Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = rheological filling model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4341 KiB  
Article
Effect of Silk Fibroin on the Mechanical and Transport Properties of Agarose Hydrogels
by Veronika Richterová and Miloslav Pekař
Gels 2024, 10(10), 611; https://doi.org/10.3390/gels10100611 - 24 Sep 2024
Viewed by 692
Abstract
In this work, the effect of incorporating silk fibroin, a fibrous biocompatible protein, into physically cross-linked agarose hydrogels was investigated as a simple model study to examine how supramolecular fibrous structures influence the properties of the hydrogels. The rheological and transport properties were [...] Read more.
In this work, the effect of incorporating silk fibroin, a fibrous biocompatible protein, into physically cross-linked agarose hydrogels was investigated as a simple model study to examine how supramolecular fibrous structures influence the properties of the hydrogels. The rheological and transport properties were studied. Fibroin did not change the general viscoelastic properties of the investigated hydrogels but changed the viscoelastic moduli values and also the mesh size, as calculated from rheometry data. Fibroin influenced the mechanical properties depending on its concentration: at lower concentrations, it increased the mesh size, while at higher concentrations, it acted as a filler, decreasing the mesh size. Similarly, the storage and loss moduli were affected, either increasing or decreasing based on the fibroin concentration. The fibroin effect on the diffusion of two dyes differing in their charge was the result of a combination of structural effects, responsible also for changes in the rheological properties, and a result of electrostatic interactions between the charged groups. For positively charged methylene blue, low fibroin concentrations accelerated diffusion, while higher concentrations slowed it by filling network vacancies. In contrast, for negatively charged eosin-B, fibroin strongly impeded diffusion at all concentrations due to electrostatic repulsion, leading to its accumulation at the hydrogel interface. The findings of this work may contribute to an understanding of the behavior of the extracellular matrix or soft tissues as well as to the development of the tailored design of hydrogel materials. Full article
(This article belongs to the Special Issue Design of Supramolecular Hydrogels)
Show Figures

Graphical abstract

17 pages, 8517 KiB  
Article
Evaluation of Different ZX Tensile Coupon Designs in Additive Manufacturing of Amorphous and Semi-Crystalline Polymer Composites
by Raviteja Rayaprolu, Ajay Kumar Kadiyala and Joseph G. Lawrence
J. Compos. Sci. 2024, 8(9), 379; https://doi.org/10.3390/jcs8090379 - 22 Sep 2024
Viewed by 696
Abstract
The layer-by-layer deposition of molten polymer filament in fused deposition modeling (FDM) has evolved as a disruptive technology for building complex parts. This technology has drawbacks such as the anisotropic property of the printed parts resulting in lower strength for parts printed in [...] Read more.
The layer-by-layer deposition of molten polymer filament in fused deposition modeling (FDM) has evolved as a disruptive technology for building complex parts. This technology has drawbacks such as the anisotropic property of the printed parts resulting in lower strength for parts printed in the vertical Z direction compared with the other two planes. In this manuscript, we attempt to address these challenges as well as the lack of standardization in sample preparation and mechanical testing of the printed parts. The paper focuses on process parameters and design optimization of the ZX build orientation. Type I tensile bars in ZX orientation were printed as per the ASTM D638 standard using two (2B) and four (4B) tensile bar designs. The proposed design reduces material loss and post-processing to extract the test coupons. Printing a type I tensile bar in the ZX orientation is more challenging than type IV and type V due to the increased length of the specimen and changes in additional heat buildup during layer-by-layer deposition. Three different polymer composite systems were studied: fast-crystallizing nanofiller-based high-temperature nylon (HTN), slow-crystallizing nanofiller-based polycyclohexylene diethylene terephthalate glycol-modified (PCTG), and amorphous carbon fiber-filled polyetherimide (PEI-CF). For all the polymer composite systems, the 2B showed the highest strength properties due to the shorter layer time aiding the diffusion in the interlayers. Further, rheological studies and SEM imaging were carried out to understand the influence of the two designs on fracture mechanics and interlayer bonding, providing valuable insights for the field of additive manufacturing and material science. Full article
(This article belongs to the Special Issue Application of Composite Materials in Additive Manufacturing)
Show Figures

Figure 1

24 pages, 13056 KiB  
Article
Enhancing Injection Molding Simulation Accuracy: A Comparative Evaluation of Rheological Model Performance
by Markus Baum, Denis Anders and Tamara Reinicke
Appl. Sci. 2024, 14(18), 8468; https://doi.org/10.3390/app14188468 - 20 Sep 2024
Viewed by 1068
Abstract
This contribution provides a detailed comparison of the impact of various rheological models on the filling phase of injection molding simulations in order to enhance the accuracy of flow predictions and improve material processing. The challenge of accurately modeling polymer melt flow behavior [...] Read more.
This contribution provides a detailed comparison of the impact of various rheological models on the filling phase of injection molding simulations in order to enhance the accuracy of flow predictions and improve material processing. The challenge of accurately modeling polymer melt flow behavior under different temperature and shear rate conditions is crucial for optimizing injection molding processes. Therefore, the study examines commonly used rheological models, including Power-Law, Second-Order, Herschel-Bulkley, Carreau and Cross models. Using experimental data for validation, the accuracy of each model in predicting the flow front and viscosity distribution for a quadratic molded part with a PA66 polymer is evaluated. The Carreau-WLF Winter model showed the highest accuracy, with the lowest RMSE values, closely followed by the Carreau model. The Second-Order model exhibited significant deviations in the edge region from experimental results, indicating its limitations. Results indicate that models incorporating both shear rate and temperature dependencies, such as Carreau-WLF Winter, provide superior predictions compared to those including only shear rate dependence. These findings suggest that selecting appropriate rheological models can significantly enhance the predictive capability of injection molding simulations, leading to better process optimization and higher quality in manufactured parts. The study emphasizes the significance of comprehensive rheological analysis and identifies potential avenues for future research and industrial applications in polymer processing. Full article
Show Figures

Figure 1

20 pages, 7972 KiB  
Article
Modeling Approach for Reactive Injection Molding of Polydisperse Suspensions with Recycled Thermoset Composites
by Bhimesh Jetty, Florian Wittemann and Luise Kärger
Polymers 2024, 16(16), 2245; https://doi.org/10.3390/polym16162245 - 7 Aug 2024
Cited by 1 | Viewed by 1158
Abstract
Recycling production waste in the reactive injection molding (RIM) process is a step towards sustainability and efficient material usage. The recycled thermoset composite (RTC) material obtained by shredding the production waste is reused with a virgin thermoset composite (VTC). This study presents a [...] Read more.
Recycling production waste in the reactive injection molding (RIM) process is a step towards sustainability and efficient material usage. The recycled thermoset composite (RTC) material obtained by shredding the production waste is reused with a virgin thermoset composite (VTC). This study presents a mold-filling simulation approach considering this polydisperse suspension of RTC and VTC. Mold-filling simulations can assist in predicting processability and assessing the impact of reinforced RTC on the final part of production. State-of-the-art mold-filling simulations use the Cross–Castro–Macosko (CCM) model or anisotropic fiber-orientation-dependent viscosity models. The rheological parameters are determined either for the VTC or neat resin. However, these models do not account for changes in viscosity due to the reinforcing of fillers such as RTC. An effective viscosity model is developed by extending the CCM model using the stress–strain amplification approach to overcome this gap. This model is implemented in the computational fluid dynamics code OpenFOAM, and simulations are performed using an extended multiphase solver. To validate the simulations, experimental trials were executed using a two-cavity mold equipped with pressure sensors. Molding compounds with different compositions of VTC and RTC were injected at different speeds. Reinforcing VTC with RTC increases the viscosity. Results demonstrate that RTC-reinforced compounds require higher injection pressure for mold filling than VTC alone. The qualitative agreement of pressure profiles from simulations and experiments for different proportions of reinforcing RTC and different injection speeds shows that the implemented viscosity model can reproduce the experimental mold-filling behavior. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

16 pages, 4485 KiB  
Article
The Use of an Advanced Intelligent–Responsive Polymer for the Study of Dynamic Water–Carbon Dioxide Alternating Displacement
by Feng Zhang, Jingong Zhang, Yidong Yuan, Zishu Yong, Zhuoyue Yan, Jiayuan Zhang and Guochao Lu
Polymers 2024, 16(8), 1040; https://doi.org/10.3390/polym16081040 - 10 Apr 2024
Viewed by 959
Abstract
Addressing the issue of inadequate temperature tolerance in traditional polymers, in this study, we successfully executed a one-step synthesis of intelligent–responsive polymers which have excellent adaptability in water–gas alternating displacement scenarios. Utilizing the fatty acid method, we produced OANND from oleic acid (OA) [...] Read more.
Addressing the issue of inadequate temperature tolerance in traditional polymers, in this study, we successfully executed a one-step synthesis of intelligent–responsive polymers which have excellent adaptability in water–gas alternating displacement scenarios. Utilizing the fatty acid method, we produced OANND from oleic acid (OA) and N,N-dimethyl-1,3-propanediamine (NND). Upon testing the average particle size in the aqueous solution both prior and subsequent to CO2 passage, it became evident that OANND assumes the form of a small-molecule particle in the aqueous phase, minimizing damage during formation. Notably, upon CO2 exposure, it promptly organizes into stable micelles with an average size of 88 nm and a relatively uniform particle distribution. This unique characteristic endows it with a rapid CO2 response mechanism and the ability to form a highly resilient gel. In the exploration of viscoelastic fluids, we observed the remarkable behavior of the AONND aqueous solution when CO2/N2 was introduced. This system displayed repeatable transitions between aqueous and gel states, with the highest viscosity peaking at approximately 3895 mPa·s, highlighting its viscosity reversibility and reusability properties. The rheological property results that we obtained indicate that an elongated micellar structure is present in the solution system, with the optimal concentration ratio for its formation determined as 0.8, which is the molar ratio of the OANND-NaOA system. In the sealing performance tests, a 1.0 wt% concentration of the gel system exhibited excellent injectability properties. At 80 °C, this gel effectively reduced the permeability of a sand-filled model to 94.5% of its initial value, effectively sealing potential leakage paths or gas fluxes. This remarkable ability to block leakage paths and reduce seepage capacity highlights the material’s superior blocking effect and erosion resistance properties. Furthermore, even at a temperature of 90 °C and an injection pore volume (PV) of 3, this plugging system could reduce the permeability of a high-permeability sand-filled model to over 90% of its initial value. Full article
(This article belongs to the Special Issue Advanced Polymer Composites in Oil Industry)
Show Figures

Figure 1

27 pages, 13825 KiB  
Article
Study on the High-Efficiency Preparation of Superhydrophobic Polymer Thin Films by Continuous Micro/Nano Imprinting
by Zhi Chen, Yumeng Wei, Cheng Wu, Guojun Zhang and Fenglin Han
Polymers 2024, 16(7), 912; https://doi.org/10.3390/polym16070912 - 26 Mar 2024
Viewed by 959
Abstract
In order to improve the preparation efficiency, quality stability, and large-area preparation of superhydrophobic thin films, a roll-to-roll continuous micro–nano imprinting method for the efficient preparation of superhydrophobic polymer films is proposed. A wear-resistant mold roller with hierarchical microstructure is prepared by wire [...] Read more.
In order to improve the preparation efficiency, quality stability, and large-area preparation of superhydrophobic thin films, a roll-to-roll continuous micro–nano imprinting method for the efficient preparation of superhydrophobic polymer films is proposed. A wear-resistant mold roller with hierarchical microstructure is prepared by wire electrical discharge machining (WEDM). The rheological filling model is constructed for revealing the forming mechanism of superhydrophobic polymer films during continuous micro/nano imprinting. The effects of imprinting temperature, rolling speed and the surface texture size of the template on the surface texture formation rate of polymer films are analyzed. The experimental results show that, compared with other process methods, the template processed by WEDM shows excellent wear resistance. Moreover, the optimal micro/nano imprinting parameters are the mold temperature of 190 °C (corresponding film temperature of 85 ± 5 °C), rolling speed of 3 rpm and roller gap of 0.1 mm. The maximum contact angle of the polymer film is 154°. In addition, the superhydrophobic polymer thin film has been proven to have good self-cleaning and anti-icing performance. Full article
(This article belongs to the Special Issue Advances in Functional Polymer Coatings and Surfaces)
Show Figures

Figure 1

10 pages, 903 KiB  
Communication
The Possibility of Estimating the Permafrost’s Porosity In Situ in the Hydrocarbon Industry and Environment
by Lev V. Eppelbaum
Geosciences 2024, 14(3), 72; https://doi.org/10.3390/geosciences14030072 - 9 Mar 2024
Viewed by 1398
Abstract
Global warming firstly influences the permafrost regions where numerous and rich world hydrocarbon deposits are located. Permafrost thawing has caused severe problems in exploring known hydrocarbon deposits and searching for new targets. This process is also dangerous for any industrial and living regions [...] Read more.
Global warming firstly influences the permafrost regions where numerous and rich world hydrocarbon deposits are located. Permafrost thawing has caused severe problems in exploring known hydrocarbon deposits and searching for new targets. This process is also dangerous for any industrial and living regions in cold regions. Knowledge of permafrost’s ice and unfrozen water content is critical for predicting permafrost behavior during the water–ice transition. This is especially relevant when ice and permafrost are melting in many regions under the influence of global warming. It is well known that only part of the formation’s pore water turns into ice at 0 °C. After further lowering the temperature, the water phase transition continues, but at gradually decreasing rates. Thus, the porous space is filled with ice and unfrozen water. Laboratory data show that frozen formations’ mechanical, thermal, and rheological properties strongly depend on the moisture content. Hence, porosity and temperature are essential parameters of permafrost. In this paper, it is shown that by combining research in three fields, (1) geophysical exploration, (2) numerical modeling, and (3) temperature logging, it is possible to estimate the porosity of permafrost in situ. Five examples of numerical modeling (where all input parameters are specified) are given to demonstrate the procedure. This investigation is the first attempt to quantitatively analyze permafrost’s porosity in situ. Full article
Show Figures

Figure 1

18 pages, 8693 KiB  
Article
Infusion Simulation of Graphene-Enhanced Resin in LCM for Thermal and Chemo-Rheological Analysis
by Hatim Alotaibi, Chamil Abeykoon, Constantinos Soutis and Masoud Jabbari
Materials 2024, 17(4), 806; https://doi.org/10.3390/ma17040806 - 7 Feb 2024
Cited by 1 | Viewed by 1369
Abstract
The present numerical study proposes a framework to determine the heat flow parameters—specific heat and thermal conductivity—of resin–graphene nanoplatelets (GNPs) (modified) as well as non-modified resin (with no GNPs). This is performed by evaluating the exothermic reaction which occurs during both the filling [...] Read more.
The present numerical study proposes a framework to determine the heat flow parameters—specific heat and thermal conductivity—of resin–graphene nanoplatelets (GNPs) (modified) as well as non-modified resin (with no GNPs). This is performed by evaluating the exothermic reaction which occurs during both the filling and post-filling stages of Liquid Composite Moulding (LCM). The proposed model uses ANSYS Fluent to solve the Stokes–Brinkman (momentum and mass), energy, and chemical species conservation equations to a describe nano-filled resin infusion, chemo-rheological changes, and heat release/transfer simultaneously on a Representative Volume Element (RVE). The transient Volume-of-Fluid (VOF) method is employed to track free-surface propagation (resin–air interface) throughout the computational domain. A User-Defined Function (UDF) is developed together with a User-Defined Scaler (UDS) to incorporate the heat generation (polymerisation), which is added as an extra source term into the energy equation. A separate UDF is used to capture intra-tow (microscopic) flow by adding a source term into the momentum equation. The numerical findings indicate that the incorporation of GNPs can accelerate the curing of the resin system due to the high thermal conductivity of the nanofiller. Furthermore, the model proves its capability in predicting the specific heat and thermal conductivity of the modified and non-modified resin systems utilising the computed heat of reaction data. The analysis shows an increase of ∼15% in the specific heat and thermal conductivity due to different mould temperatures applied (110–170 °C). This, furthermore, stresses the fact that the addition of GNPs (0.2 wt.%) improves the resin-specific heat by 3.68% and thermal conductivity by 58% in comparison to the non-modified thermoset resin. The numerical findings show a satisfactory agreement with and in the range of experimental data available in the literature. Full article
(This article belongs to the Special Issue Advances in Bio-Polymer and Polymer Composites)
Show Figures

Figure 1

18 pages, 5223 KiB  
Review
Rheology of Highly Filled Polymer Compositions—Limits of Filling, Structure, and Transport Phenomena
by Alexander Ya. Malkin, Valery G. Kulichikhin, Svetlana Yu. Khashirova, Igor D. Simonov-Emelyanov and Anton V. Mityukov
Polymers 2024, 16(3), 442; https://doi.org/10.3390/polym16030442 - 5 Feb 2024
Cited by 7 | Viewed by 1608
Abstract
The current state of the rheology of various polymeric and other materials containing a high concentration of spherical solid filler is considered. The physics of the critical points on the concentration scale are discussed in detail. These points determine the features of the [...] Read more.
The current state of the rheology of various polymeric and other materials containing a high concentration of spherical solid filler is considered. The physics of the critical points on the concentration scale are discussed in detail. These points determine the features of the rheological behavior of the highly filled materials corresponding to transitions from a liquid to a yielding medium, elastic–plastic state, and finally to an elastic solid-like state of suspensions. Theoretical and experimental data are summarized, showing the limits of the most dense packing of solid particles, which is of key importance for applications and obtaining high-quality products. The results of model and fine structural studies of physical phenomena that occur when approaching the point of filling the volume, including the occurrence of instabilities, are considered. The occurrence of heterogeneity in the form of individual clusters is also described. These heterogeneous objects begin to move as a whole that leads to the appearance of discontinuities in the suspension volume or wall slip. Understanding these phenomena is a key for particle technology and multiphase processing. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

28 pages, 522 KiB  
Review
Approaches for Numerical Modeling and Simulation of the Filling Phase in Injection Molding: A Review
by Markus Baum, Denis Anders and Tamara Reinicke
Polymers 2023, 15(21), 4220; https://doi.org/10.3390/polym15214220 - 25 Oct 2023
Cited by 5 | Viewed by 3230
Abstract
Injection molding is a multiphase process that requires accurate simulation of the filling phase. This is a key element in predicting the complete injection molding cycle. The filling phase presents a complex set of challenges, including migrating melt fronts, multi-phase flow, non-Newtonian fluid [...] Read more.
Injection molding is a multiphase process that requires accurate simulation of the filling phase. This is a key element in predicting the complete injection molding cycle. The filling phase presents a complex set of challenges, including migrating melt fronts, multi-phase flow, non-Newtonian fluid dynamics, and intertwined heat transfer. Evolving from 1D to 2D, 2.5D, and 3D techniques, filling simulation research has adapted to capture the intricacies of injection-molded parts. However, the need for accuracy in the characterization of the rheological properties of polymers during filling is still of paramount importance. In order to systematically categorize the numerical methods used to simulate the filling phase of injection molding, this review paper provides a comprehensive summary. Particular emphasis is given to the complex interaction of multiple geometric parameters that significantly influence the dynamic evolution of the filling process. In addition, a spectrum of rheological models is thoroughly and exhaustively explored in the manuscript. These models serve as basic mathematical constructs to help describe the complex viscous behavior of polymers during the filling phase. These models cover a spectrum of complexity and include widely recognized formulations such as the Power-Law, second-order, Herschel–Bulkley, Carreau, Bird–Carreau, and Cross models. The paper presents their implementation to include the temperature-dependent influence on viscosity. In this context, the extensions of these models are explained in detail. These extensions are designed to take into account the dynamic viscosity changes caused by the different thermal conditions during the filling process. An important contribution of this study is the systematic classification of these models. This categorization encompasses both academic research and practical integration into commercial software frameworks. In addition to the theoretical importance of these models, their practical value in overcoming challenges in the field of injection molding is emphasized. By systematically outlining these models within a structured framework, this classification promotes a comprehensive understanding of their intrinsic characteristics and relevance in different scenarios. Full article
Show Figures

Figure 1

21 pages, 7393 KiB  
Article
Time-Dependent Rheological Properties of Cemented Aeolian Sand-Fly Ash Backfill Vary with Particles Size and Plasticizer
by Baogui Yang, Zhijun Zheng, Junyu Jin and Xiaolong Wang
Materials 2023, 16(15), 5295; https://doi.org/10.3390/ma16155295 - 27 Jul 2023
Cited by 1 | Viewed by 1161
Abstract
The use of cemented Aeolian sand-fly ash backfill (CAFB) material to fill the mining area to improve the surface subsidence damage caused by underground coal mining is in the development stage. Their performance with large overflow water and strength loss is not well [...] Read more.
The use of cemented Aeolian sand-fly ash backfill (CAFB) material to fill the mining area to improve the surface subsidence damage caused by underground coal mining is in the development stage. Their performance with large overflow water and strength loss is not well understood. Few research has been conducted to understand the effects of aeolian sand and coal gangue on the rheological properties of CAFB with plasticizers. Therefore, this study aims to investigate the effects of a plasticizer on the rheological properties, specifically yield stress and viscosity, of CAFB prepared with aeolian sand and coal gangue. CAFB mixes containing 0%, 0.05%, and 0.1% plasticizers were prepared, and yield stress and viscosity were determined at different intervals. Additional tests, such as thermal analysis and zeta potential analysis, were also conducted. It was found that the rheological properties of CAFB are the comprehensive manifestation of the composite characteristics of various models. Reasonable particle size distribution and less plasticizer can ensure the stability of the slurry structure and reduce the slurry settlement and the risk of pipe blocking. The findings of this study will be beneficial in the design and production of CAFB material. Full article
Show Figures

Figure 1

14 pages, 5931 KiB  
Article
Effect of Graphene Oxide on the Mechanical Property and Microstructure of Clay-Cement Slurry
by Shujie Liu, Jinze Sun, Jiwei Zhang, Zuodong Xie and Zhijie Yu
Materials 2023, 16(12), 4294; https://doi.org/10.3390/ma16124294 - 9 Jun 2023
Cited by 6 | Viewed by 1217
Abstract
As a widely used material in underground engineering, clay-cement slurry grouting is characterized by poor initial anti-seepage and filtration capacity, low strength of the resulting stone body, and a tendency to brittle failure. In this study, a novel type of clay-cement slurry was [...] Read more.
As a widely used material in underground engineering, clay-cement slurry grouting is characterized by poor initial anti-seepage and filtration capacity, low strength of the resulting stone body, and a tendency to brittle failure. In this study, a novel type of clay-cement slurry was developed by adding of graphene oxide (GO) as a modifier to ordinary clay-cement slurry. The rheological properties of the improved slurry were studied through laboratory tests, and the effects of varying amounts of GO on the slurry’s viscosity, stability, plastic strength, and stone body mechanical properties were analyzed. The results indicated that the viscosity of clay-cement slurry increases by a maximum of 163% with 0.05% GO, resulting in a decrease in the slurry’s fluidity. The stability and plastic strength of GO-modified clay-cement slurry were significantly enhanced, with the plastic strength increasing by a 5.62 time with 0.03% GO and a 7.11 time with 0.05% GO at the same curing time. The stone body of the slurry exhibited increased uniaxial compressive strength and shear strength, with maximum increases of 23.94% and 25.27% with 0.05% GO, respectively, indicating a significant optimization effect on the slurry’s durability. The micro-mechanism for the effect of GO on the properties of slurry was investigated using scanning electron microscopy (SEM) and a diffraction of X-rays (XRD) test. Moreover, a growth model of the stone body of GO-modified clay-cement slurry was proposed. The results showed that after the GO-modified clay-cement slurry was solidified, a clay-cement agglomerate space skeleton with GO monolayer as the core was formed inside the stone body, and with an increase in GO content from 0.03% to 0.05%, the number of clay particles increased. The clay particles filled the skeleton to form a slurry system architecture, which is the primary reason for the superior performance of GO-modified clay-cement slurry when compared with traditional clay-cement slurry. Full article
Show Figures

Figure 1

12 pages, 4595 KiB  
Article
Numerical Modeling of the Mixing of Highly Viscous Polymer Suspensions in Partially Filled Sigma Blade Mixers
by Michael Roland Larsen, Tobias Ottsen, Erik Tomas Holmen Olofsson and Jon Spangenberg
Polymers 2023, 15(8), 1938; https://doi.org/10.3390/polym15081938 - 19 Apr 2023
Cited by 3 | Viewed by 2019
Abstract
This paper presents a non-isothermal, non-Newtonian Computational Fluid Dynamics (CFD) model for the mixing of a highly viscous polymer suspension in a partially filled sigma blade mixer. The model accounts for viscous heating and the free surface of the suspension. The rheological model [...] Read more.
This paper presents a non-isothermal, non-Newtonian Computational Fluid Dynamics (CFD) model for the mixing of a highly viscous polymer suspension in a partially filled sigma blade mixer. The model accounts for viscous heating and the free surface of the suspension. The rheological model is found by calibration with experimental temperature measurements. Subsequently, the model is exploited to study the effect of applying heat both before and during mixing on the suspension’s mixing quality. Two mixing indexes are used to evaluate the mixing condition, namely, the Ica Manas-Zlaczower dispersive index and Kramer’s distributive index. Some fluctuations are observed in the predictions of the dispersive mixing index, which could be associated with the free surface of the suspension, thus indicating that this index might not be ideal for partially filled mixers. The Kramer index results are stable and indicate that the particles in the suspension can be well distributed. Interestingly, the results highlight that the speed at which the suspension becomes well distributed is almost independent of applying heat both before and during the process. Full article
(This article belongs to the Special Issue Polymers Physics: From Theory to Experimental Applications)
Show Figures

Figure 1

23 pages, 48193 KiB  
Article
Experimental Study on Rheological Properties of Coal Gangue Slurry Based on Response Surface Methodology
by Kaihua Sun and Xiong Wu
Processes 2023, 11(4), 1205; https://doi.org/10.3390/pr11041205 - 14 Apr 2023
Cited by 4 | Viewed by 1312
Abstract
To handle the gangue well and control the settlement of the surface, as well as to reduce the risk of water bleeding, settlement and even blockage and pipe breaking of the gangue slurry in the process of conveying, the rheological characteristics of the [...] Read more.
To handle the gangue well and control the settlement of the surface, as well as to reduce the risk of water bleeding, settlement and even blockage and pipe breaking of the gangue slurry in the process of conveying, the rheological characteristics of the slurry should be studied. The rheological properties of slurry with different concentrations prepared from gangue samples of the Ningtiaota coal mine were tested, and the correlation between the rheological characteristics of the coal gangue filling slurry and three factors, namely the gangue mass fraction, grain gradation and standing time, were studied by a single factor method and response surface methodology. The results show that the fitting curve of the Herschel–Bulkley model is mostly linear, that is, the shear stress of coal gangue paste increases as a function of the shear rate. Therefore, these two concentrations are too small to form a stable network structure to wrap large particles and can easily cause pipe blockage. The yield shear stress and plastic viscosity show an exponential increase with the increasing mass fraction. The shear stress and apparent viscosity of the pastes with mass fractions of 60% and 65%, respectively, increase significantly after 20, 40 and 60 min of standing. According to the comprehensive test results and the response surface, the optimization method is as follows: mass fraction of 72%; aggregate grading for 4.75~1.18 mm particle size is 30%, for 1.18~0.425 mm particle size is 40%, for 0.425~0.075 mm particle size is 10%, for less than 0.075 mm particle size is 20%; with different standing times, the yield shear stress of slurry ranges from 103.02 to 131.645 Pa; and the plastic viscosity ranges from 0.54 to 0.64 Pa.s. With the increase of the standing time, the slurry settlement is relatively small, and is a more ideal gangue slurry proportion. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

19 pages, 10781 KiB  
Article
A Numerical Thermo-Chemo-Flow Analysis of Thermoset Resin Impregnation in LCM Processes
by Hatim Alotaibi, Chamil Abeykoon, Constantinos Soutis and Masoud Jabbari
Polymers 2023, 15(6), 1572; https://doi.org/10.3390/polym15061572 - 22 Mar 2023
Cited by 2 | Viewed by 2436
Abstract
This paper presents a numerical framework for modelling and simulating convection–diffusion–reaction flows in liquid composite moulding (LCM). The model is developed in ANSYS Fluent with customised user-defined-functions (UDFs), user-defined-scalar (UDS), and user-defined memory (UDM) codes to incorporate the cure kinetics and rheological characteristics [...] Read more.
This paper presents a numerical framework for modelling and simulating convection–diffusion–reaction flows in liquid composite moulding (LCM). The model is developed in ANSYS Fluent with customised user-defined-functions (UDFs), user-defined-scalar (UDS), and user-defined memory (UDM) codes to incorporate the cure kinetics and rheological characteristics of thermoset resin impregnation. The simulations were performed adopting volume-of-fluid (VOF)—a multiphase flow solution—based on finite volume method (FVM). The developed numerical approach solves Darcy’s law, heat transfer, and chemical reactions in LCM process simultaneously. Thereby, the solution scheme shows its ability to provide information on flow-front, viscosity development, degree of cure, and rate of reaction at once unlike existing literature that commonly focuses on impregnation stage and cure stage in isolation. Furthermore, it allows online monitoring, controlled boundary conditions, and injection techniques (for design of manufacturing) during the mould filling and curing stages. To examine the validity of the model, a comparative analysis was carried out for a simple geometry, in that the numerical results indicate good agreement—3.4% difference in the degree of cure compared with previous research findings. Full article
Show Figures

Figure 1

Back to TopTop