Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (26,918)

Search Parameters:
Keywords = reverse

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2290 KiB  
Article
Enhancing Electrochemical Performance of Si@CNT Anode by Integrating SrTiO3 Material for High-Capacity Lithium-Ion Batteries
by Nischal Oli, Diana C. Liza Castillo, Brad R. Weiner, Gerardo Morell and Ram S. Katiyar
Molecules 2024, 29(19), 4750; https://doi.org/10.3390/molecules29194750 (registering DOI) - 8 Oct 2024
Abstract
Silicon (Si) has attracted worldwide attention for its ultrahigh theoretical storage capacity (4200 mA h g−1), low mass density (2.33 g cm−3), low operating potential (0.4 V vs. Li/Li+), abundant reserves, environmentally benign nature, and low cost. [...] Read more.
Silicon (Si) has attracted worldwide attention for its ultrahigh theoretical storage capacity (4200 mA h g−1), low mass density (2.33 g cm−3), low operating potential (0.4 V vs. Li/Li+), abundant reserves, environmentally benign nature, and low cost. It is a promising high-energy-density anode material for next-generation lithium-ion batteries (LIBs), offering a replacement for graphite anodes owing to the escalating energy demands in booming automobile and energy storage applications. Unfortunately, the commercialization of silicon anodes is stringently hindered by large volume expansion during lithiation–delithiation, the unstable and detrimental growth of electrode/electrolyte interface layers, sluggish Li-ion diffusion, poor rate performance, and inherently low ion/electron conductivity. These present major safety challenges lead to quick capacity degradation in LIBs. Herein, we present the synergistic effects of nanostructured silicon and SrTiO3 (STO) for use as anodes in Li-ion batteries. Si and STO nanoparticles were incorporated into a multiwalled carbon nanotube (CNT) matrix using a planetary ball-milling process. The mechanical stress resulting from the expansion of Si was transferred via the CNT matrix to the STO. We discovered that the introduction of STO can improve the electrochemical performance of Si/CNT nanocomposite anodes. Experimental measurements and electrochemical impedance spectroscopy provide evidence for the enhanced mobility of Li-ions facilitated by STO. Hence, incorporating STO into the Si@CNT anode yields promising results, exhibiting a high initial Coulombic efficiency of approximately 85%, a reversible specific capacity of ~800 mA h g−1 after 100 cycles at 100 mA g−1, and a high-rate capability of 1400 mA g−1 with a capacity of 800 mA h g−1. Interestingly, it exhibits a capacity of 350 mAh g−1 after 1000 lithiation and delithiation cycles at a high rate of 600 mA hg−1. This result unveils and sheds light on the design of a scalable method for manufacturing Si anodes for next-generation LIBs. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Energy Storage Devices)
Show Figures

Figure 1

13 pages, 1042 KiB  
Review
Exploring Angiotensin II and Oxidative Stress in Radiation-Induced Cataract Formation: Potential for Therapeutic Intervention
by Vidya P. Kumar, Yali Kong, Riana Dolland, Sandra R. Brown, Kan Wang, Damian Dolland, David Mu and Milton L. Brown
Antioxidants 2024, 13(10), 1207; https://doi.org/10.3390/antiox13101207 (registering DOI) - 8 Oct 2024
Viewed by 153
Abstract
Radiation-induced cataracts (RICs) represent a significant public health challenge, particularly impacting individuals exposed to ionizing radiation (IR) through medical treatments, occupational settings, and environmental factors. Effective therapeutic strategies require a deep understanding of the mechanisms underlying RIC formation (RICF). This study investigates the [...] Read more.
Radiation-induced cataracts (RICs) represent a significant public health challenge, particularly impacting individuals exposed to ionizing radiation (IR) through medical treatments, occupational settings, and environmental factors. Effective therapeutic strategies require a deep understanding of the mechanisms underlying RIC formation (RICF). This study investigates the roles of angiotensin II (Ang II) and oxidative stress in RIC development, with a focus on their combined effects on lens transparency and cellular function. Key mechanisms include the generation of reactive oxygen species (ROS) and oxidative damage to lens proteins and lipids, as well as the impact of Ang II on inflammatory responses and cellular apoptosis. While the generation of ROS from water radiolysis is well established, the impact of Ang II on RICs is less understood. Ang II intensifies oxidative stress by activating type 1 receptors (AT1Rs) on lens epithelial cells, resulting in increased ROS production and inflammatory responses. This oxidative damage leads to protein aggregation, lipid peroxidation, and apoptosis, ultimately compromising lens transparency and contributing to cataract formation. Recent studies highlight Ang II’s dual role in promoting both oxidative stress and inflammation, which accelerates cataract development. RICs pose a substantial public health concern due to their widespread prevalence and impact on quality of life. Targeting Ang II signaling and oxidative stress simultaneously could represent a promising therapeutic approach. Continued research is necessary to validate these strategies and explore their efficacy in preventing or reversing RIC development. Full article
Show Figures

Figure 1

13 pages, 1312 KiB  
Article
Detection of Avian Leukosis Virus Subgroup J (ALV-J) Using RAA and CRISPR-Cas13a Combined with Fluorescence and Lateral Flow Assay
by Shutao Chen, Yuhang Li, Ruyu Liao, Cheng Liu, Xinyi Zhou, Haiwei Wang, Qigui Wang and Xi Lan
Int. J. Mol. Sci. 2024, 25(19), 10780; https://doi.org/10.3390/ijms251910780 - 7 Oct 2024
Viewed by 212
Abstract
Avian Leukosis Virus (ALV) is a retrovirus that induces immunosuppression and tumor formation in poultry, posing a significant threat to the poultry industry. Currently, there are no effective vaccines or treatments for ALV. Therefore, the early diagnosis of infected flocks and farm sanitation [...] Read more.
Avian Leukosis Virus (ALV) is a retrovirus that induces immunosuppression and tumor formation in poultry, posing a significant threat to the poultry industry. Currently, there are no effective vaccines or treatments for ALV. Therefore, the early diagnosis of infected flocks and farm sanitation are crucial for controlling outbreaks of this disease. To address the limitations of traditional diagnostic methods, which require sophisticated equipment and skilled personnel, a dual-tube detection method for ALV-J based on reverse transcription isothermal amplification (RAA) and the CRISPR-Cas13a system has been developed. This method offers the advantages of high sensitivity, specificity, and rapidity; it is capable of detecting virus concentrations as low as 5.4 × 100 copies/μL without cross-reactivity with other avian viruses, with a total testing time not exceeding 85 min. The system was applied to 429 clinical samples, resulting in a positivity rate of 15.2% for CRISPR-Cas13a, which was higher than the 14.7% detected by PCR and 14.2% by ELISA, indicating superior detection capability and consistency. Furthermore, the dual-tube RAA-CRISPR detection system provides visually interpretable results, making it suitable for on-site diagnosis in remote farms lacking laboratory facilities. In conclusion, the proposed ALV-J detection method, characterized by its high sensitivity, specificity, and convenience, is expected to be a vital technology for purification efforts against ALV-J. Full article
(This article belongs to the Section Molecular Microbiology)
23 pages, 2582 KiB  
Article
Effects of Salicylic Acid on Physiological Responses of Pepper Plants Pre-Subjected to Drought under Rehydration Conditions
by Fabrício Custódio de Moura Gonçalves, Luís Paulo Benetti Mantoan, Carla Verônica Corrêa, Nathália de Souza Parreiras, Luiz Fernando Rolim de Almeida, Elizabeth Orika Ono, João Domingos Rodrigues, Renato de Mello Prado and Carmen Sílvia Fernandes Boaro
Plants 2024, 13(19), 2805; https://doi.org/10.3390/plants13192805 - 7 Oct 2024
Viewed by 369
Abstract
Capsicum annuum L. has worldwide distribution, but drought has limited its production. There is a lack of research to better understand how this species copes with drought stress, whether it is reversible, and the effects of mitigating agents such as salicylic acid (SA). [...] Read more.
Capsicum annuum L. has worldwide distribution, but drought has limited its production. There is a lack of research to better understand how this species copes with drought stress, whether it is reversible, and the effects of mitigating agents such as salicylic acid (SA). Therefore, this study aimed to understand the mechanisms of action of SA and rehydration on the physiology of pepper plants grown under drought conditions. The factorial scheme adopted was 3 × 4, with three water regimes (irrigation, drought, and rehydration) and four SA concentrations, namely: 0 (control), 0.5, 1, and 1.5 mM. This study evaluated leaf water percentage, water potential of shoots, chlorophylls (a and b), carotenoids, stomatal conductance, chlorophyll a fluorescence, and hydrogen peroxide (H2O2) concentration at different times of day, water conditions (irrigation, drought, and rehydration), and SA applications (without the addition of a regulator (0) and with the addition of SA at concentrations equal to 0.5, 1, and 1.5 mM). In general, exogenous SA application increased stomatal conductance (gs) responses and modified the fluorescence parameters (ΦPSII, qP, ETR, NPQ, D, and E) of sweet pepper plants subjected to drought followed by rehydration. It was found that the use of SA, especially at concentrations of 1 mM in combination with rehydration, modulates gs, which is reflected in a higher electron transport rate. This, along with the production of photosynthetic pigments, suggests that H2O2 did not cause membrane damage, thereby mitigating the water deficit in pepper plants. Plants under drought conditions and rehydration with foliar SA application at concentrations of 1 mM demonstrated protection against damage resulting from water stress. Focusing on sustainable productivity, foliar SA application of 1 mM could be recommended as a technique to overcome the adverse effects of water stress on pepper plants cultivated in arid and semi-arid regions. Full article
(This article belongs to the Special Issue Drought Responses and Adaptation Mechanisms in Plants)
Show Figures

Figure 1

12 pages, 1677 KiB  
Article
Inhibitory Effects of Decursin Derivative against Lipopolysaccharide-Induced Inflammation
by Jinhee Lee, Jong-Beom Heo, Sanghee Cho, Chang-Woo Ryu, Hae-Joon Heo, Mi-Young Yun, Gaewon Nam, Gyu-Yong Song and Jong-Sup Bae
Pharmaceuticals 2024, 17(10), 1337; https://doi.org/10.3390/ph17101337 - 7 Oct 2024
Viewed by 287
Abstract
Background: This study aims to explore the protective role of JB-V-60—a novel synthetic derivative of decur-sin—against lipopolysaccharide (LPS)-induced inflammation. Methods: We examined the effects of JB-V-60 on heme oxygenase (HO)-1, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) in LPS-activated human pulmonary artery [...] Read more.
Background: This study aims to explore the protective role of JB-V-60—a novel synthetic derivative of decur-sin—against lipopolysaccharide (LPS)-induced inflammation. Methods: We examined the effects of JB-V-60 on heme oxygenase (HO)-1, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) in LPS-activated human pulmonary artery endothelial cells (HPAECs). Additionally, we assessed its effects on iNOS, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β in LPS-exposed mice. Results: JB-V-60 enhanced HO-1 levels, inhibited NF-κB activation, reduced COX-2/PGE2 and iNOS/NO concentra-tions, and lowered phosphorylation of signal transducer and activator of transcription 1. It also promoted the translocation of Nrf2 into the nucleus, allowing its binding to antioxidant response elements and resulting in reduced IL-1β in LPS-stimulated HPAECs. The reduction in iNOS/NO levels by JB-V-60 was reversed when HO-1 was inhibited via RNAi. In the animal model, JB-V-60 sig-nificantly decreased iNOS expression in lung tissues and TNF-α levels in bronchoalveolar lavage fluid. Conclusions: These findings highlight the anti-inflammatory effects of JB-V-60 and its potential as a treat-ment for inflammatory disorders. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

14 pages, 4008 KiB  
Article
Genomic Sequencing to Detect Cross-Breeding Quality in Dogs: An Example Studying Disorders in Sexual Development
by Luciana de Gennaro, Matteo Burgio, Giovanni Michele Lacalandra, Francesco Petronella, Alberto L’Abbate, Francesco Ravasini, Beniamino Trombetta, Annalisa Rizzo, Mario Ventura and Vincenzo Cicirelli
Int. J. Mol. Sci. 2024, 25(19), 10763; https://doi.org/10.3390/ijms251910763 - 6 Oct 2024
Viewed by 438
Abstract
Disorders of sexual development (DSDs) in dogs, similar to humans, arise from genetic mutations, gonadal differentiation, or phenotypic sex development. The French Bulldog, a breed that has seen a surge in popularity and demand, has also shown a marked increase in DSD incidence. [...] Read more.
Disorders of sexual development (DSDs) in dogs, similar to humans, arise from genetic mutations, gonadal differentiation, or phenotypic sex development. The French Bulldog, a breed that has seen a surge in popularity and demand, has also shown a marked increase in DSD incidence. This study aims to characterize the genetic underpinnings of DSDs in a French Bulldog named Brutus, exhibiting ambiguous genitalia and internal sexual anatomy, and to explore the impact of breeding practices on genetic diversity within the breed. We utilized a comprehensive approach combining conventional cytogenetics, molecular techniques, and deep sequencing to investigate the genetic profile of Brutus. The sequence data were compared to three other male French Bulldogs’ genome sequences with typical reproductive anatomy, including Brutus’s father and the canine reference genome (CanFam6). We found a Robertsonian fusion involving chromosome 23 previously reported in dogs as a causative mutation responsible for sex reversal syndrome. Our findings revealed a 22% mosaicism (78,XX/77,XX), the absence of the sex-determining region (SRY) gene, and the presence of 43 unique Single Nucleotide Variants (SNVs) not inherited from the father. Notably, the run of homozygosity (ROH) analysis showed Brutus has a higher number of homozygous segments compared to other Bulldogs, with a total length of these fragments 50% greater than the average, strongly suggesting this dog is the product of the mating between siblings. Although no direct causative genes for the DSD phenotype were identified, four candidate loci warrant further investigation. Our study highlighted the need for a better annotated and curated reference dog genome to define genes causative of any specific phenotype, suggests a potential genetic basis for the DSD phenotype in dogs, and underscores the consequences of uncontrolled breeding practices in French Bulldogs. These findings highlight the importance of implementing strategic genetic management to preserve genetic health and diversity in canine populations. Full article
Show Figures

Figure 1

13 pages, 2699 KiB  
Article
Insight into the Reversible Hydrogen Storage of Titanium-Decorated Boron-Doped C20 Fullerene: A Theoretical Prediction
by Zhiliang Chai, Lili Liu, Congcong Liang, Yan Liu and Qiang Wang
Molecules 2024, 29(19), 4728; https://doi.org/10.3390/molecules29194728 (registering DOI) - 6 Oct 2024
Viewed by 389
Abstract
Hydrogen storage has been a bottleneck factor for the application of hydrogen energy. Hydrogen storage capacity for titanium-decorated boron-doped C20 fullerenes has been investigated using the density functional theory. Different boron-doped C20 fullerene absorbents are examined to avoid titanium atom clustering. [...] Read more.
Hydrogen storage has been a bottleneck factor for the application of hydrogen energy. Hydrogen storage capacity for titanium-decorated boron-doped C20 fullerenes has been investigated using the density functional theory. Different boron-doped C20 fullerene absorbents are examined to avoid titanium atom clustering. According to our research, with three carbon atoms in the pentagonal ring replaced by boron atoms, the binding interaction between the Ti atom and C20 fullerene is stronger than the cohesive energy of titanium. The calculated results revealed that one Ti atom can reversibly adsorb four H2 molecules with an average adsorption energy of −1.52 eV and an average desorption temperature of 522.5 K. The stability of the best absorbent structure with a gravimetric density of 4.68 wt% has been confirmed by ab initio molecular dynamics simulations. These findings suggest that titanium-decorated boron-doped C20 fullerenes could be considered as a potential candidate for hydrogen storage devices. Full article
Show Figures

Figure 1

15 pages, 3934 KiB  
Article
GBMPhos: A Gating Mechanism and Bi-GRU-Based Method for Identifying Phosphorylation Sites of SARS-CoV-2 Infection
by Guohua Huang, Runjuan Xiao, Weihong Chen and Qi Dai
Biology 2024, 13(10), 798; https://doi.org/10.3390/biology13100798 - 6 Oct 2024
Viewed by 288
Abstract
Phosphorylation, a reversible and widespread post-translational modification of proteins, is essential for numerous cellular processes. However, due to technical limitations, large-scale detection of phosphorylation sites, especially those infected by SARS-CoV-2, remains a challenging task. To address this gap, we propose a method called [...] Read more.
Phosphorylation, a reversible and widespread post-translational modification of proteins, is essential for numerous cellular processes. However, due to technical limitations, large-scale detection of phosphorylation sites, especially those infected by SARS-CoV-2, remains a challenging task. To address this gap, we propose a method called GBMPhos, a novel method that combines convolutional neural networks (CNNs) for extracting local features, gating mechanisms to selectively focus on relevant information, and a bi-directional gated recurrent unit (Bi-GRU) to capture long-range dependencies within protein sequences. GBMPhos leverages a comprehensive set of features, including sequence encoding, physicochemical properties, and structural information, to provide an in-depth analysis of phosphorylation sites. We conducted an extensive comparison of GBMPhos with traditional machine learning algorithms and state-of-the-art methods. Experimental results demonstrate the superiority of GBMPhos over existing methods. The visualization analysis further highlights its effectiveness and efficiency. Additionally, we have established a free web server platform to help researchers explore phosphorylation in SARS-CoV-2 infections. The source code of GBMPhos is publicly available on GitHub. Full article
(This article belongs to the Special Issue Bioinformatics in RNA Modifications and Non-Coding RNAs)
Show Figures

Figure 1

15 pages, 1945 KiB  
Article
A New Plant Active Polysaccharide from Nicotiana Improves the Lead-Led Impairment of Spatial Memory in Mice by Modulating the Gut Microbiota and IL-6
by Ruili Yang, Feng Zhu, Wanying Mo, Huailong Li, Dongliang Zhu, Zengyang He and Xiaojing Ma
Foods 2024, 13(19), 3177; https://doi.org/10.3390/foods13193177 - 6 Oct 2024
Viewed by 387
Abstract
Active polysaccharides from plants are broadly applied in the food and health industry. The purpose of this study is to identify a new plant active polysaccharide and to investigate its role in modulating spatial memory. Ultrasonics and DEAE-52 chromatography were used to separate [...] Read more.
Active polysaccharides from plants are broadly applied in the food and health industry. The purpose of this study is to identify a new plant active polysaccharide and to investigate its role in modulating spatial memory. Ultrasonics and DEAE-52 chromatography were used to separate and purify the plant active polysaccharide (PAP). Mice were exposed to 100 ppm of lead acetate from birth to 7 weeks old to establish the memory impairment model. PAPs with concentrations of 200 or 400 ppm were fed to the subject mice each day after weaning in a spatiotemporally separated fashion. At the end of the intervention, mice were examined using the Morris water maze test, microbiome sequencing, cytokine profiling and protein analysis. The derived active polysaccharide was constituted by β-anomeric carbon, indicating a new form of PAP. The PAP significantly ameliorates the memory impairment caused by postnatal lead exposure, as evidenced by the preferred coverage of the test mouse in the hidden platform, demonstrating salient neuroregulatory activity. In terms of the gut microbiome in response to PAP treatment, it was found that the 400 ppm PAP reversed the gut dysbiosis, producing a comparable structure to the intact animals, represented by the relative abundance of Firmicutes and Muribaculum, Desulfovibrio, etc. For cytokines, the PAP reversed the plasma levels of IL-6, suggesting an anti-inflammatory trend in the context of proinflammation caused by lead invasion. By injecting an IL-6 antagonist, Tocilizumab, into the deficient mice, the spatial memory was significantly repaired, which demonstrates the central roles of IL-6 in mediating the positive effect of the PAP. Finally, a histone modification mark, H3K27me3, was found to be potent in responding to the signals conveyed by the PAP. The PAP could improve the memory deficits by remodeling the gut–brain axis centered at the microbiota and IL-6, which is regarded as an important cytokine-modulating brain activity. This is an intriguing instance linking neuromodulation with the active polysaccharide, shedding light on the innovative applications of plant polysaccharides due to the scarcity of similar phenotypic connections. Full article
(This article belongs to the Special Issue Interactions between Food Compounds and Gut Microbiota)
Show Figures

Figure 1

19 pages, 3998 KiB  
Review
Connecting the Dots: Telomere Shortening and Rheumatic Diseases
by Fang Han, Farooq Riaz, Jincheng Pu, Ronglin Gao, Lufei Yang, Yanqing Wang, Jiamin Song, Yuanyuan Liang, Zhenzhen Wu, Chunrui Li, Jianping Tang, Xianghuai Xu and Xuan Wang
Biomolecules 2024, 14(10), 1261; https://doi.org/10.3390/biom14101261 - 6 Oct 2024
Viewed by 324
Abstract
Telomeres, repetitive sequences located at the extremities of chromosomes, play a pivotal role in sustaining chromosomal stability. Telomerase is a complex enzyme that can elongate telomeres by appending telomeric repeats to chromosome ends and acts as a critical factor in telomere dynamics. The [...] Read more.
Telomeres, repetitive sequences located at the extremities of chromosomes, play a pivotal role in sustaining chromosomal stability. Telomerase is a complex enzyme that can elongate telomeres by appending telomeric repeats to chromosome ends and acts as a critical factor in telomere dynamics. The gradual shortening of telomeres over time is a hallmark of cellular senescence and cellular death. Notably, telomere shortening appears to result from the complex interplay of two primary mechanisms: telomere shelterin complexes and telomerase activity. The intricate interplay of genetic, environmental, and lifestyle influences can perturb telomere replication, incite oxidative stress damage, and modulate telomerase activity, collectively resulting in shifts in telomere length. This age-related process of telomere shortening plays a considerable role in various chronic inflammatory and oxidative stress conditions, including cancer, cardiovascular disease, and rheumatic disease. Existing evidence has shown that abnormal telomere shortening or telomerase activity abnormalities are present in the pathophysiological processes of most rheumatic diseases, including different disease stages and cell types. The impact of telomere shortening on rheumatic diseases is multifaceted. This review summarizes the current understanding of the link between telomere length and rheumatic diseases in clinical patients and examines probable telomere shortening in peripheral blood mononuclear cells and histiocytes. Therefore, understanding the intricate interaction between telomere shortening and various rheumatic diseases will help in designing personalized treatment and control measures for rheumatic disease. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

14 pages, 2306 KiB  
Article
Dynamic Evolution of Local Atomic Environments in a Cu66Zr34 Bulk Metallic Glass
by Luan de Moraes Pereira, Marcela Bergamaschi Tercini, Alejandro Zúñiga and Roberto Gomes de Aguiar Veiga
Metals 2024, 14(10), 1139; https://doi.org/10.3390/met14101139 - 6 Oct 2024
Viewed by 264
Abstract
This study presents a molecular dynamics (MD) investigation of the evolution of local atomic environments (LAEs) in a Cu66Zr34 bulk metallic glass (BMG), both at rest and under constant shear deformation. LAEs were characterized using Voronoi polyhedra analysis. Even in [...] Read more.
This study presents a molecular dynamics (MD) investigation of the evolution of local atomic environments (LAEs) in a Cu66Zr34 bulk metallic glass (BMG), both at rest and under constant shear deformation. LAEs were characterized using Voronoi polyhedra analysis. Even in the absence of external load, LAEs frequently transformed into one another due to short-ranged atomic position fluctuations. However, as expected, each transition from one polyhedra to another was balanced by the reverse transition, thereby preserving the proportions of the different polyhedra. Cu-centered icosahedral LAEs were observed to preferentially transform into and from <1,0,9,3,0>, <0,1,10,2,0>, and <0,2,8,2,0> LAEs. Upon applying pure shear, the simulation box was first deformed in one direction up to a strain of 25% and then in the opposite direction to the same strain level. Shear deformation induced large nonaffine atomic displacements in the directions parallel to the shear, which were concentrated in specific regions of the BMG, forming band-like regions. From the onset, shear deformation led to the destabilization of Cu-centered icosahedral LAEs, as indicated by more frequent transitions to and from other polyhedra. Unlike other Cu-centered LAEs, icosahedra were also found to be more sensitive to yielding. The destruction of Cu-centered icosahedra was primarily a result of net transformations into <1,0,9,3,0> and <0,2,8,2,0> LAEs in the BMG subjected to pure shear, with a minor contribution of transformations involving the <0,1,10,2,0> polyhedra. Full article
Show Figures

Figure 1

19 pages, 317 KiB  
Article
A Collection of Wisdom in Predicting Sector Returns: The Use of Google Search Volume Index
by Hsiu-lang Chen and Jolana Stejskalova
J. Risk Financial Manag. 2024, 17(10), 452; https://doi.org/10.3390/jrfm17100452 - 5 Oct 2024
Viewed by 306
Abstract
This study investigates whether the aggregate investor information demand for all stocks in a sector demonstrated in the Google search volume index (SVI) can predict the sector’s performance. The evidence shows that a sector’s abnormal SVI can predict the sector’s performance next month, [...] Read more.
This study investigates whether the aggregate investor information demand for all stocks in a sector demonstrated in the Google search volume index (SVI) can predict the sector’s performance. The evidence shows that a sector’s abnormal SVI can predict the sector’s performance next month, even after controlling for the sector’s contemporaneous standardized unexpected earnings and lagged returns on both the market and the sector. Also found is a partial reversal in the sector’s long-run performance that is not completely consistent with the price pressure hypothesis. This indicates that some fundamental information about a sector can be captured by the sector’s abnormal SVI on a timely basis. Full article
(This article belongs to the Special Issue Financial Valuation and Econometrics)
21 pages, 4777 KiB  
Article
MicroRNA-503 Suppresses Oral Mucosal Fibroblast Differentiation by Regulating RAS/RAF/MEK/ERK Signaling Pathway
by Dada Wen, Huamin Zhang, Yutong Zhou, Ni Jian, Canhua Jiang and Jie Wang
Biomolecules 2024, 14(10), 1259; https://doi.org/10.3390/biom14101259 - 5 Oct 2024
Viewed by 333
Abstract
Abstract: The abnormal proliferation and differentiation of oral mucosal fibroblasts (FBs) is the key to the progression of oral submucosal fibrosis. To clarify the mechanism of platelet-derived growth factor (PDGF-BB)-induced FBs fibrosis in oral mucosa, real-time quantitative polymerase chain reaction and Western [...] Read more.
Abstract: The abnormal proliferation and differentiation of oral mucosal fibroblasts (FBs) is the key to the progression of oral submucosal fibrosis. To clarify the mechanism of platelet-derived growth factor (PDGF-BB)-induced FBs fibrosis in oral mucosa, real-time quantitative polymerase chain reaction and Western blot were used in this study to detect the expression of miR-503 and the expression of p-MEK, p-ERK, miR-503, RAF, smooth actin and type I collagen under different time and concentration stimulation of PDGF-BB. The effects of overexpression of miR-503 or RAF on the proliferation and migration of FBs were detected by cell counting kit 8 and cell scratch assay, respectively. A dual luciferase reporter gene assay was used to verify the targeting effect of miR-503 on RAF. The results showed that miR-503 was downregulated in a dose- and time-dependent manner in PDGF-BB-induced FBs. In addition, RAF is a direct target of miR-503 and can be negatively regulated. Overexpression of RAF can promote FB proliferation, migration, differentiation, collagen synthesis, and activation of downstream molecules (MEK/ERK), while overexpression of miR-503 can partially reverse the effects of RAF. Therefore, miR-503 regulates the biological behavior of PDGF-BB-induced oral mucosal FBs by influencing the activation of the RAS/RAF/MEK/ERK signaling pathway. Full article
(This article belongs to the Section Molecular Biology)
25 pages, 2599 KiB  
Article
Structural and Dynamical Effects of the CaO/SrO Substitution in Bioactive Glasses
by Margit Fabian, Matthew Krzystyniak, Atul Khanna and Zsolt Kovacs
Molecules 2024, 29(19), 4720; https://doi.org/10.3390/molecules29194720 - 5 Oct 2024
Viewed by 351
Abstract
Silicate glasses containing silicon, sodium, phosphorous, and calcium have the ability to promote bone regeneration and biodegrade as new tissue is generated. Recently, it has been suggested that adding SrO can benefit tissue growth and silicate glass dissolution. Motivated by these recent developments, [...] Read more.
Silicate glasses containing silicon, sodium, phosphorous, and calcium have the ability to promote bone regeneration and biodegrade as new tissue is generated. Recently, it has been suggested that adding SrO can benefit tissue growth and silicate glass dissolution. Motivated by these recent developments, the effect of SrO/CaO–CaO/SrO substitution on the local structure and dynamics of Si-Na-P-Ca-O oxide glasses has been studied in this work. Differential thermal analysis has been performed to determine the thermal stability of the glasses after the addition of strontium. The local structure has been studied by neutron diffraction augmented by Reverse Monte Carlo simulation, and the local dynamics by neutron Compton scattering and Raman spectroscopy. Differential thermal analysis has shown that SrO-containing glasses have lower glass transition, melting, and crystallisation temperatures. Moreover, the addition of the Sr2+ ions decreased the thermal stability of the glass structure. The total neutron diffraction augmented by the RMC simulation revealed that Sr played a similar role as Ca in the glass structure when substituted on a molar basis. The bond length and the coordination number distributions of the network modifiers and network formers did not change when SrO (x = 0.125, 0.25) was substituted for CaO (25-x). However, the network connectivity increased in glass with 12.5 mol% CaO due to the increased length of the Si-O-Si interconnected chain. The analysis of Raman spectra revealed that substituting CaO with SrO in the glass structure dramatically enhances the intensity of the high-frequency band of 1110–2000 cm−1. For all glasses under investigation, the changes in the relative intensities of Raman bands and the distributions of the bond lengths and coordination numbers upon the SrO substitution were correlated with the values of the widths of nuclear momentum distributions of Si, Na, P, Ca, O, and Sr. The widths of nuclear momentum distributions were observed to soften compared to the values observed and simulated in their parent metal-oxide crystals. The widths of nuclear momentum distributions, obtained from fitting the experimental data to neutron Compton spectra, were related to the amount of disorder of effective force constants acting on individual atomic species in the glasses. Full article
13 pages, 3583 KiB  
Article
β-Cyclodextrin-Modified Laser-Induced Graphene Electrode for Detection of N6-Methyladenosine in RNA
by Jingyi Guo, Mei Zhao, Xia Kuang, Zilin Chen and Fang Wang
Molecules 2024, 29(19), 4718; https://doi.org/10.3390/molecules29194718 - 5 Oct 2024
Viewed by 357
Abstract
Laser-induced graphene (LIG) possesses characteristics of easy handling, miniaturization, and unique electrical properties. We modified the surface of LIG by electropolymerizing β-cyclodextrin (β-CD), which was used to immobilize antibodies on the electrode surface for highly sensitive detection of targets. N6-methyladenosine (m6A) is [...] Read more.
Laser-induced graphene (LIG) possesses characteristics of easy handling, miniaturization, and unique electrical properties. We modified the surface of LIG by electropolymerizing β-cyclodextrin (β-CD), which was used to immobilize antibodies on the electrode surface for highly sensitive detection of targets. N6-methyladenosine (m6A) is the most prevalent reversible modification in mammalian messenger RNA and noncoding RNA, influencing the development of various cancers. Here, β-CD was electropolymerized to immobilize the anti-m6A antibody, which subsequently recognized the target m6A. This was integrated into the catalytic hydrogen peroxide–hydroquinone (H2O2-HQ) redox system using phos-tag-biotin to generate electrochemical signals from streptavidin-modified horseradish peroxidase (SA-HRP). Under optimal conditions, the biosensor exhibited a linear range from 0.1 to 100 nM with a minimum detection limit of 96 pM. The method was successfully applied to the recovery analysis of m6A from HeLa cells through spiking experiments and aims to inspire strategies for point-of-care testing (POCT). Full article
Show Figures

Figure 1

Back to TopTop