Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (735)

Search Parameters:
Keywords = rutting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 722 KiB  
Article
Comprehensive Study on Dynamic Modulus and Road Performance of High-Performance Asphalt Mixture
by Qi Liu, Jiakai Lu, Zhiqiang Zhang, Zhiang Chen, Tao Wang and Qi Zheng
Buildings 2024, 14(11), 3643; https://doi.org/10.3390/buildings14113643 (registering DOI) - 15 Nov 2024
Viewed by 298
Abstract
Asphalt pavement durability significantly impacts the service life of roads, and hence, understanding the performance of high-performance asphalt mixtures is crucial. This study investigates the performance of four high-performance asphalt mixtures: heavy-load AC-20, high-viscosity AC-20, heavy-load SMA-13, and heavy-load SMA-10. Linear Amplitude Sweep [...] Read more.
Asphalt pavement durability significantly impacts the service life of roads, and hence, understanding the performance of high-performance asphalt mixtures is crucial. This study investigates the performance of four high-performance asphalt mixtures: heavy-load AC-20, high-viscosity AC-20, heavy-load SMA-13, and heavy-load SMA-10. Linear Amplitude Sweep (LAS) tests revealed that heavy-load asphalt mixtures exhibit superior fatigue resistances, with the fatigue life of heavy-load SMA-13 exceeding 1.5 times that of high-viscosity AC-20 under similar stress levels. Bending Beam Rheometer (BBR) tests at −6 °C, −12 °C, and −18 °C demonstrated that both heavy-load and high-viscosity asphalts had comparable low-temperature crack resistance, with heavy-load SMA-13 showing a stiffness modulus of 627 MPa at −18 °C. Marshall tests indicated that heavy-load AC-20 had the highest stability (14.3 kN) among the tested mixtures, while heavy-load SMA-13 exhibited the highest density (2.603 g/cm3). Dynamic modulus tests spanning a frequency range of 10−4 Hz to 105 Hz at various temperatures showed that heavy-load SMA-13 had a higher dynamic modulus than heavy-load SMA-10, particularly at lower frequencies (higher temperatures). Rutting tests at 60 °C indicated that heavy-load SMA-13 had the lowest rut depth (18.5 mm), outperforming other mixtures by up to 25%. The heavy-load SMA-13 asphalt mixture demonstrated the best overall performance, especially in terms of high-temperature stability, fatigue resistance, and rutting resistance. This study provides essential material performance parameters for the development of durable high-performance asphalt pavement structures. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
14 pages, 5605 KiB  
Article
Effect of Biodiesel on Performance of Cold Patch Asphalt Mixtures
by Lingchen Bao, Rongxin Guo and Feng Yan
Materials 2024, 17(22), 5566; https://doi.org/10.3390/ma17225566 - 14 Nov 2024
Viewed by 222
Abstract
In order to reduce the amount of diluent in a diluted asphalt mixture, this study developed a cold patch asphalt (CPA) for repairing pavement potholes by using a mixture of treated biodiesel and diesel as the diluent. The effects of biodiesel on the [...] Read more.
In order to reduce the amount of diluent in a diluted asphalt mixture, this study developed a cold patch asphalt (CPA) for repairing pavement potholes by using a mixture of treated biodiesel and diesel as the diluent. The effects of biodiesel on the performance of the cold patch asphalt mixture (CPAM) during the construction process were investigated through Brookfield rotational viscosity tests, adhesion tests, and FTIR (Fourier transform infrared spectroscopy) analyses. At the same time, the effect of biodiesel on the performance of the CPAM was analyzed by combining the strength growth test, rutting test, and water-soaked Marshall test of CPAMs. The test results show that the construction performance of the CPAM can be significantly improved by adding pretreated biodiesel. Under the same amount of diluent, the strength and high-temperature performance of the asphalt mixture diluted with biodiesel were significantly improved compared to that with diesel as the diluent. The optimal high-temperature performance reached 9027 (times/mm), representing an approximate increase of 94.7% compared to 4636 (times/mm) when only diesel was used as the diluent. When the biodiesel content increased from 10% to 40%, the residue stability improved from 85.9% to 91.3%. The corresponding 0.5 h Marshall stability increased from 5.59 kN to 8.1 kN, while the 48 h Marshall stability rose from 4.8 kN to 7.39 kN. All tests met the requirements for hot mix asphalt. Full article
Show Figures

Figure 1

16 pages, 4237 KiB  
Article
Analysis of the Optimum Performance for Polymer and Polymer–Nanocomposite-modified Asphalt by Using Multicriteria Decision Analysis
by Mustafa Alas, Shaban Ismael Albrka, Ahmed Eltwati, Ahmed Suliman B. Ali and Allam Musbah Al Allam
Polymers 2024, 16(22), 3128; https://doi.org/10.3390/polym16223128 - 9 Nov 2024
Viewed by 471
Abstract
The influence of Acrylate Styrene Acrylonitrile (ASA) and ASA/nanosilica (ASA/Si) additives was investigated by using a dynamic shear rheometer (DSR). Firstly, an ASA polymer was blended with the virgin asphalt binder at two different concentrations (3% ASA and 5% ASA). After observing that [...] Read more.
The influence of Acrylate Styrene Acrylonitrile (ASA) and ASA/nanosilica (ASA/Si) additives was investigated by using a dynamic shear rheometer (DSR). Firstly, an ASA polymer was blended with the virgin asphalt binder at two different concentrations (3% ASA and 5% ASA). After observing that 5% ASA was the optimum concentration for modification, nanosilica particles were further incorporated into the 5% ASA-modified asphalt binder with two different percentages (5% ASA 3%Si; 5% ASA 5%Si). Frequency sweep tests were conducted across various frequencies at elevated temperatures. The experimental outcomes were analyzed using master curves, rutting, and fatigue resistance parameter plots. Additionally, to provide a more holistic analysis, two different multicriteria decision analysis (MCDA) techniques, namely the Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE) and the Technique for the Order of Preference by a Similarity to Ideal Solution (TOPSIS), were conducted to identify the best-performing asphalt binder by considering three different parameters: workability, performance under different conditions, and cost. The frequency sweep tests showed that the 5% ASA 5%Si asphalt worked best in terms of resistance to rutting. On the other hand, the virgin binder performed better than all modified binders when it failed to resist fatigue. On the other hand, the PROMETHEE analysis identified the 5% ASA-modified asphalt binder as the optimal choice, while the TOPSIS analysis determined that the 5% ASA 3%Si-modified binder provided the best performance. The differences between the experimental results and the MCDA were due to using more than one evaluation parameter and looking at how well the asphalt binder worked at different temperature ranges at the same time. Full article
Show Figures

Figure 1

17 pages, 2553 KiB  
Article
Evaluation of SMA-13 Asphalt Mixture Reinforced by Different Types of Fiber Additives
by Haochen Wu, Peng Xiao, Ziyun Fei, Aihong Kang and Xing Wu
Materials 2024, 17(22), 5468; https://doi.org/10.3390/ma17225468 - 8 Nov 2024
Viewed by 463
Abstract
This research aims at systematically evaluating the properties of SMA-13 asphalt mixture reinforced by several fiber additives including flocculent lignin fiber (FLF), granular lignin fiber (GLF), chopped basalt fiber (CBF), and flocculent basalt fiber (FBF). Firstly, the thermal stability, moisture absorption, and oil [...] Read more.
This research aims at systematically evaluating the properties of SMA-13 asphalt mixture reinforced by several fiber additives including flocculent lignin fiber (FLF), granular lignin fiber (GLF), chopped basalt fiber (CBF), and flocculent basalt fiber (FBF). Firstly, the thermal stability, moisture absorption, and oil absorption property of these fiber additives were analyzed. Secondly, the property of SMA-13 reinforced using four types of single fibers and two kinds of composite fibers (FLF + CBF and FLF + FBF) was comprehensively analyzed. Specifically, the high-temperature performance was evaluated using the uniaxial penetration test and the rutting test, the medium-temperature anticracking property was evaluated using the IDEAL-CT test, the low-temperature property was analyzed using the beam bending test, and the water stability was studied by the freeze–thaw splitting test. Thirdly, the dynamic mechanical response of different-fibers-modified SMA-13 was evaluated using the uniaxial compression dynamic modulus test. Finally, correlation analysis between the results of dynamic modulus and the high-, medium-, and low-temperature mechanical performance was carried out. The research results reveal that the stability of CBF and FBF under thermal action is better than that of GLF and FLF, and FBF shows the best thermal stability. The oil absorption property of FLF is better than that of GLF, followed by FBF and CBF. The comprehensive mechanical properties of CBF- and FBF-reinforced SMA-13 are better than those of FLF- and GLF-modified SMA-13. CBF can better reinforce the mechanical property of SMA-13 under low and medium temperature, while FBF can better reinforce the performance of SMA-13 at high temperature. FLF/CBF- and FLF/FBF-composite-modified SMA-13 show better high-temperature mechanical performance than that of the single-fiber-reinforced mixture, and FLF has some negative impact on the properties of FLF/FBF-composite-modified SMA-13 at low temperature. Fibers have no significant influence on the water stability of the mixtures. Meanwhile, the linear correlation between the mechanical performance of all the fiber-reinforced SMA-13 and the dynamic modulus result is good. Full article
(This article belongs to the Special Issue Mechanical Property Research of Advanced Asphalt-Based Materials)
Show Figures

Figure 1

17 pages, 3688 KiB  
Article
Masterbatch Natural Rubber—Innovative Asphalt Cement Additive for Sustainable Flexural Pavements
by Chakkrid Yeanyong, Suksun Horpibulsuk, Apichat Suddeepong, Apinun Buritatum, Teerasak Yaowarat, Kongsak Akkharawongwhatthana, Veena Phunpeng, Artit Udomchai and Menglim Hoy
Sustainability 2024, 16(22), 9676; https://doi.org/10.3390/su16229676 - 6 Nov 2024
Viewed by 436
Abstract
The mechanical performance of Masterbatch Natural Rubber (MNR)-modified asphalt concrete (MNR-AC) was investigated and is presented in this paper. When compared to conventional asphalt concrete (AC), MNR-AC exhibits significantly superior performance across key mechanical parameters, including Marshall stability, indirect tensile strength (ITS), resilient [...] Read more.
The mechanical performance of Masterbatch Natural Rubber (MNR)-modified asphalt concrete (MNR-AC) was investigated and is presented in this paper. When compared to conventional asphalt concrete (AC), MNR-AC exhibits significantly superior performance across key mechanical parameters, including Marshall stability, indirect tensile strength (ITS), resilient modulus (IT Mr), indirect tensile fatigue life (ITFL), and rutting resistance. The most pronounced enhancements are observed at the optimal dry rubber to asphalt cement (r/b) ratio of 3%, at which MNR-AC demonstrates peak performance in all evaluated tests. The fatigue distress models for MNR-AC and AC reveal distinct logarithmic relationships, with an intersection point occurring at an r/b ratio of approximately 3%. This suggests that MNR-AC with an r/b ratio of 3% or less exhibits a markedly superior fatigue life compared to conventional AC under equivalent applied-stress conditions. MNR offers significant practical advantages over liquid natural rubber, including more consistent mixing, and simplified storage and transportation, positioning it as a promising and sustainable advancement in pavement material technology. Full article
Show Figures

Figure 1

15 pages, 4749 KiB  
Review
Circular Economy for Transport Infrastructure: An Overview of the Sustainable Use of Recycled Asphalt Shingles in Asphalt Mixtures
by Marco Pasetto, Safeer Haider and Emiliano Pasquini
Appl. Sci. 2024, 14(22), 10145; https://doi.org/10.3390/app142210145 - 6 Nov 2024
Viewed by 692
Abstract
In North America and Europe, asphalt shingle waste created during the installation of roofing membranes and tear-off shingles retrieved at the end of the membrane’s life cycle are two major sources of municipal solid waste. Since almost 15–35% of recycled asphalt shingles (RAS) [...] Read more.
In North America and Europe, asphalt shingle waste created during the installation of roofing membranes and tear-off shingles retrieved at the end of the membrane’s life cycle are two major sources of municipal solid waste. Since almost 15–35% of recycled asphalt shingles (RAS) consist of an asphalt binder, the effective recycling of RAS into asphalt mixtures could also allow a reduction in the consumption of non-renewable resources such as asphalt binders. In this context, several studies investigating the use of RAS in asphalt mixtures can be found in the literature, although they exhibit widespread and sometimes conflicting information about the investigated materials, the mix preparation and testing methodologies and the experimental findings. Given this background, this review paper aims at summarizing the existing information and research gaps, providing a synthetic and rational picture of the current literature, where similar attempts cannot be found. In particular, different research studies show that the use of RAS in asphalt mixtures is an economical as well as an eco-friendly option. RAS with up to 20% by weight of binder or 5% by weight of aggregate/mixtures (eventually in combination with 15% reclaimed asphalt pavement aggregate) were found to be relatively suitable to improve the performance properties of asphalt mixtures, both in the laboratory and in the field. Adding RAS to asphalt mixtures could enhance their stiffness, strength and rutting resistance (i.e., high-temperature properties), while negatively affecting the mixtures’ fatigue and thermal cracking resistance. However, the addition of specific biomaterials (e.g., bio-binders, bio-oils) or additives to asphalt mixtures can mitigate such issues, resulting in lower brittleness and shear susceptibilities and thus improving the anti-cracking performance. On the other hand, the literature review revealed that several aspects still need to be studied in detail. As an example, RAS-modified porous asphalt mixtures (fatigue, rutting, moisture susceptibility and thermal cracking) need specific research, and there are no comprehensive research studies on the effects of the RAS mixing time, size and mixing temperature in asphalt mixtures. Moreover, the addition of waste cooking/engine oils (biomaterials) as asphalt binder rejuvenators in combination with RAS represents an attractive aspect to be studied in detail. Full article
Show Figures

Figure 1

19 pages, 9730 KiB  
Article
Rheological Properties and Modification Mechanism of Emulsified Asphalt Modified with Waterborne Epoxy/Polyurethan Composite
by Maorong Li, Zhaoyi He, Jiahao Yu, Le Yu, Zuzhen Shen and Lin Kong
Materials 2024, 17(21), 5361; https://doi.org/10.3390/ma17215361 - 1 Nov 2024
Viewed by 522
Abstract
In research aimed at improving the brittleness of WER (waterborne epoxy)-modified emulsified asphalt, commonly encountered issues are that the low-temperature performance of this type of asphalt becomes insufficient and the long curing time leads to low early strength. Matrix-emulsified asphalt was modified with [...] Read more.
In research aimed at improving the brittleness of WER (waterborne epoxy)-modified emulsified asphalt, commonly encountered issues are that the low-temperature performance of this type of asphalt becomes insufficient and the long curing time leads to low early strength. Matrix-emulsified asphalt was modified with WPU (waterborne polyurethane), WER, and DMP-30 (accelerator). Firstly, the performance changes of modified emulsified asphalt at different single-factor dosages were explored through conventional performance tests and assessments of its adhesion, tensile properties, and curing time. Secondly, based on a response surface methodology test design, the material composition of the composite-modified emulsified asphalt was optimized, and its rheological properties were analyzed by a DSR test and a force–ductility test. Finally, the modification mechanism was explored by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The results show that WER can improve the adhesion strength of modified emulsified asphalt and greatly reduce elongation at break. WPU can effectively improve the elongation at break of composite-modified emulsified asphalt, but it has a negative impact on adhesion strength. DMP-30 mainly affects the curing time of modified emulsified asphalt; EPD (composite modification) can effectively improve the high-temperature rutting resistance of matrix-emulsified asphalt, and its low-temperature performance is significantly improved compared with WER-modified emulsified asphalt. The EPD modification process mainly consists of physical blending. In the case of increasing the curing rate, it is recommended that the contents of WER and WPU be lower than 10% and 6%, respectively, to achieve excellent comprehensive performance of the composite modification. Full article
Show Figures

Figure 1

23 pages, 3437 KiB  
Article
Advanced Asphalt Mixtures for Tropical Climates Incorporating Pellet-Type Slaked Lime and Epoxy Resin
by Sang-Yum Lee and Tri Ho Minh Le
J. Compos. Sci. 2024, 8(11), 442; https://doi.org/10.3390/jcs8110442 - 30 Oct 2024
Viewed by 305
Abstract
The escalating impacts of climate change have led to significant challenges in maintaining road infrastructure, particularly in tropical climates. Abnormal weather patterns, including increased precipitation and temperature fluctuations, contribute to the accelerated deterioration of asphalt pavements, resulting in cracks, plastic deformation, and potholes. [...] Read more.
The escalating impacts of climate change have led to significant challenges in maintaining road infrastructure, particularly in tropical climates. Abnormal weather patterns, including increased precipitation and temperature fluctuations, contribute to the accelerated deterioration of asphalt pavements, resulting in cracks, plastic deformation, and potholes. This study aims to evaluate the durability of a novel pellet-type stripping prevention material incorporating slaked lime and epoxy resin for pothole restoration in tropical climates. The modified asphalt mixtures were subjected to a series of laboratory tests, including the Tensile Strength Ratio (TSR) test, Indirect Tension Strength (ITS) test, Hamburg Wheel Tracking (HWT) test, Cantabro test, and Dynamic Modulus test, to assess their moisture resistance, rutting resistance, abrasion resistance, and viscoelastic properties. Quantitative results demonstrated significant improvements in the modified mixture’s performance. The TSR test showed a 6.67% improvement in moisture resistance after 10 drying–wetting cycles compared to the control mixture. The HWT test indicated a 10.16% reduction in rut depth under standard conditions and a 27.27% improvement under double load conditions. The Cantabro test revealed a 44.29% reduction in mass loss, highlighting enhanced abrasion resistance. Additionally, the Dynamic Modulus test results showed better stress absorption and reduced likelihood of cracking, with the modified mixture demonstrating superior flexibility and stiffness under varying temperatures and loading frequencies. These findings suggest that the incorporation of slaked lime and epoxy resin significantly enhances the durability and performance of asphalt mixtures for pothole repair, making them a viable solution for sustainable road maintenance in tropical climates. Full article
(This article belongs to the Special Issue Advanced Asphalt Composite Materials)
Show Figures

Figure 1

21 pages, 7199 KiB  
Article
Characterization of Interface Transition Zone in Asphalt Mixture Using Mechanical and Microscopic Methods
by Mujaheed Yunusa, Wenqi Hou, Guoqing Jing and Hao Wu
Materials 2024, 17(21), 5197; https://doi.org/10.3390/ma17215197 - 25 Oct 2024
Viewed by 533
Abstract
An enormous surge in the pavement sector requires the evaluation of interface bonding in asphalt composite, since the assessment of bonding brings considerable cost savings. Microscopic and mechanical analyses were performed to study the status of the interface transition zone of four groups [...] Read more.
An enormous surge in the pavement sector requires the evaluation of interface bonding in asphalt composite, since the assessment of bonding brings considerable cost savings. Microscopic and mechanical analyses were performed to study the status of the interface transition zone of four groups of asphalt mixtures, using thin-slice preparation to obtain asphalt mixture slices with a flat surface for microscopic analysis. The interface transition zones were characterized using good knowledge of blending or diffusion phenomena by conducting tests both at the micro and macro levels to determine mixture quality. Asphalt mixture components were observed using fluorescence microscopy imaging and evaluated by the gray value change law. Asphalt mixture groups, (virgin, recycled of 30% aged and 70% unaged, 6%, and 4% rejuvenator dosage mixtures) under the same process parameters, which are a mixing time of 270 s and a mixing temperature of 150 °C, been considered optimum for component fusion in a hot asphalt mixture were used. This study relied on the influence of morphology law, assessed through rutting tests for high temperature performance, semi-circular bending tests for low temperature performance, and pull-off tests for interface bonding strength. The relationship between interface transition zones and macro performance was studied. The self-developed pull-off method was a research innovation which can be used as an alternative to study interface transition zones in asphalt mixtures, and provides the necessary data needed with 3D surface failure mode calculations. The device measured the bonding strength of a single aggregate in distinct positions using the bitumen penetration test method. The main goals were to determine a correction factor, identify the appropriate alteration, and compute the actual fracture surface area. Using scanning electron microscopy for interface characterization and micro-morphologies of mortar transition zone, our analysis provides adequate knowledge about interface position and the components present. The applied approaches to characterize asphalt mixture interfaces proved workable and reliable, as all methods have similar trends with useful information to determine asphalt pavement quality. Full article
Show Figures

Figure 1

20 pages, 3177 KiB  
Article
Roe Deer Reproduction in Western Poland: The Late Autumn Rut Phenomenon
by Robert Kamieniarz, Michał Szymański, Magdalena Woźna-Wysocka, Bartłomiej M. Jaśkowski, Marcin K. Dyderski, Emilia Pers-Kamczyc and Maciej Skorupski
Animals 2024, 14(21), 3078; https://doi.org/10.3390/ani14213078 - 25 Oct 2024
Viewed by 427
Abstract
Roe deer (Capreolus capreolus L.) populations in Poland are characterized by low productivity, which is why their reproductive potential was investigated. The presence of corpora lutea (CL) on the ovaries of females hunted in autumn and winter in the years 2015 and [...] Read more.
Roe deer (Capreolus capreolus L.) populations in Poland are characterized by low productivity, which is why their reproductive potential was investigated. The presence of corpora lutea (CL) on the ovaries of females hunted in autumn and winter in the years 2015 and 2016 was assessed. Most animals were post-rut and most often had multiple ovulations. However, in early autumn 2015, 60% of the females had no CL. Therefore, they did not participate in mating at the turn of July/August. Those that did ovulate were found to have one CL. In late autumn, 97% of the females were post-rut, mostly with twin ovulations. This confirmed the occurrence of a late autumn rut. This phenomenon had been suggested in studies but not confirmed. In contrast, almost 100% of roe deer ovulated in summer in 2016. It was hypothesized that the reason for the low mating activity of roe deer in the summer of 2015 was heat stress and limited food resources. The summer was exceptionally hot, with many days in July and August when temperatures exceeded 30 °C. The heat combined with low rainfall led to extreme drought. Meanwhile, July and August are the months of mating activity for roe deer. The late autumn rut allowed the roe deer—a monoestrous species—to limit the consequences of a decrease in mating activity or fertility during the hot summer. Global warming may affect roe deer reproduction, so climatic conditions should be considered in population studies, not only in terms of food availability. Full article
(This article belongs to the Special Issue Advances in Deer Physiology and Reproduction)
Show Figures

Figure 1

35 pages, 3147 KiB  
Review
A Holistic View of Asphalt Binder Aging under Ultraviolet Conditions: Chemical, Structural, and Rheological Characterization
by Qi Zheng, Peikai He, Dan Zhang, Yuxin Weng, Jie Lu and Tao Wang
Buildings 2024, 14(10), 3276; https://doi.org/10.3390/buildings14103276 - 16 Oct 2024
Viewed by 680
Abstract
Asphalt, as a key binder material in road construction, is susceptible to ultraviolet (UV) radiation-induced aging, leading to embrittlement and reduced durability. Despite the significance of UV aging, research in this area remains limited compared to that on thermal aging. This paper comprehensively [...] Read more.
Asphalt, as a key binder material in road construction, is susceptible to ultraviolet (UV) radiation-induced aging, leading to embrittlement and reduced durability. Despite the significance of UV aging, research in this area remains limited compared to that on thermal aging. This paper comprehensively reviews the current state of research on UV aging in asphalt, focusing on its mechanism, evaluation indicators, and methods to delay or avoid UV aging. The structural components, rheological properties, and aging mechanisms of asphalt are discussed. Various UV aging simulation methods, including the use of UV chambers and accelerated aging tests, are presented along with their evaluation tests such as dynamic shear rheometry, rutting tests, Fourier infrared spectroscopy, and bending beam rheology. Key indicators used to assess UV aging, including physical properties, rheological parameters, and chemical composition changes, are summarized. The mechanisms underlying UV aging, particularly the changes in asphalt’s structural components and rheological properties, are examined. The impact of factors like radiation intensity, temperature, chemical composition, and asphalt film thickness on UV aging is discussed. Additionally, various additives and modifiers, including modified bitumen, UV shielding agents, UV absorbers, antioxidants, and nanomodifiers, are reviewed for their potential to mitigate UV aging. This paper concludes by highlighting the challenges in developing standardized test equipment and evaluation criteria, the limitations of organic modifiers, and the need for further research on nanomaterials to improve asphalt’s UV aging resistance. Full article
(This article belongs to the Special Issue Innovation in Pavement Materials: 2nd Edition)
Show Figures

Figure 1

22 pages, 18352 KiB  
Article
Experimental Investigation and Statistical Analysis of Recycled Asphalt Pavement Mixtures Incorporating Nanomaterials
by Preethi Shylaja and P. T. Ravichandran
Recycling 2024, 9(5), 100; https://doi.org/10.3390/recycling9050100 - 15 Oct 2024
Viewed by 1458
Abstract
Reclaimed Asphalt Pavement (RAP) materials are used as substitutes for new materials in asphalt pavement construction, leveraging the engineering and commercial benefits of the aged binders and aggregate matrixes in RAP. These asphalt mixtures impart significant variations in volumetric properties and asphalt mixture [...] Read more.
Reclaimed Asphalt Pavement (RAP) materials are used as substitutes for new materials in asphalt pavement construction, leveraging the engineering and commercial benefits of the aged binders and aggregate matrixes in RAP. These asphalt mixtures impart significant variations in volumetric properties and asphalt mixture characteristics. The current study investigates the Marshall properties, moisture susceptibility, and rutting behavior of 24 recycled asphalt mixtures developed with nanosilica and nanoclay. RAP material percent, nanomaterial content, binder grade, and extra binder were considered the factors influencing asphalt mixture performance. The above factors were analyzed using the Response Surface Methodology (RSM) to predict the Marshall and volumetric properties. Also, this investigation covers the moisture susceptibility and rut characteristics of recycled nanomaterial-modified Hot Mix Asphalt (HMA) and Warm Mix Asphalt (WMA) mixes developed with Viscosity Grade 30 (VG-30) and Polymer-Modified Bitumen-40 (PMB-40). The chemical additive Zycotherm was used to develop WMA mixes. The test results indicate that adding RAP material at higher percentages and modifying the binder with nanomaterials affected moisture susceptibility with reduced moisture damage. Recycled nanosilica-modified HMA mixes developed with PMB-40 at higher RAP percentages reported higher tensile strength ratio (TSR) values in contrast with VG-30 mixes, indicating their greater susceptibility toward moisture-induced damage. The rutting potential of all of the recycled asphalt mixture combinations was enhanced by densely packed aggregate structures optimized with nanomaterials, total binder content, and RAP materials developed using the Marshall method. Overall, the nanosilica-modified recycled asphalt mixes developed with PMB40 at higher RAP percentages showed better performance in terms of strength and durability. Full article
Show Figures

Figure 1

17 pages, 3739 KiB  
Article
Impact of Nanocarbon-Coated Calcium Carbonate on Asphalt Rutting: Experimental and Numerical Analyses
by Mohammad Erfan Hoghoghi, Mohammad Mehdi Khabiri and Ahmad Mansourian
Processes 2024, 12(10), 2244; https://doi.org/10.3390/pr12102244 - 14 Oct 2024
Viewed by 770
Abstract
Rutting is a significant form of pavement distress that arises from irreversible strains accumulating along wheel paths, directly impacting pavement safety. This research investigates the effectiveness of nanocarbon-coated micronized calcium carbonate powder as a modified filler to mitigate rutting, utilizing numerical methods via [...] Read more.
Rutting is a significant form of pavement distress that arises from irreversible strains accumulating along wheel paths, directly impacting pavement safety. This research investigates the effectiveness of nanocarbon-coated micronized calcium carbonate powder as a modified filler to mitigate rutting, utilizing numerical methods via finite element software. The study specifically examines the addition of 5% by weight of this modified filler to the asphalt mix. To validate the numerical results, laboratory wheel-tracking tests were conducted on samples incorporating both conventional and modified fillers. The findings reveal that the modified calcium carbonate filler enhances the asphalt’s resistance to rutting, with the 5% inclusion demonstrating a marked improvement in durability and performance. The study also underscores the necessity of characterizing the elastic and visco-plastic properties of materials through rigorous testing methods, such as elastic modulus and dynamic creep tests, to better understand their behavior under load. Numerical analysis based on linear elastic conditions was prioritized over viscous conditions to effectively compare the results of these specialized materials. The strong correlation between the numerical simulations and laboratory results reinforces the effectiveness of finite element methods in predicting pavement behavior and optimizing asphalt mixtures. Full article
Show Figures

Figure 1

37 pages, 2061 KiB  
Review
Innovative Pavement Solutions: A Comprehensive Review from Conventional Asphalt to Sustainable Colored Alternatives
by Anisa Riaz, Nof Yasir, Gul Badin and Yasir Mahmood
Infrastructures 2024, 9(10), 186; https://doi.org/10.3390/infrastructures9100186 - 14 Oct 2024
Viewed by 1026
Abstract
Climate change significantly impacts transportation infrastructure, particularly asphalt pavements. Similarly, the heat absorption of paved surfaces, especially conventional black pavements, significantly intensifies the urban microclimate. Paved surfaces, including asphalt pavements, account for over 30% of the covered surfaces and are vulnerable to rising [...] Read more.
Climate change significantly impacts transportation infrastructure, particularly asphalt pavements. Similarly, the heat absorption of paved surfaces, especially conventional black pavements, significantly intensifies the urban microclimate. Paved surfaces, including asphalt pavements, account for over 30% of the covered surfaces and are vulnerable to rising temperatures, which cause not only pavement distress, such as rutting and cracking, but also urban heat islands (UHI). Sustainable pavement solutions, specifically colored pavements, have been investigated for their potential to mitigate these effects. This review presents an extensive overview of current pavement technologies, emphasizing conventional asphalt’s economic, environmental, and functional characteristics. A discussion of the benefits and challenges of colored pavements is also provided, including their ability to reduce UHI, enhance safety, and contribute to sustainable urban growth. This paper discusses advancements in pavement material science, the use of recycled materials, and the application of reflective coatings, providing insights into sustainable infrastructure development. Transitioning from conventional black pavements to sustainable colored alternatives is not merely a matter of material choice but a strategic transition toward resilient urban planning. Increasing demand for environmentally friendly infrastructure could prompt the construction industry to adopt colored pavements as a tool to promote environmental stewardship. Full article
Show Figures

Figure 1

26 pages, 10742 KiB  
Article
Performance of Bamboo Bark Fiber Asphalt Mortar Modified with Surface-Grafted Nano-SiO2
by Nan Zhang, Xichen Wang, Pei Sun, Nanxiang Zheng and Aodi Sun
Polymers 2024, 16(19), 2850; https://doi.org/10.3390/polym16192850 - 9 Oct 2024
Viewed by 655
Abstract
In this study, the feasibility of using bamboo bark fibers as modifiers to enhance asphalt mortar performance was investigated. Bamboo bark fibers were modified with NaOH, KH570 silane coupling agent, and nano-SiO2, and their preparation methods were established. The modified fibers [...] Read more.
In this study, the feasibility of using bamboo bark fibers as modifiers to enhance asphalt mortar performance was investigated. Bamboo bark fibers were modified with NaOH, KH570 silane coupling agent, and nano-SiO2, and their preparation methods were established. The modified fibers were assessed for their oil absorption, thermal stability, and hydrophobicity. The asphalt mortar was evaluated for three key indicators: rutting resistance, deformation resistance, and durability at high temperatures. The microscopic morphology and modification mechanisms of the fibers were also studied. The results showed that modification with NaOH increased fiber porosity and surface roughness, while KH570 and its hydrolysis products enabled nano-SiO2 grafting onto the fibers, improving their adsorption to asphalt. The NaOH-KH570-nano-SiO2 ternary-composite-modified bamboo bark fiber (NKSBF) demonstrated superior hydrophobicity, oil absorption, and thermal stability at the asphalt mixing temperature. Among the modified fibers, asphalt mortar containing 3% NKSBF showed the best performance based on three key indicators, increased the shear strength by 96.4% and the softening point by 7.1% compared to the base asphalt, and increased the ductility by 1% compared to lignin fiber asphalt mortar. The incorporation of 3% bamboo bark fibers improved the rutting resistance, deformation resistance, and durability of short-term-aged asphalt mortar, with NKSBF showing the most significant improvement. Full article
Show Figures

Figure 1

Back to TopTop