9441 KiB  
Article
Empirical Data-Driven Linear Model of a Swimming Robot Using the Complex Delay-Embedding DMD Technique
by Mostafa Sayahkarajy and Hartmut Witte
Biomimetics 2025, 10(1), 60; https://doi.org/10.3390/biomimetics10010060 - 16 Jan 2025
Viewed by 68
Abstract
Anguilliform locomotion, an efficient aquatic locomotion mode where the whole body is engaged in fluid–body interaction, contains sophisticated physics. We hypothesized that data-driven modeling techniques may extract models or patterns of the swimmers’ dynamics without implicitly measuring the hydrodynamic variables. This work proposes [...] Read more.
Anguilliform locomotion, an efficient aquatic locomotion mode where the whole body is engaged in fluid–body interaction, contains sophisticated physics. We hypothesized that data-driven modeling techniques may extract models or patterns of the swimmers’ dynamics without implicitly measuring the hydrodynamic variables. This work proposes empirical kinematic control and data-driven modeling of a soft swimming robot. The robot comprises six serially connected segments that can individually bend with the segmental pneumatic artificial muscles. Kinematic equations and relations are proposed to measure the desired actuation to mimic anguilliform locomotion kinematics. The robot was tested experimentally and the position and velocities of spatially digitized points were collected using QualiSys® Tracking Manager (QTM) 1.6.0.1. The collected data were analyzed offline, proposing a new complex variable delay-embedding dynamic mode decomposition (CDE DMD) algorithm that combines complex state filtering and time embedding to extract a linear approximate model. While the experimental results exhibited exotic curves in phase plane and time series, the analysis results showed that the proposed algorithm extracts linear and chaotic modes contributing to the data. It is concluded that the robot dynamics can be described by the linearized model interrupted by chaotic modes. The technique successfully extracts coherent modes from limited measurements and linearizes the system dynamics. Full article
(This article belongs to the Special Issue Bio-Inspired Approaches—a Leverage for Robotics)
Show Figures

Figure 1

33 pages, 24705 KiB  
Review
Unmanned Aerial Vehicles for Real-Time Vegetation Monitoring in Antarctica: A Review
by Kaelan Lockhart, Juan Sandino, Narmilan Amarasingam, Richard Hann, Barbara Bollard and Felipe Gonzalez
Remote Sens. 2025, 17(2), 304; https://doi.org/10.3390/rs17020304 - 16 Jan 2025
Viewed by 105
Abstract
The unique challenges of polar ecosystems, coupled with the necessity for high-precision data, make Unmanned Aerial Vehicles (UAVs) an ideal tool for vegetation monitoring and conservation studies in Antarctica. This review draws on existing studies on Antarctic UAV vegetation mapping, focusing on their [...] Read more.
The unique challenges of polar ecosystems, coupled with the necessity for high-precision data, make Unmanned Aerial Vehicles (UAVs) an ideal tool for vegetation monitoring and conservation studies in Antarctica. This review draws on existing studies on Antarctic UAV vegetation mapping, focusing on their methodologies, including surveyed locations, flight guidelines, UAV specifications, sensor technologies, data processing techniques, and the use of vegetation indices. Despite the potential of established Machine-Learning (ML) classifiers such as Random Forest, K Nearest Neighbour, and Support Vector Machine, and gradient boosting in the semantic segmentation of UAV-captured images, there is a notable scarcity of research employing Deep Learning (DL) models in these extreme environments. While initial studies suggest that DL models could match or surpass the performance of established classifiers, even on small datasets, the integration of these advanced models into real-time navigation systems on UAVs remains underexplored. This paper evaluates the feasibility of deploying UAVs equipped with adaptive path-planning and real-time semantic segmentation capabilities, which could significantly enhance the efficiency and safety of mapping missions in Antarctica. This review discusses the technological and logistical constraints observed in previous studies and proposes directions for future research to optimise autonomous drone operations in harsh polar conditions. Full article
(This article belongs to the Special Issue Antarctic Remote Sensing Applications (Second Edition))
Show Figures

Figure 1

15 pages, 3290 KiB  
Article
Tomato Stem and Leaf Segmentation and Phenotype Parameter Extraction Based on Improved Red Billed Blue Magpie Optimization Algorithm
by Lina Zhang, Ziyi Huang, Zhiyin Yang, Bo Yang, Shengpeng Yu, Shuai Zhao, Xingrui Zhang, Xinying Li, Han Yang, Yixing Lin and Helong Yu
Agriculture 2025, 15(2), 180; https://doi.org/10.3390/agriculture15020180 - 15 Jan 2025
Viewed by 189
Abstract
In response to the structural changes of tomato seedlings, traditional image techniques are difficult to accurately quantify key morphological parameters, such as leaf area, internode length, and mutual occlusion between organs. Therefore, this paper proposes a tomato point cloud stem and leaf segmentation [...] Read more.
In response to the structural changes of tomato seedlings, traditional image techniques are difficult to accurately quantify key morphological parameters, such as leaf area, internode length, and mutual occlusion between organs. Therefore, this paper proposes a tomato point cloud stem and leaf segmentation framework based on Elite Strategy-based Improved Red-billed Blue Magpie Optimization (ES-RBMO) Algorithm. The framework uses a four-layer Convolutional Neural Network (CNN) for stem and leaf segmentation by incorporating an improved swarm intelligence algorithm with an accuracy of 0.965. Four key phenotypic parameters of the plant were extracted. The phenotypic parameters of plant height, stem thickness, leaf area and leaf inclination were analyzed by comparing the values extracted by manual measurements with the values extracted by the 3D point cloud technique. The results showed that the coefficients of determination (R2) for these parameters were 0.932, 0.741, 0.938 and 0.935, respectively, indicating high correlation. The root mean square error (RMSE) was 0.511, 0.135, 0.989 and 3.628, reflecting the level of error between the measured and extracted values. The absolute percentage errors (APE) were 1.970, 4.299, 4.365 and 5.531, which further quantified the measurement accuracy. In this study, an efficient and adaptive intelligent optimization framework was constructed, which is capable of optimizing data processing strategies to achieve efficient and accurate processing of tomato point cloud data. This study provides a new technical tool for plant phenotyping and helps to improve the intelligent management in agricultural production. Full article
(This article belongs to the Section Digital Agriculture)
Show Figures

Figure 1

34 pages, 1229 KiB  
Review
A Review of CNN Applications in Smart Agriculture Using Multimodal Data
by Mohammad El Sakka, Mihai Ivanovici, Lotfi Chaari and Josiane Mothe
Sensors 2025, 25(2), 472; https://doi.org/10.3390/s25020472 - 15 Jan 2025
Viewed by 298
Abstract
This review explores the applications of Convolutional Neural Networks (CNNs) in smart agriculture, highlighting recent advancements across various applications including weed detection, disease detection, crop classification, water management, and yield prediction. Based on a comprehensive analysis of more than 115 recent studies, coupled [...] Read more.
This review explores the applications of Convolutional Neural Networks (CNNs) in smart agriculture, highlighting recent advancements across various applications including weed detection, disease detection, crop classification, water management, and yield prediction. Based on a comprehensive analysis of more than 115 recent studies, coupled with a bibliometric study of the broader literature, this paper contextualizes the use of CNNs within Agriculture 5.0, where technological integration optimizes agricultural efficiency. Key approaches analyzed involve image classification, image segmentation, regression, and object detection methods that use diverse data types ranging from RGB and multispectral images to radar and thermal data. By processing UAV and satellite data with CNNs, real-time and large-scale crop monitoring can be achieved, supporting advanced farm management. A comparative analysis shows how CNNs perform with respect to other techniques that involve traditional machine learning and recent deep learning models in image processing, particularly when applied to high-dimensional or temporal data. Future directions point toward integrating IoT and cloud platforms for real-time data processing and leveraging large language models for regulatory insights. Potential research advancements emphasize improving increased data accessibility and hybrid modeling to meet the agricultural demands of climate variability and food security, positioning CNNs as pivotal tools in sustainable agricultural practices. A related repository that contains the reviewed articles along with their publication links is made available. Full article
(This article belongs to the Special Issue Feature Review Papers in Intelligent Sensors)
Show Figures

Figure 1

26 pages, 9074 KiB  
Article
Adaptive Month Matching: A Phenological Alignment Method for Transfer Learning in Cropland Segmentation
by Reza Maleki, Falin Wu, Guoxin Qu, Amel Oubara, Loghman Fathollahi and Gongliu Yang
Remote Sens. 2025, 17(2), 283; https://doi.org/10.3390/rs17020283 - 15 Jan 2025
Viewed by 225
Abstract
The increasing demand for food and rapid population growth have made advanced crop monitoring essential for sustainable agriculture. Deep learning models leveraging multispectral satellite imagery, like Sentinel-2, provide valuable solutions. However, transferring these models to diverse regions is challenging due to phenological differences [...] Read more.
The increasing demand for food and rapid population growth have made advanced crop monitoring essential for sustainable agriculture. Deep learning models leveraging multispectral satellite imagery, like Sentinel-2, provide valuable solutions. However, transferring these models to diverse regions is challenging due to phenological differences in crop growth stages between training and target areas. This study proposes the Adaptive Month Matching (AMM) method to align the phenological stages of crops between training and target areas for enhanced transfer learning in cropland segmentation. In the AMM method, an optimal Sentinel-2 monthly time series is identified in the training area based on deep learning model performance for major crops common to both areas. A month-matching process then selects the optimal Sentinel-2 time series for the target area by aligning the phenological stages between the training and target areas. In this study, the training area covered part of the Mississippi River Delta, while the target areas included diverse regions across the US and Canada. The evaluation focused on major crops, including corn, soybeans, rice, and double-cropped winter wheat/soybeans. The trained deep learning model was transferred to the target areas, and accuracy metrics were compared across different time series chosen by various phenological alignment methods. The AMM method consistently demonstrated strong performance, particularly in transferring to rice-growing regions, achieving an overall accuracy of 98%. It often matched or exceeded other phenological matching techniques in corn segmentation, with an average overall accuracy across all target areas exceeding 79% for cropland segmentation. Full article
(This article belongs to the Special Issue Remote Sensing for Precision Farming and Crop Phenology)
Show Figures

Figure 1

17 pages, 1570 KiB  
Review
Mapping the Green Urban: A Comprehensive Review of Materials and Learning Methods for Green Infrastructure Mapping
by Dino Dobrinić, Mario Miler and Damir Medak
Sensors 2025, 25(2), 464; https://doi.org/10.3390/s25020464 - 15 Jan 2025
Viewed by 307
Abstract
Green infrastructure (GI) plays a crucial role in sustainable urban development, but effective mapping and analysis of such features requires a detailed understanding of the materials and state-of-the-art methods. This review presents the current landscape of green infrastructure mapping, focusing on the various [...] Read more.
Green infrastructure (GI) plays a crucial role in sustainable urban development, but effective mapping and analysis of such features requires a detailed understanding of the materials and state-of-the-art methods. This review presents the current landscape of green infrastructure mapping, focusing on the various sensors and image data, as well as the application of machine learning and deep learning techniques for classification or segmentation tasks. After finding articles with relevant keywords, the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyzes) method was used as a general workflow, but some parts were automated (e.g., screening) by using natural language processing and large language models. In total, this review analyzed 55 papers that included keywords related to GI mapping and provided materials and learning methods (i.e., machine or deep learning) essential for effective green infrastructure mapping. A shift towards deep learning methods can be observed in the mapping of GIs as 33 articles use various deep learning methods, while 22 articles use machine learning methods. In addition, this article presents a novel methodology for automated verification methods, demonstrating their potential effectiveness and highlighting areas for improvement. Full article
(This article belongs to the Special Issue Application of Satellite Remote Sensing in Geospatial Monitoring)
Show Figures

Figure 1

29 pages, 11007 KiB  
Article
Research on Innovative Apple Grading Technology Driven by Intelligent Vision and Machine Learning
by Bo Han, Jingjing Zhang, Rolla Almodfer, Yingchao Wang, Wei Sun, Tao Bai, Luan Dong and Wenjing Hou
Foods 2025, 14(2), 258; https://doi.org/10.3390/foods14020258 - 15 Jan 2025
Viewed by 382
Abstract
In the domain of food science, apple grading holds significant research value and application potential. Currently, apple grading predominantly relies on manual methods, which present challenges such as low production efficiency and high subjectivity. This study marks the first integration of advanced computer [...] Read more.
In the domain of food science, apple grading holds significant research value and application potential. Currently, apple grading predominantly relies on manual methods, which present challenges such as low production efficiency and high subjectivity. This study marks the first integration of advanced computer vision, image processing, and machine learning technologies to design an innovative automated apple grading system. The system aims to reduce human interference and enhance grading efficiency and accuracy. A lightweight detection algorithm, FDNet-p, was developed to capture stem features, and a strategy for auxiliary positioning was designed for image acquisition. An improved DPC-AWKNN segmentation algorithm is proposed for segmenting the apple body. Image processing techniques are employed to extract apple features, such as color, shape, and diameter, culminating in the development of an intelligent apple grading model using the GBDT algorithm. Experimental results demonstrate that, in stem detection tasks, the lightweight FDNet-p model exhibits superior performance compared to various detection models, achieving an [email protected] of 96.6%, with a GFLOPs of 3.4 and a model size of just 2.5 MB. In apple grading experiments, the GBDT grading model achieved the best comprehensive performance among classification models, with weighted Jacard Score, Precision, Recall, and F1 Score values of 0.9506, 0.9196, 0.9683, and 0.9513, respectively. The proposed stem detection and apple body classification models provide innovative solutions for detection and classification tasks in automated fruit grading, offering a comprehensive and replicable research framework for standardizing image processing and feature extraction for apples and similar spherical fruit bodies. Full article
Show Figures

Figure 1

26 pages, 393 KiB  
Review
Monitoring Yield and Quality of Forages and Grassland in the View of Precision Agriculture Applications—A Review
by Abid Ali and Hans-Peter Kaul
Remote Sens. 2025, 17(2), 279; https://doi.org/10.3390/rs17020279 - 15 Jan 2025
Viewed by 373
Abstract
The potential of precision agriculture (PA) in forage and grassland management should be more extensively exploited to meet the increasing global food demand on a sustainable basis. Monitoring biomass yield and quality traits directly impacts the fertilization and irrigation practises and frequency of [...] Read more.
The potential of precision agriculture (PA) in forage and grassland management should be more extensively exploited to meet the increasing global food demand on a sustainable basis. Monitoring biomass yield and quality traits directly impacts the fertilization and irrigation practises and frequency of utilization (cuts) in grasslands. Therefore, the main goal of the review is to examine the techniques for using PA applications to monitor productivity and quality in forage and grasslands. To achieve this, the authors discuss several monitoring technologies for biomass and plant stand characteristics (including quality) that make it possible to adopt digital farming in forages and grassland management. The review provides an overview about mass flow and impact sensors, moisture sensors, remote sensing-based approaches, near-infrared (NIR) spectroscopy, and mapping field heterogeneity and promotes decision support systems (DSSs) in this field. At a small scale, advanced sensors such as optical, thermal, and radar sensors mountable on drones; LiDAR (Light Detection and Ranging); and hyperspectral imaging techniques can be used for assessing plant and soil characteristics. At a larger scale, we discuss coupling of remote sensing with weather data (synergistic grassland yield modelling), Sentinel-2 data with radiative transfer modelling (RTM), Sentinel-1 backscatter, and Catboost–machine learning methods for digital mapping in terms of precision harvesting and site-specific farming decisions. It is known that the delineation of sward heterogeneity is more difficult in mixed grasslands due to spectral similarity among species. Thanks to Diversity-Interactions models, jointly assessing various species interactions under mixed grasslands is allowed. Further, understanding such complex sward heterogeneity might be feasible by integrating spectral un-mixing techniques such as the super-pixel segmentation technique, multi-level fusion procedure, and combined NIR spectroscopy with neural network models. This review offers a digital option for enhancing yield monitoring systems and implementing PA applications in forages and grassland management. The authors recommend a future research direction for the inclusion of costs and economic returns of digital technologies for precision grasslands and fodder production. Full article
Show Figures

Graphical abstract

19 pages, 38354 KiB  
Article
Automated Volumetric Milling Area Planning for Acoustic Neuroma Surgery via Evolutionary Multi-Objective Optimization
by Sheng Yang, Haowei Li, Peihai Zhang, Wenqing Yan, Zhe Zhao, Hui Ding and Guangzhi Wang
Sensors 2025, 25(2), 448; https://doi.org/10.3390/s25020448 - 14 Jan 2025
Viewed by 250
Abstract
Mastoidectomy is critical in acoustic neuroma surgery, where precise planning of the bone milling area is essential for surgical navigation. The complexity of representing the irregular volumetric area and the presence of high-risk structures (e.g., blood vessels and nerves) complicate this task. In [...] Read more.
Mastoidectomy is critical in acoustic neuroma surgery, where precise planning of the bone milling area is essential for surgical navigation. The complexity of representing the irregular volumetric area and the presence of high-risk structures (e.g., blood vessels and nerves) complicate this task. In order to determine the bone area to mill using preoperative CT images automatically, we propose an automated planning method using evolutionary multi-objective optimization for safer and more efficient milling plans. High-resolution segmentation of the adjacent risk structures is performed on preoperative CT images with a template-based approach. The maximum milling area is defined based on constraints from the risk structures and tool dimensions. Deformation fields are used to simplify the volumetric area into limited continuous parameters suitable for optimization. Finally, a multi-objective optimization algorithm is used to achieve a Pareto-optimal design. Compared with manual planning on six volumes, our method reduced the potential damage to the scala vestibuli by 29.8%, improved the milling boundary smoothness by 78.3%, and increased target accessibility by 26.4%. Assessment by surgeons confirmed the clinical feasibility of the generated plans. In summary, this study presents a parameterization approach to irregular volumetric regions, enabling automated milling area planning through optimization techniques that ensure safety and feasibility. This method is also adaptable to various volumetric planning scenarios. Full article
Show Figures

Figure 1

16 pages, 3142 KiB  
Article
Comparison of Resampling Methods and Radiomic Machine Learning Classifiers for Predicting Bone Quality Using Dual-Energy X-Ray Absorptiometry
by Mailen Gonzalez, José Manuel Fuertes García, María Belén Zanchetta, Rubén Abdala and José María Massa
Diagnostics 2025, 15(2), 175; https://doi.org/10.3390/diagnostics15020175 - 14 Jan 2025
Viewed by 250
Abstract
Background/Objectives: This study presents a novel approach, based on a combination of radiomic feature extraction, data resampling techniques, and machine learning algorithms, for the detection of degraded bone structures in Dual X-ray Absorptiometry (DXA) images. This comprehensive approach, which addresses the critical [...] Read more.
Background/Objectives: This study presents a novel approach, based on a combination of radiomic feature extraction, data resampling techniques, and machine learning algorithms, for the detection of degraded bone structures in Dual X-ray Absorptiometry (DXA) images. This comprehensive approach, which addresses the critical aspects of the problem, distinguishes this work from previous studies, improving the performance achieved by the most similar studies. The primary aim is to provide clinicians with an accessible tool for quality bone assessment, which is currently limited. Methods: A dataset of 1531 spine DXA images was automatically segmented and labelled based on Trabecular Bone Score (TBS) values. Radiomic features were extracted using Pyradiomics, and various resampling techniques were employed to address class imbalance. Three machine learning classifiers (Logistic Regression, Support Vector Machine (SVM), and XGBoost) were trained and evaluated using standard performance metrics. Results: The SVM classifier outperformed the other classifiers. The highest F-score of 97.5% was achieved using the Grey Level Dependence Matrix and Grey Level Run Length Matrix feature combination with SMOTEENN resampling, which proved to be the most effective resampling technique, while the undersampling method yielded the lowest performance. Conclusions: This research demonstrates the potential of radiomic texture features, resampling techniques, and machine learning methods for classifying DXA images into healthy or degraded bone structures, which potentially leads to improved clinical diagnosis and treatment. Full article
(This article belongs to the Special Issue Classification of Diseases Using Machine Learning Algorithms)
Show Figures

Figure 1

13 pages, 1625 KiB  
Article
MetaboLabPy—An Open-Source Software Package for Metabolomics NMR Data Processing and Metabolic Tracer Data Analysis
by Christian Ludwig
Metabolites 2025, 15(1), 48; https://doi.org/10.3390/metabo15010048 - 14 Jan 2025
Viewed by 259
Abstract
Introduction: NMR spectroscopy is a powerful technique for studying metabolism, either in metabolomics settings or through tracing with stable isotope-enriched metabolic precursors. MetaboLabPy (version 0.9.66) is a free and open-source software package used to process 1D- and 2D-NMR spectra. The software implements a [...] Read more.
Introduction: NMR spectroscopy is a powerful technique for studying metabolism, either in metabolomics settings or through tracing with stable isotope-enriched metabolic precursors. MetaboLabPy (version 0.9.66) is a free and open-source software package used to process 1D- and 2D-NMR spectra. The software implements a complete workflow for NMR data pre-processing to prepare a series of 1D-NMR spectra for multi-variate statistical data analysis. This includes a choice of algorithms for automated phase correction, segmental alignment, spectral scaling, variance stabilisation, export to various software platforms, and analysis of metabolic tracing data. The software has an integrated help system with tutorials that demonstrate standard workflows and explain the capabilities of MetaboLabPy. Materials and Methods: The software is implemented in Python and uses numerous Python toolboxes, such as numpy, scipy, pandas, etc. The software is implemented in three different packages: metabolabpy, qtmetabolabpy, and metabolabpytools. The metabolabpy package contains classes to handle NMR data and all the numerical routines necessary to process and pre-process 1D NMR data and perform multiplet analysis on 2D-1H, 13C HSQC NMR data. The qtmetabolabpy package contains routines related to the graphical user interface. Results: PySide6 is used to produce a modern and user-friendly graphical user interface. The metabolabpytools package contains routines which are not specific to just handling NMR data, for example, routines to derive isotopomer distributions from the combination of NMR multiplet and GC-MS data. A deep-learning approach for the latter is currently under development. MetaboLabPy is available via the Python Package Index or via GitHub. Full article
(This article belongs to the Special Issue Open-Source Software in Metabolomics)
Show Figures

Figure 1

24 pages, 3877 KiB  
Article
A Hybrid Approach for Sports Activity Recognition Using Key Body Descriptors and Hybrid Deep Learning Classifier
by Muhammad Tayyab, Sulaiman Abdullah Alateyah, Mohammed Alnusayri, Mohammed Alatiyyah, Dina Abdulaziz AlHammadi, Ahmad Jalal and Hui Liu
Sensors 2025, 25(2), 441; https://doi.org/10.3390/s25020441 - 13 Jan 2025
Viewed by 304
Abstract
This paper presents an approach for event recognition in sequential images using human body part features and their surrounding context. Key body points were approximated to track and monitor their presence in complex scenarios. Various feature descriptors, including MSER (Maximally Stable Extremal Regions), [...] Read more.
This paper presents an approach for event recognition in sequential images using human body part features and their surrounding context. Key body points were approximated to track and monitor their presence in complex scenarios. Various feature descriptors, including MSER (Maximally Stable Extremal Regions), SURF (Speeded-Up Robust Features), distance transform, and DOF (Degrees of Freedom), were applied to skeleton points, while BRIEF (Binary Robust Independent Elementary Features), HOG (Histogram of Oriented Gradients), FAST (Features from Accelerated Segment Test), and Optical Flow were used on silhouettes or full-body points to capture both geometric and motion-based features. Feature fusion was employed to enhance the discriminative power of the extracted data and the physical parameters calculated by different feature extraction techniques. The system utilized a hybrid CNN (Convolutional Neural Network) + RNN (Recurrent Neural Network) classifier for event recognition, with Grey Wolf Optimization (GWO) for feature selection. Experimental results showed significant accuracy, achieving 98.5% on the UCF-101 dataset and 99.2% on the YouTube dataset. Compared to state-of-the-art methods, our approach achieved better performance in event recognition. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

25 pages, 5204 KiB  
Article
Comparative Evaluation of AI-Based Multi-Spectral Imaging and PCR-Based Assays for Early Detection of Botrytis cinerea Infection on Pepper Plants
by Dimitrios Kapetas, Eleni Kalogeropoulou, Panagiotis Christakakis, Christos Klaridopoulos and Eleftheria Maria Pechlivani
Agriculture 2025, 15(2), 164; https://doi.org/10.3390/agriculture15020164 - 13 Jan 2025
Viewed by 451
Abstract
Pepper production is a critical component of the global agricultural economy, with exports reaching a remarkable $6.9B in 2023. This underscores the crop’s importance as a major economic driver of export revenue for producing nations. Botrytis cinerea, the causative agent of gray [...] Read more.
Pepper production is a critical component of the global agricultural economy, with exports reaching a remarkable $6.9B in 2023. This underscores the crop’s importance as a major economic driver of export revenue for producing nations. Botrytis cinerea, the causative agent of gray mold, significantly impacts crops like fruits and vegetables, including peppers. Early detection of this pathogen is crucial for a reduction in fungicide reliance and economic loss prevention. Traditionally, visual inspection has been a primary method for detection. However, symptoms often appear after the pathogen has begun to spread. This study employs the Deep Learning algorithm YOLO for single-class segmentation on plant images to extract spatial details of pepper leaves. The dataset included hyperspectral images at discrete wavelengths (460 nm, 540 nm, 640 nm, 775 nm, and 875 nm) from derived vegetation indices (CVI, GNDVI, NDVI, NPCI, and PSRI) and from RGB. At an Intersection over Union with a 0.5 threshold, the Mean Average Precision (mAP50) achieved by the leaf-segmentation solution YOLOv11-Small was 86.4%. The extracted leaf segments were processed by multiple Transformer models, each yielding a descriptor. These descriptors were combined in ensemble and classified into three distinct classes using a K-nearest neighbor, a Long Short-Term Memory (LSTM), and a ResNet solution. The Transformer models that comprised the best ensemble classifier were as follows: the Swin-L (P:4 × 4–W:12 × 12), the ViT-L (P:16 × 16), the VOLO (D:5), and the XCIT-L (L:24–P:16 × 16), with the LSTM-based classification solution on the RGB, CVI, GNDVI, NDVI, and PSRI image sets. The classifier achieved an overall accuracy of 87.42% with an F1-Score of 81.13%. The per-class F1-Scores for the three classes were 85.25%, 66.67%, and 78.26%, respectively. Moreover, for B. cinerea detection during the initial as well as quiescent stages of infection prior to symptom development, qPCR-based methods (RT-qPCR) were used for quantification of in planta fungal biomass and integrated with the findings from the AI approach to offer a comprehensive strategy. The study demonstrates early and accurate detection of B. cinerea on pepper plants by combining segmentation techniques with Transformer model descriptors, ensembled for classification. This approach marks a significant step forward in the detection and management of crop diseases, highlighting the potential to integrate such methods into in situ systems like mobile apps or robots. Full article
(This article belongs to the Section Digital Agriculture)
Show Figures

Figure 1

36 pages, 13780 KiB  
Article
Combining a Standardized Growth Class Assessment, UAV Sensor Data, GIS Processing, and Machine Learning Classification to Derive a Correlation with the Vigour and Canopy Volume of Grapevines
by Ronald P. Dillner, Maria A. Wimmer, Matthias Porten, Thomas Udelhoven and Rebecca Retzlaff
Sensors 2025, 25(2), 431; https://doi.org/10.3390/s25020431 - 13 Jan 2025
Viewed by 345
Abstract
Assessing vines’ vigour is essential for vineyard management and automatization of viticulture machines, including shaking adjustments of berry harvesters during grape harvest or leaf pruning applications. To address these problems, based on a standardized growth class assessment, labeled ground truth data of precisely [...] Read more.
Assessing vines’ vigour is essential for vineyard management and automatization of viticulture machines, including shaking adjustments of berry harvesters during grape harvest or leaf pruning applications. To address these problems, based on a standardized growth class assessment, labeled ground truth data of precisely located grapevines were predicted with specifically selected Machine Learning (ML) classifiers (Random Forest Classifier (RFC), Support Vector Machines (SVM)), utilizing multispectral UAV (Unmanned Aerial Vehicle) sensor data. The input features for ML model training comprise spectral, structural, and texture feature types generated from multispectral orthomosaics (spectral features), Digital Terrain and Surface Models (DTM/DSM- structural features), and Gray-Level Co-occurrence Matrix (GLCM) calculations (texture features). The specific features were selected based on extensive literature research, including especially the fields of precision agri- and viticulture. To integrate only vine canopy-exclusive features into ML classifications, different feature types were extracted and spatially aggregated (zonal statistics), based on a combined pixel- and object-based image-segmentation-technique-created vine row mask around each single grapevine position. The extracted canopy features were progressively grouped into seven input feature groups for model training. Model overall performance metrics were optimized with grid search-based hyperparameter tuning and repeated-k-fold-cross-validation. Finally, ML-based growth class prediction results were extensively discussed and evaluated for overall (accuracy, f1-weighted) and growth class specific- classification metrics (accuracy, user- and producer accuracy). Full article
(This article belongs to the Special Issue Remote Sensing for Crop Growth Monitoring)
Show Figures

Graphical abstract

15 pages, 3018 KiB  
Article
LDDP-Net: A Lightweight Neural Network with Dual Decoding Paths for Defect Segmentation of LED Chips
by Jie Zhang, Ning Chen, Mengyuan Li, Yifan Zhang, Xinyu Suo, Rong Li and Jian Liu
Sensors 2025, 25(2), 425; https://doi.org/10.3390/s25020425 - 13 Jan 2025
Viewed by 331
Abstract
Chip defect detection is a crucial aspect of the semiconductor production industry, given its significant impact on chip performance. This paper proposes a lightweight neural network with dual decoding paths for LED chip segmentation, named LDDP-Net. Within the LDDP-Net framework, the receptive field [...] Read more.
Chip defect detection is a crucial aspect of the semiconductor production industry, given its significant impact on chip performance. This paper proposes a lightweight neural network with dual decoding paths for LED chip segmentation, named LDDP-Net. Within the LDDP-Net framework, the receptive field of the MobileNetv3 backbone is modified to mitigate information loss. In addition, dual decoding paths consisting of a coarse decoding path and a fine-grained decoding path in parallel are developed. Specifically, the former employs a straightforward upsampling approach, emphasizing macro information. The latter is more detail-oriented, using multiple pooling and convolution techniques to focus on fine-grained information after deconvolution. Moreover, the integration of intermediate-layer features into the upsampling operation enhances boundary segmentation. Experimental results demonstrate that LDDP-Net achieves an mIoU (mean Intersection over Union) of 90.29% on the chip dataset, with parameter numbers and FLOPs (Floating Point Operations) of 2.98 M and 2.24 G, respectively. Comparative analyses with advanced methods reveal varying degrees of improvement, affirming the effectiveness of the proposed method. Full article
Show Figures

Figure 1

Back to TopTop