Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = purple soil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2327 KiB  
Article
Characterization of Novel Species of Potassium-Dissolving Purple Nonsulfur Bacteria Isolated from In-Dyked Alluvial Upland Soil for Maize Cultivation
by Le Thi My Thu, Ly Ngoc Thanh Xuan, Tran Chi Nhan, Le Thanh Quang, Nguyen Duc Trong, Vo Minh Thuan, Tran Trong Khoi Nguyen, Phan Chi Nguyen, Le Vinh Thuc and Nguyen Quoc Khuong
Life 2024, 14(11), 1461; https://doi.org/10.3390/life14111461 - 12 Nov 2024
Viewed by 450
Abstract
Potassium (K) is immobilized within the clay minerals, making it unavailable for plant use. Therefore, the current study aimed to (i) select isolates of purple nonsulfur bacteria that can dissolve K (K-PNSB) and (ii) evaluate the production of plant-growth-promoting substances by the K-PNSB [...] Read more.
Potassium (K) is immobilized within the clay minerals, making it unavailable for plant use. Therefore, the current study aimed to (i) select isolates of purple nonsulfur bacteria that can dissolve K (K-PNSB) and (ii) evaluate the production of plant-growth-promoting substances by the K-PNSB isolates. The results revealed that from in-dyked alluvial soils in hybrid maize fields, 61 K-PNSB isolates were obtained under the pH 5.50 conditions. The total dissolved K content (Kdis) by the 61 K-PNSB isolates fluctuated from 56.2 to 98.6 mg L−1. Therein, three isolates, including M-Sl-09, M-So-11, and M-So-14 had Kdis of 48.1–48.8 mg L−1 under aerobic dark condition (ADC) and 47.6–49.7 mg L−1 under microaerobic light condition (MLC). Moreover, these three isolates can also fix nitrogen (19.1–21.5 mg L−1 and 2.64–7.24 mg L−1), solubilize Ca-P (44.3–46.8 mg L−1 and 0.737–6.965 mg L−1), produce indole-3-acetic acid (5.34–7.13 and 2.40–3.23 mg L−1), 5-aminolevulinic acid (1.85–2.39 and 1.53–2.47 mg L−1), siderophores (1.06–1.52 and 0.92–1.26 mg L−1), and exopolymeric substances (18.1–18.8 and 52.0–56.0%), respectively, under ADC and MLC. The bacteria were identified according to their 16S rDNA as Cereibacter sphaeroides M-Sl-09, Rhodopseudomonas thermotolerans M-So-11, and Rhodospeudomonas palustris M-So-14. These potential bacteria should be further investigated as a plant-growth-promoting biofertilizer. Full article
(This article belongs to the Special Issue Trends in Microbiology 2024)
Show Figures

Figure 1

19 pages, 4270 KiB  
Article
Characteristics and Risk Assessment of Heavy Metal Contamination in Arable Soils Developed from Different Parent Materials
by Junlei Wang, Chunyu Dong, Sijing Sun, Shiqi Peng, Liyuan Mu, Naiming Zhang and Li Bao
Agriculture 2024, 14(11), 2010; https://doi.org/10.3390/agriculture14112010 - 8 Nov 2024
Viewed by 377
Abstract
This study analyzes the heavy metal pollution in cultivated soils developed from different parent materials in Yunnan Province and assesses their risk levels. The results show significant regional differences in soil heavy metal pollution, greatly influenced by the type of parent material. Cadmium [...] Read more.
This study analyzes the heavy metal pollution in cultivated soils developed from different parent materials in Yunnan Province and assesses their risk levels. The results show significant regional differences in soil heavy metal pollution, greatly influenced by the type of parent material. Cadmium (Cd) pollution is most severe in multiple parent material soil regions, particularly in areas with carbonate and purple rocks, exhibiting a high pollution risk. Other heavy metals such as zinc (Zn), copper (Cu), and lead (Pb) also show varying degrees of enrichment in different parent material zones, posing potential pollution risks. The soil pollution levels of heavy metals were classified using the geo-accumulation index method. It was found that soils developed from carbonate rocks and purple rocks have the most severe heavy metal pollution, while soils from quartzitic rocks, acidic crystalline rocks, and basalt exhibit relatively lower pollution levels. By analyzing the characteristics of heavy metal pollution in different parent materials, this study provides a scientific basis for regional soil pollution management and sustainable agricultural development. Full article
(This article belongs to the Special Issue Heavy Metal Pollution and Remediation in Agricultural Soils)
Show Figures

Figure 1

18 pages, 3215 KiB  
Article
Inoculation with Azospirillum brasilense as a Strategy to Reduce Nitrogen Fertilization in Cultivating Purple Maize (Zea mays L.) in the Inter-Andean Valleys of Peru
by Tatiana Condori, Susan Alarcón, Lucero Huasasquiche, Cayo García-Blásquez, César Padilla-Castro, José Velásquez and Richard Solórzano
Microorganisms 2024, 12(10), 2107; https://doi.org/10.3390/microorganisms12102107 - 21 Oct 2024
Viewed by 651
Abstract
Purple maize has gained global significance due to its numerous nutraceutical benefits. However, sustaining its production typically requires high doses of nitrogen fertilizers, which, when applied in excess, can contaminate vital resources such as soil and water. Inoculation with nitrogen-fixing microorganisms, such as [...] Read more.
Purple maize has gained global significance due to its numerous nutraceutical benefits. However, sustaining its production typically requires high doses of nitrogen fertilizers, which, when applied in excess, can contaminate vital resources such as soil and water. Inoculation with nitrogen-fixing microorganisms, such as those from the Azospirillum genus, has emerged as an alternative to partially or fully replace nitrogen fertilizers. This study aimed to evaluate the inoculation effect with A. brasilense and varying nitrogen fertilization levels on the yield and quality of purple maize. The experiment was carried out using a randomized complete block design (RCBD) with a 2 × 5 factorial arrangement and five replications. Treatments comprised two inoculation levels (control without inoculation and inoculation with A. brasilense) under five nitrogen doses (0, 30, 60, 90, and 120 kg∙ha−1, applied as urea). Inoculation with A. brasilense resulted in a 10.5% increase in plant height, a 16.7% increase in root length, a 21.3% increase in aboveground fresh biomass, a 30.1% increase in root fresh biomass, and a 27.7% increase in leaf nitrogen concentration compared to the non-inoculated control. Regarding yield, the inoculated plants surpassed the control in both purple maize yield (kg∙ha−1) and cob weight by 21.8% and 11.6%, respectively. Across all fertilization levels and parameters assessed, the inoculated treatments outperformed the control. Furthermore, for parameters, namely plant height, leaf nitrogen content, and cob dimensions (length, diameter, and weight), the A. brasilense inoculation treatment with 90 kg N∙ha−1 was statistically equivalent or superior to the non-inoculated control with 120 kg N∙ha−1. These results indicate that inoculation with A. brasilense positively impacted purple maize at all nitrogen levels tested and improved nitrogen use efficiency, enabling a reduction of 30 kg N∙ha−1 without compromising performance in key parameters. Full article
Show Figures

Figure 1

15 pages, 4872 KiB  
Article
Infiltration Characteristics and Hydrodynamic Parameters in Response to Topographic Factors in Bare Soil Surfaces, Laboratory Experiments Based on Cropland Fields of Purple Soil in Southwest China
by Yong Wang, Ziting Ma, Dandan Li, Guirong Hou and Jiangkun Zheng
Agriculture 2024, 14(10), 1820; https://doi.org/10.3390/agriculture14101820 - 16 Oct 2024
Viewed by 527
Abstract
Topography is an important factor that impacts the hydrological processes on sloping farmlands. Yet, few studies have reported the combined influences of slope gradient and slope position on infiltration characteristics and hydrodynamic parameters on sloping croplands in purple soil regions, an important area [...] Read more.
Topography is an important factor that impacts the hydrological processes on sloping farmlands. Yet, few studies have reported the combined influences of slope gradient and slope position on infiltration characteristics and hydrodynamic parameters on sloping croplands in purple soil regions, an important area for agricultural productivity in Southwest China. Here, laboratory-simulated rainfall experiments were conducted in a steel trough (5 m long, 2 m wide, and 0.45 m deep), and rainfall lasted for 1 h at a rate of 90 mm h−1 to examine the variations in the infiltration rates and hydrodynamic parameters under varying slope gradients (i.e., 3°, 6°, 10°, 15°, 21°, and 27°) and slope positions (i.e., upper, middle, and lower), and explore the relationships between the infiltration rate and the soil detachment rate. The results showed that the infiltration rate decreased gradually with duration rainfall and ultimately approached a steady state in the six slope treatments. Cumulative infiltration ranged from 15.54 to 39.32 mm during rainfall, and gradually reduced with the increase of slope gradient. The Horton’s model outperforms other models for predicting the infiltration rate with an R2 value of 0.86. Factors such as Darcy–Weisbach friction, flow shear force, Manning friction coefficient, unit energy, and runoff depth varied in the following order: upper slope > middle slope > lower slope, whilst the Reynolds number and Froude number gradually increased along the slope transect from the upper to lower slope positions. A significant linear function was fitted between the soil detachment rate and the infiltration rate at the gentle slopes (3°, 6°, 10°), whereas an exponential relationship was observed at the steep slopes (15°, 21°, and 27°). Observation also suggested that 15° was the critical slope gradient of sediment detachment, infiltration characteristics, and hydrodynamic parameters. Our results provide theoretical insight for developing models that predict the impacts of topographic factors on hydrological characteristic and soil erosion in hilly agricultural landscapes of purple soil fields. Full article
(This article belongs to the Special Issue Effects of Tillage Management on Agricultural Soil Characteristics)
Show Figures

Figure 1

15 pages, 1528 KiB  
Article
Biochar and Deactivated Yeast as Seed Coatings for Restoration: Performance on Alternative Substrates
by Jennifer Cann, Esther Tang and Sean C. Thomas
Seeds 2024, 3(4), 544-558; https://doi.org/10.3390/seeds3040037 - 16 Oct 2024
Viewed by 537
Abstract
Seedling establishment is often a critical bottleneck in the revegetation of mine tailings and similar substrates. Biochar and deactivated yeast are potential sustainable materials that could be used in this context as seed coatings to aid in seedling establishment. We conducted a greenhouse [...] Read more.
Seedling establishment is often a critical bottleneck in the revegetation of mine tailings and similar substrates. Biochar and deactivated yeast are potential sustainable materials that could be used in this context as seed coatings to aid in seedling establishment. We conducted a greenhouse study on biochar and deactivated yeast use as seed coatings, assessing germination, establishment, and early growth of white clover (Trifolium repens) and purple prairie clover (Dalea purpurea). Coated seeds were applied to a mine tailing, a coarse granitic sand, and potting soil mix substrates; seedling establishment and growth were monitored over 75 days. Biochar coatings enhanced the seedling establishment of Trifolium, with biochar and biochar plus yeast coatings giving the best results. In some cases, these effects persisted throughout the experiment: biochar coatings resulted in a ~fivefold increase in Trifolium biomass at harvest for plants in the potting soil mix but had neutral effects on sand or tailings. Biochar seed coatings also enhanced Dalea germination in some cases, but the benefits did not persist. Our results indicate that biochar-based seed coatings can have lasting effects on plant growth well beyond germination but also emphasize highly species-specific responses that highlight the need for further study. Full article
Show Figures

Figure 1

14 pages, 4768 KiB  
Article
The Quantification of the Ecosystem Services of Forming Ridges in No-Tillage Farming in the Purple Soil Region of China: A Meta-Analysis
by Lizhi Jia
Water 2024, 16(18), 2675; https://doi.org/10.3390/w16182675 - 20 Sep 2024
Viewed by 550
Abstract
Forming ridges in no-tillage farming (FRNF) is an important conservation tillage practice in the purple soil region of China. Whether FRNF will enhance ecosystem services remains unclear. There is a lack of a systematic quantitative research about the effect of FRNF on ecosystem [...] Read more.
Forming ridges in no-tillage farming (FRNF) is an important conservation tillage practice in the purple soil region of China. Whether FRNF will enhance ecosystem services remains unclear. There is a lack of a systematic quantitative research about the effect of FRNF on ecosystem services. We collected 611 data entries from 21 previous publications to quantitatively evaluate the effects of FRNF on runoff and sediment loss, soil physicochemical properties and biomass. The results showed that compared with conventional tillage, (1) FRNF reduced runoff and sediment loss by 49% and 73%, respectively, due to the blocking effect of the ridge-ditch structure; (2) FRNF increased the concentrations of soil organic carbon, total nitrogen, available nitrogen, available phosphorus and available potassium by 15%, 14%, 30%, 58% and 17%, respectively; (3) FRNF decreased soil bulk density on the ridges by 11% and increased soil moisture content in the furrows by 28%, while it had insignificant effects on soil bulk density in the furrows and soil moisture content on the ridges; and (4) FRNF increased aboveground and belowground biomass (maize, oilseed rape, potato, sweet potato and wheat) by 23% and 63%, respectively. Overall, these results highlighted the importance of FRNF in regulating soil erosion, physicochemical properties and biomasses in the purple soil region of China. The implementation of FRNF in this region could significantly improve the ecosystem services in agro-ecosystems. Full article
Show Figures

Figure 1

19 pages, 1039 KiB  
Article
Effect of Chinese Milk Vetch on Zinc Content and Zinc Absorption of Rice in Purple Tidal Mud Soil
by Zengping Yang, Zhongxiu Rao, Hailu Li, Zedong Long, Xianjun Zeng and Jian Xie
Agronomy 2024, 14(9), 1997; https://doi.org/10.3390/agronomy14091997 - 2 Sep 2024
Viewed by 369
Abstract
Rice is a staple food crop that feeds billions globally. Addressing Zn deficiency in rice is crucial for improving nutrition and food security. Zn deficiency in rice is a widespread issue, especially in purple tidal mud substrates, which often exhibit low Zn availability. [...] Read more.
Rice is a staple food crop that feeds billions globally. Addressing Zn deficiency in rice is crucial for improving nutrition and food security. Zn deficiency in rice is a widespread issue, especially in purple tidal mud substrates, which often exhibit low Zn availability. The objective of this two-year pot study was to explore the relationship between Zn content, yield components, and Zn absorption in rice grown in purple tidal mud substrate with varying amounts of Chinese milk vetch (Astragalus sinicus L.) incorporation. The experimental design consisted of seven treatments: an unfertilized control, a Chinese milk vetch control, a chemical fertilizer control, and four treatment variations incorporating Chinese milk vetch alongside chemical fertilizer applications. The results indicated that planting and applying Chinese milk vetch improved the grain yield of rice in purple tidal mud substrate, and the yield increased with higher levels of Chinese milk vetch applied. The increased grain yield resulted in higher Zn absorption in rice grains. The application of Chinese milk vetch, both solely and in combination with chemical fertilizers, had varying effects on zinc uptake and grain zinc formation efficiency in early and late rice, with the control and low-level Chinese milk vetch treatments generally exhibiting the highest performance across the two-year period. By introducing Chinese milkvetch following the use of chemical fertilizers, the Zn content in rice grains increased starting from the second year. The treatment with Chinese milkvetch applied at a rate of 2.25 t/hm2 showed the best results in increasing the Zn content in rice grains. The increase in Zn content and Zn uptake by the rice plants gave rise to a lowering of the DTPA-extractable Zn content in the purple tidal mud substrate. Sole Chinese milk vetch application and using Chinese milk vetch following chemical fertilizer application both increased Zn content extracted by DTPA in purple tidal mud substrate. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

21 pages, 19686 KiB  
Article
Determination of Contributing Area Threshold and Downscaling of Topographic Factors for Small Watersheds in Hilly Areas of Purple Soil
by Ruiyin Chen, Yonggang Zhu, Jun Zhang, Anbang Wen, Shudong Hu, Jun Luo and Peng Li
Land 2024, 13(8), 1193; https://doi.org/10.3390/land13081193 - 2 Aug 2024
Viewed by 505
Abstract
The results of topographic factor computations are highly sensitive to the setting of contributing area thresholds when applied to soil erosion modeling to evaluate soil erosion; however, the existing choice of contributing area thresholds is highly arbitrary. Meanwhile, due to regional-scale limitations, lower-resolution [...] Read more.
The results of topographic factor computations are highly sensitive to the setting of contributing area thresholds when applied to soil erosion modeling to evaluate soil erosion; however, the existing choice of contributing area thresholds is highly arbitrary. Meanwhile, due to regional-scale limitations, lower-resolution DEM data are usually used to calculate topographic factors, and with the fragmentation of land parcels in hilly areas of purple soil, lower-resolution DEM data respond to very limited topographic information. This study focuses on solving the mentioned issues by selecting the Lizixi watershed in a hilly area of purple soil as the research subject. It establishes a relationship equation between the resolution of DEM data and the optimal contributing area threshold. This is achieved by investigating the change in the contributing area threshold with the resolution of DEM data, determining the optimal contributing area threshold for different resolutions of DEM data, and establishing the relationship equation between the resolution of DEM data and the optimal contributing area threshold. Meanwhile, to solve the key problem of fragmented land parcels in the purple soil area, where the low-resolution and medium-resolution DEM data cannot accurately reflect the topographic information, combined with the principle of histogram matching, the downscaling model between the topographic factors under the low-resolution DEM data and the topographic factors under the high-resolution DEM data is established. This study confirms that the scale transformation model developed has a strong simulation effect, and the findings can offer technical assistance for the precise computation of soil erosion in small watersheds in hilly areas of purple soil. Full article
Show Figures

Figure 1

13 pages, 5411 KiB  
Article
Effect of Nitrogen on Microbial Communities of Purple Mudstone Weathering Products in Southwest China: A Column Experiment
by Chunpei Li, Wanting Li, Peng Xu, Xuan Wang, Jialiang Tang, Gangcai Liu, Ting Wang and Jixia Zhao
Microorganisms 2024, 12(8), 1548; https://doi.org/10.3390/microorganisms12081548 - 29 Jul 2024
Viewed by 705
Abstract
Nitrogen application significantly affects microorganisms in agricultural ecosystems. However, it is still unclear how nitrogen application affects soil chemical properties and microbial communities in purple mudstone weathering products. In this study, a field soil column experiment was conducted in a typical purple soil [...] Read more.
Nitrogen application significantly affects microorganisms in agricultural ecosystems. However, it is still unclear how nitrogen application affects soil chemical properties and microbial communities in purple mudstone weathering products. In this study, a field soil column experiment was conducted in a typical purple soil area with four nitrogen fertilizer application gradients of 0 [CK], 280 [N1], 560 [N2], and 840 [N3] N kg ha−1. Nitrogen addition decreased the bacterial chao1 value and increased the bacterial evenness index. For both α- and β-diversity, the effect of nitrogen addition on bacteria was much greater than that on fungi. Nitrogen addition significantly increased the relative abundance of Proteobacteria, Gemmatimonadetes, Bacteroidetes, and Ascomycota and decreased the relative abundance of Actinobacteria, Cyanobacteria, and Basidiomycota. Both pH and TC are the most important soil chemical properties influencing the bacterial and fungal communities. With the increases in the nitrogen application rate, the co-occurrence network complexity increased and then decreased. In summary, nitrogen fertilizer application could significantly change the soil chemical properties, microbial community diversity, composition, and co-occurrence network of purple mudstone weathering products. Among them, the N2 treatment (560 N kg∙ha−1) can more effectively stimulate the soil nutrients, enhance microbial network complexity, and promote further weathering of purple mudstone. Full article
Show Figures

Figure 1

19 pages, 3750 KiB  
Article
Visible-Light Spectroscopy and Rock Magnetic Analyses of Iron Oxides in Mixed-Mineral Assemblages
by Christopher J. Lepre, Owen M. Yazzie and Benjamin R. Klaus
Crystals 2024, 14(7), 644; https://doi.org/10.3390/cryst14070644 - 13 Jul 2024
Cited by 1 | Viewed by 847
Abstract
Iron oxide assemblages are central to many pursuits, ranging from Mars exploration to environmental remediation. Oxides and oxyhydroxides of iron both carry the special properties of color and magnetism. In this paper, we use visible-light spectroscopy and rock magnetic data collected at varying [...] Read more.
Iron oxide assemblages are central to many pursuits, ranging from Mars exploration to environmental remediation. Oxides and oxyhydroxides of iron both carry the special properties of color and magnetism. In this paper, we use visible-light spectroscopy and rock magnetic data collected at varying temperatures (~77–973 K) to analyze the concentrations and identities of iron oxides found in natural hematite-dominated samples that were obtained from a scientific drill core of Late Triassic red beds in the American Southwest. Our results suggest that hematite colorization of Earth materials varies from red to blue/purple as crystal size increases. Second-derivative analysis of the collected visible-light spectra allows this variation to be measured through the characteristic wavelength band position. Magnetic coercivity data indicate “hardness” differences that also may suggest smaller grain sizes are associated with redder colors. Yellowish maghemite and goethite have overlapping characteristic wavelength band positions that make it challenging to distinguish their contributions to mixed assemblages from visible-light data alone. Remanent magnetizations acquired at ~77 K and room temperature suggest the presence of hematite and a low-coercivity phase that may be maghemite and/or oxidized magnetite. However, we interpret this phase as maghemite in order to explain the changes in iron oxide concentrations indicated by visible-light intensities near ~425 nm and because the thermal demagnetization data suggest that goethite is absent from the samples. Future research that increases the resolution of hematite, maghemite, and goethite detection in experimental and natural samples will provide opportunities to refine the study of past climates and constrain soil iron availability under future changes in global moisture and temperature. Multimethod datasets improve understanding of environmental conditions that cause iron oxides assemblages to shift in phase dominance, grain size, and crystallinity. Full article
(This article belongs to the Special Issue Metal Oxides: Crystal Structure, Synthesis and Characterization)
Show Figures

Figure 1

19 pages, 1252 KiB  
Article
Effects of Returning Green Manure-Chinese Milk Vetch on the Availability and Transformation of Zinc in Purple Tidal Mud Soil under Rice Cultivation
by Zengping Yang, Zhongxiu Rao, Hailu Li, Xianjun Zeng and Jian Xie
Agronomy 2024, 14(6), 1126; https://doi.org/10.3390/agronomy14061126 - 24 May 2024
Cited by 1 | Viewed by 663
Abstract
This study aimed to investigate the impact of different levels of Chinese milk vetch (Astragalus sinicus L.) incorporation on the availability and transformation of zinc in purple tidal mud soil under rice cultivation. A two-year pot experiment was conducted, comprising seven treatments: [...] Read more.
This study aimed to investigate the impact of different levels of Chinese milk vetch (Astragalus sinicus L.) incorporation on the availability and transformation of zinc in purple tidal mud soil under rice cultivation. A two-year pot experiment was conducted, comprising seven treatments: a control group without fertilizer, a control group with Chinese milk vetch application, a control group with chemical fertilizer application, and four treatment groups with varying levels of Chinese milk vetch application following chemical fertilizer application. Results showed that Chinese milk vetch application increased the content of available zinc (DTPA-Zn) in purple tidal mud soil. Sole application of Chinese milk vetch ultimately enhanced the transfer factor of zinc in purple tidal mud soil and reduced the distribution index. However, applying Chinese milk vetch after chemical fertilizer application ultimately decreased the transfer factor of zinc and increased the distribution index. Furthermore, sole application of Chinese milk vetch facilitated the conversion of zinc in purple tidal mud soil into available forms, while applying it after chemical fertilizer application promoted the transformation of zinc into ineffective forms, with a greater conversion observed at higher levels of Chinese milk vetch application. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

15 pages, 4756 KiB  
Article
Response of Hydrodynamic Characteristics to Tillage-Induced Microtopography of Rill Erosion Processes under Heavy Rainfalls
by Shuqin He, Jian Luo, Zicheng Zheng, Wenfeng Ding and Jigen Liu
Land 2024, 13(5), 685; https://doi.org/10.3390/land13050685 - 14 May 2024
Viewed by 771
Abstract
The occurrence and development of rill erosion depends on the hydraulic characteristics of water flow and underlying soil surface features. Our experiments include one-rainfall-intensity treatments (2.0 mm min−1) and various microtopographic levels based on different tillage practices with smooth slope (CK), [...] Read more.
The occurrence and development of rill erosion depends on the hydraulic characteristics of water flow and underlying soil surface features. Our experiments include one-rainfall-intensity treatments (2.0 mm min−1) and various microtopographic levels based on different tillage practices with smooth slope (CK), artificial digging (AD), and ridge tillage (RT) on a 15° slope. The results indicate the following: (1) The soil roughness index values were in the order of CK < AD < RT, and the spatial variability of different tillage practices had strong autocorrelations during different rill erosive stages. The codomain values decreased with the increase in microtopography. (2) The multifractal dimension values of tillage practices in various erosive stages were in the order of RT > AD > CT. The microtopography of different tilled slopes showed strong multifractal characteristics, and the multifractal characteristics were stronger as the microrelief heterogeneity increased. For the CK slope, the generalized fractal dimension span (ΔD) ranged between 0.0019 and 0.0058. For the AD slope, ΔD was between 0.2901 and 0.5112. And, for the RT slope, ΔD was between 0.4235 and 0.7626. (3) With the evolution of rill erosion, the flow pattern on different tilled slopes changed from subcritical transition flow to supercritical transition flow. (4) Soil roughness index and ΔD had good correlations with hydrodynamic parameters. The stronger the erosive energy of runoff was, the higher the spatial heterogeneity of microtopography was. This study is expected to provide a theoretical basis for revealing the hydrodynamic mechanism of rill erosion in slope farmland. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

27 pages, 3703 KiB  
Article
Utilization of Rhodopseudomonas palustris in Crop Rotation Practice Boosts Rice Productivity and Soil Nutrient Dynamics
by Laurence Shiva Sundar, Kuei-Shan Yen, Yao-Tsung Chang and Yun-Yang Chao
Agriculture 2024, 14(5), 758; https://doi.org/10.3390/agriculture14050758 - 13 May 2024
Cited by 2 | Viewed by 1973
Abstract
Using beneficial microorganisms, such as purple non-sulfur bacteria (PNSB), has shown enormous potential for improving plant growth and agricultural production. However, the full extent of their benefits and interactions with agricultural practices is yet to be fully understood. The present study aimed to [...] Read more.
Using beneficial microorganisms, such as purple non-sulfur bacteria (PNSB), has shown enormous potential for improving plant growth and agricultural production. However, the full extent of their benefits and interactions with agricultural practices is yet to be fully understood. The present study aimed to investigate the use of PNSB in crop rotation practice, focusing on its impact on rice growth and yield. The experiment was conducted over two rice cropping seasons, with djulis grown between the rice as a rotation crop. The study shows that PNSB treatment increased the concentration of 5-aminolevulinic acid (5-ALA) in plants, indicating enhanced photosynthesis. Moreover, when combined with crop rotation, PNSB remarkably improved soil fertility. These combined benefits resulted in substantial increases in tiller numbers (163%), leaf chlorophyll content (13%), and lodging resistance (66%), compared to the untreated plants. The combined treatment also resulted in higher productive tillers per hill (112%), average grain per hill (65%), and grain fertility (26%). This led to increased grain yield (65%), shoot dry weight (15%), and harvest index (37%). The findings clearly suggest that the incorporation of PNSB in crop rotation strategies can significantly augment the growth and yield of rice crops. These insights, pivotal for sustainable rice cultivation, hold the potential to simultaneously tackle the pressing issues of global food security and climate change. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

17 pages, 7335 KiB  
Article
Influencing Factors, Risk Assessment, and Source Identification of Heavy Metals in Purple Soil in the Eastern Region of Guang’an City, Sichuan Province, China
by Yuxiang Shao, Wenbin Chen, Jian Li, Buqing Yan, Haiyun He and Yunshan Zhang
Minerals 2024, 14(5), 495; https://doi.org/10.3390/min14050495 - 7 May 2024
Viewed by 1180
Abstract
Soil heavy metal contamination poses a significant threat to both environmental health and ecological safety. To investigate the influencing factors, ecological hazards, and sources analysis of heavy metals in purple soil, 27 sets of soil samples were collected from varying genetic horizons within [...] Read more.
Soil heavy metal contamination poses a significant threat to both environmental health and ecological safety. To investigate the influencing factors, ecological hazards, and sources analysis of heavy metals in purple soil, 27 sets of soil samples were collected from varying genetic horizons within Guang’an City, and the contents of As, Cd, Cu, Cr, Hg, Ni, Pb, and Zn were analyzed. The results indicated higher concentrations of heavy metals in soil A horizon, compared to that of C horizon. The relevance analysis indicated that the soil’s heavy metals were strongly correlated with the soil’s physicochemical properties. The enrichment factor, pollution load index, and potential risk index highlighted slightly to severely polluted levels of soil Cd and Hg, which significantly contribute to the ecological hazards posed by soil heavy metals. The potential source of heavy metals analyzed using the APCS-MLR model identified both anthropogenic inputs and natural sources as primary contributors to heavy metal presence in soils. The Cu, Cr, Ni, Pb, and Zn contents in the samples from different genetic horizons were chiefly influenced by natural sources, such as soil matrix erosion and weathering, while the concentrations of Cd and Hg were largely affected by anthropogenic activities, specifically coal combustion and agriculture. Conversely, the As content was found to be influenced by a combination of both factors. Anthropogenic activities greatly impacted soil heavy metals at various depths within the study area, thereby underscoring the importance of monitoring these heavy metals. The findings gained from this research can give a scientific basis for the potential utilization of purple soil. Full article
Show Figures

Figure 1

17 pages, 3845 KiB  
Article
The Beneficial Effects of Soluble Silicon Fertilizer in Dendrobium Orchids: Silicon-Augmented Resistance against Damage by Insect Pests and Fungal Pathogens
by Joanna Bloese, Russell Galanti, Ryan Porter and Tiani Know
Insects 2024, 15(5), 323; https://doi.org/10.3390/insects15050323 - 1 May 2024
Cited by 1 | Viewed by 1169
Abstract
The effects of soluble silicon fertilization on monocots and dicots have been widely studied. However, little is known regarding its effects on protecting epiphytes against insect and fungal pests. The efficacy of silicon fertilizer to reduce damage by thrips pest complexes, namely: Thrips [...] Read more.
The effects of soluble silicon fertilization on monocots and dicots have been widely studied. However, little is known regarding its effects on protecting epiphytes against insect and fungal pests. The efficacy of silicon fertilizer to reduce damage by thrips pest complexes, namely: Thrips palmi Karny, Frankliniella occidentalis Pergande, Chaetanaphothrips orchidii Moulton, and Chaetanaphothrips signipennis Bagnall (Thysanoptera: Thripidae), and the fungal pathogens: Botrytis cinerea Persoon (Helotiales: Sclerotiniaceae) and Fusarium spp. Link (Hypocreales: Nectriaceae) was examined during a nine-month greenhouse trial in Hawaii. The trial assessed yield, quality, and pest damage across three common varieties of dendrobiums. All replicates received additional soluble silicon fertilizer applications alternating weekly between soil drench and foliar (50 mg Si/plant) applications. Yield, quality, and spray length, pest damage, plant vigor, SPAD, and leaf temperature were measured. Data were analyzed using a generalized linear model (glm) with repeated measures followed by post-hoc pair-wise comparisons in R, version 4.3.1. Treatment effects were significant at p < 0.001 for the majority of the explanatory variables including: marketable yield, spray length, thrips damage, and fungal damage. Overall, the lavender variety (‘Uniwai Supreme’) benefited the most from silicon applications with a 73.0% increase in marketable yield, compared to the white variety (‘Uniwai Mist’), which had an increase of 50.6% marketable sprays in contrast to its untreated control. Si benefits conferred to the purple variety (‘Uniwai Royale’) were intermediate to the lavender and white varieties. Although the magnitude of Si benefits varied among the varieties, all dendrobium varieties significantly benefited from silicon fertilization. Full article
(This article belongs to the Collection Integrated Pest Management Strategies for Horticultural Crops)
Show Figures

Figure 1

Back to TopTop