Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (220)

Search Parameters:
Keywords = protoporphyrin IX

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5304 KiB  
Article
Carrier-Free Hybrid Nanoparticles for Enhanced Photodynamic Therapy in Oral Carcinoma via Reversal of Hypoxia and Oxidative Resistance
by Xiao Li, Zhiyin Li, Yue Su, Jia Zhou, Yuxiang Li, Qianqian Zhao, Xia Yang, Leilei Shi and Lingyue Shen
Pharmaceutics 2024, 16(9), 1130; https://doi.org/10.3390/pharmaceutics16091130 - 27 Aug 2024
Viewed by 275
Abstract
In the present work, we pioneered a coordinated self-assembly approach aimed at fabricating carrier-free hybrid nanoparticles to address the inherent challenges of the anaerobic microenvironment and the oxidative resistance induced by reductive glutathione (GSH) in photodynamic therapy (PDT). In these nanoparticles, protoporphyrin IX [...] Read more.
In the present work, we pioneered a coordinated self-assembly approach aimed at fabricating carrier-free hybrid nanoparticles to address the inherent challenges of the anaerobic microenvironment and the oxidative resistance induced by reductive glutathione (GSH) in photodynamic therapy (PDT). In these nanoparticles, protoporphyrin IX (PP), HIF-1α inhibitor of N, Nʹ-(2,5-Dichlorosulfonyl) cystamine KC7F2 (KC), and the cofactor Fe3+ present hydrogen bond and coordination interaction. The nanoparticles exhibited efficient cellular uptake by CAL-27 cells, facilitating their accumulation in tumors by enhanced permeability and retention (EPR) effect. Under irradiation at 650 nm, the formation of cytotoxic singlet oxygen (1O2) would be enhanced by the synergy effect on the Fenton reaction of Fe3+ ion and the downregulation of the HIF-1α, leading to the improved PDT efficacy both in vitro and in vivo biological studies. Our work opens a new supramolecular approach to prepare hybrid nanoparticles for effective synergy therapy with PDT against cancer cells. Full article
Show Figures

Figure 1

19 pages, 5351 KiB  
Article
High-Throughput Transcriptomic Analysis of Circadian Rhythm of Chlorophyll Metabolism under Different Photoperiods in Tea Plants
by Zhi-Hang Hu, Meng-Zhen Sun, Kai-Xin Yang, Nan Zhang, Chen Chen, Jia-Wen Xiong, Ni Yang, Yi Chen, Hui Liu, Xing-Hui Li, Xuan Chen, Ai-Sheng Xiong and Jing Zhuang
Int. J. Mol. Sci. 2024, 25(17), 9270; https://doi.org/10.3390/ijms25179270 - 27 Aug 2024
Viewed by 267
Abstract
Tea plants are a perennial crop with significant economic value. Chlorophyll, a key factor in tea leaf color and photosynthetic efficiency, is affected by the photoperiod and usually exhibits diurnal and seasonal variations. In this study, high-throughput transcriptomic analysis was used to study [...] Read more.
Tea plants are a perennial crop with significant economic value. Chlorophyll, a key factor in tea leaf color and photosynthetic efficiency, is affected by the photoperiod and usually exhibits diurnal and seasonal variations. In this study, high-throughput transcriptomic analysis was used to study the chlorophyll metabolism, under different photoperiods, of tea plants. We conducted a time-series sampling under a skeleton photoperiod (6L6D) and continuous light conditions (24 L), measuring the chlorophyll and carotenoid content at a photoperiod interval of 3 h (24 h). Transcriptome sequencing was performed at six time points across two light cycles, followed by bioinformatics analysis to identify and annotate the differentially expressed genes (DEGs) involved in chlorophyll metabolism. The results revealed distinct expression patterns of key genes in the chlorophyll biosynthetic pathway. The expression levels of CHLE (magnesium-protoporphyrin IX monomethyl ester cyclase gene), CHLP (geranylgeranyl reductase gene), CLH (chlorophyllase gene), and POR (cytochrome P450 oxidoreductase gene), encoding enzymes in chlorophyll synthesis, were increased under continuous light conditions (24 L). At 6L6D, the expression levels of CHLP1.1, POR1.1, and POR1.2 showed an oscillating trend. The expression levels of CHLP1.2 and CLH1.1 showed the same trend, they both decreased under light treatment and increased under dark treatment. Our findings provide potential insights into the molecular basis of how photoperiods regulate chlorophyll metabolism in tea plants. Full article
Show Figures

Figure 1

11 pages, 2431 KiB  
Article
Quercetin Attenuates Acetaldehyde-Induced Cytotoxicity via the Heme Oxygenase-1-Dependent Antioxidant Mechanism in Hepatocytes
by Kexin Li, Minori Kidawara, Qiguang Chen, Shintaro Munemasa, Yoshiyuki Murata, Toshiyuki Nakamura and Yoshimasa Nakamura
Int. J. Mol. Sci. 2024, 25(16), 9038; https://doi.org/10.3390/ijms25169038 - 20 Aug 2024
Viewed by 355
Abstract
It is still unclear whether or how quercetin influences the toxic events induced by acetaldehyde in hepatocytes, though quercetin has been reported to mitigate alcohol-induced mouse liver injury. In this study, we evaluated the modulating effect of quercetin on the cytotoxicity induced by [...] Read more.
It is still unclear whether or how quercetin influences the toxic events induced by acetaldehyde in hepatocytes, though quercetin has been reported to mitigate alcohol-induced mouse liver injury. In this study, we evaluated the modulating effect of quercetin on the cytotoxicity induced by acetaldehyde in mouse hepatoma Hepa1c1c7 cells, the frequently used cellular hepatocyte model. The pretreatment with quercetin significantly inhibited the cytotoxicity induced by acetaldehyde. The treatment with quercetin itself had an ability to enhance the total ALDH activity, as well as the ALDH1A1 and ALDH3A1 gene expressions. The acetaldehyde treatment significantly enhanced the intracellular reactive oxygen species (ROS) level, whereas the quercetin pretreatment dose-dependently inhibited it. Accordingly, the treatment with quercetin itself significantly up-regulated the representative intracellular antioxidant-related gene expressions, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase, catalytic subunit (GCLC), and cystine/glutamate exchanger (xCT), that coincided with the enhancement of the total intracellular glutathione (GSH) level. Tin protoporphyrin IX (SNPP), a typical HO-1 inhibitor, restored the quercetin-induced reduction in the intracellular ROS level, whereas buthionine sulphoximine, a representative GSH biosynthesis inhibitor, did not. SNPP also cancelled the quercetin-induced cytoprotection against acetaldehyde. These results suggest that the low-molecular-weight antioxidants produced by the HO-1 enzymatic reaction are mainly attributable to quercetin-induced cytoprotection. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

19 pages, 5612 KiB  
Article
Ascorbic Acid Mitigates Salt Stress in Tomato Seedlings by Enhancing Chlorophyll Synthesis Pathways
by Xianjun Chen, Yao Jiang, Yundan Cong, Xiaofeng Liu, Qin Yang, Jiayi Xing and Huiying Liu
Agronomy 2024, 14(8), 1810; https://doi.org/10.3390/agronomy14081810 - 16 Aug 2024
Viewed by 379
Abstract
Salt stress is a critical abiotic factor that adversely affects plant growth and productivity by impairing photosynthesis. This study explores the impact of exogenous ascorbic acid (AsA) on the photosynthetic performance of tomato seedlings (Solanum lycopersicum L. cv. Ligeer 87-5) under salt [...] Read more.
Salt stress is a critical abiotic factor that adversely affects plant growth and productivity by impairing photosynthesis. This study explores the impact of exogenous ascorbic acid (AsA) on the photosynthetic performance of tomato seedlings (Solanum lycopersicum L. cv. Ligeer 87-5) under salt stress. Hydroponic experiments were conducted in a solar greenhouse, where tomato seedlings were subjected to the following five treatments: Control, NaCl, NaCl + AsA, NaCl + lycorine (LYC), and NaCl + LYC + AsA. Our findings demonstrate that salt stress significantly reduced chlorophyll and carotenoid contents, levels of chlorophyll synthesis precursors (5-aminolevulinic acid (ALA), porphobilinogen (PBG), uroporphyrinogen III (Urogen III), protoporphyrin IX (Proto IX), magnesium protoporphyrin IX (Mg-Proto IX), protochlorophyllide (Pchl)), and essential elements (Mg, Fe, Mn, Zn, Mo, and P) in both roots and leaves. These reductions led to a substantial decline in net photosynthetic rate (Pn) and compromised photosystem II (PSII). In contrast, exogenous AsA application significantly enhanced the content of photosynthetic pigment precursors and essential elements, improved stomatal aperture and gas exchange efficiency, and boosted the photosynthetic performance of tomato seedlings under salt stress. Furthermore, AsA treatment mitigated the negative effects of salt stress by protecting PSII, increased light energy utilization efficiency, and alleviated both stomatal and non-stomatal limitations. The application of the AsA synthesis inhibitor LYC exacerbated the detrimental effects of salt stress, further reducing chlorophyll content and photosynthetic efficiency. In conclusion, exogenous AsA plays a vital role in enhancing the photosynthetic performance and stress tolerance of tomato seedlings under salt stress by stabilizing chlorophyll biosynthesis, facilitating essential element absorption, and optimizing stomatal function. This study provides a new approach and feasible measures for improving tomato resistance and yield, which is significant for enhancing crop productivity, managing saline soils, and promoting sustainable agricultural practices. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

8 pages, 1518 KiB  
Article
The Metabolite of γ-Tocopherol, 2,7,8-Trimethyl-2-(2′-Carboxyethyl)-6-Hydroxychroman, Exerts Intracellular Antioxidant Activity via Up-Regulation of Heme Oxygenase-1 in Hepatocytes
by Shosuke Aoyama, Tomoka Nishio, Daiki Moriya, Shintaro Munemasa, Yoshiyuki Murata, Yoshimasa Nakamura and Toshiyuki Nakamura
Nutraceuticals 2024, 4(3), 409-416; https://doi.org/10.3390/nutraceuticals4030024 - 13 Aug 2024
Viewed by 384
Abstract
γ-Tocopherol (γT) is the major form of vitamin E contained in plants and seed oils. Although it is readily metabolized in the liver, the function of the metabolites is not fully understood. This study investigated the antioxidant activities of the γT metabolite 2,7,8-trimethyl-2-(2′-carboxyethyl)-6-hydroxychroman [...] Read more.
γ-Tocopherol (γT) is the major form of vitamin E contained in plants and seed oils. Although it is readily metabolized in the liver, the function of the metabolites is not fully understood. This study investigated the antioxidant activities of the γT metabolite 2,7,8-trimethyl-2-(2′-carboxyethyl)-6-hydroxychroman (γCEHC) in comparison to its parent compound. The pretreatment of mouse hepatoma Hepa1c1c7 cells with γCEHC showed a cytoprotective effect on the hydrogen peroxide-induced cytotoxicity to a lesser extent than that of γT. A mechanistic investigation revealed that both γ-CEHC and γT significantly up-regulated the gene and protein expressions of heme oxygenase-1 (HO-1) via the promotion of the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). Furthermore, the combination of γCEHC and γT significantly increased the gene and protein levels of HO-1 and the nuclear translocation of Nrf2, suggesting that it was an additive effect. Tin protoporphyrin IX (SnPP), a representative HO-1 inhibitor, significantly impaired the cytoprotection of γCEHC and γT against the hydrogen peroxide-induced cytotoxicity. These results suggested that not only γT but also its metabolite, γCEHC, are a promising cytoprotective factor against oxidative stress-induced cytotoxicity and that the cytoprotective effect is attributable to the cooperation of both compounds. Full article
Show Figures

Graphical abstract

16 pages, 10782 KiB  
Article
Fluorescence-Enhanced Assessments for Human Breast Cancer Cell Characterizations
by Mahsa Ghezelbash, Batool Sajad and Shadi Hojatizadeh
Photonics 2024, 11(8), 746; https://doi.org/10.3390/photonics11080746 - 9 Aug 2024
Viewed by 451
Abstract
Even with 100% certainty of a complete cure for breast cancer (BC), there is still a long way to go toward more efficient treatment because it requires sensitive and timely detection and accurate pre/post-clinical characterizations. Despite the availability of advanced diagnostic tools, many [...] Read more.
Even with 100% certainty of a complete cure for breast cancer (BC), there is still a long way to go toward more efficient treatment because it requires sensitive and timely detection and accurate pre/post-clinical characterizations. Despite the availability of advanced diagnostic tools, many cancer patients lack access to efficient diagnostics that are both highly reliable and affordable. The fluorescence-based optical technique aims to make another significant leap forward in improving patient safety. It offers a convenient operation that reduces healthcare costs compared to visual examination tools (VETs). The primary and metastatic stages of BC consider different cancerous cell lines (MDAs), meaning the highest number of cells in this research (up to 300,000) represents the metastatic stages of BC, and 50,000 represents the primary level of BC. Developments have been studied based on fluorescence-enhanced photodynamic characterizations. The ability to characterize the fluorescence caused by MDA with 50,000 cells compared to the dominant radiation of MDA with 300,000 cells is emphatic proof of the high potential of fluorescence technique in timely BC detections, specifically before it spreads to the axillary lymph nodes. The specific cell numbers of 50,000 and 300,000 were chosen arbitrarily based on the cultivation of common biological limitations. Comparing the outcomes between 50,000 and 300,000 cells allows for evaluating the fluorescence technique’s diagnostic capability across various stages of breast cancer. This assessment provides valuable insights into the effectiveness of the fluorescence-based characterizing approach in detecting cancerous cells at different stages of the disease. Here, we have assessed fluorescence’s spectral shift and intensity difference as a diagnostic approach to distinguish between cancerous and normal breast cells. This study also presents a two-way structure of the 5-aminolevulinic acid (5-ALA) prodrug and Fluorescein Sodium (FS) effect in BC cell characterization from the perspective of photodynamical procedures and the detection side. 5-ALA induces an accumulation of protoporphyrin IX (PpIX) photosensitizer through a biosynthetic pathway, leading to red radiation of fluorescence measurements depending on different factors, such as temperature, incubation time, added glucose of the culturing medium, as well as photosynthesis processes. The presence and progression of breast cancer can be indicated by elevated levels of Reactive Oxygen Species (ROS), associated with the production of PpIX in cells following the administration of 5-ALA. In addition, nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) fluorophores are recognized as the main factors for fluorescence emissions at around 420–580 nm emission intervals. Considering the MDA’s high metastatic potential, the impact of 5-ALA on MDA’s cellular morphology and viability has been investigated. The molecular fluorophores are the primary probes to MDA’s cellular photodynamic considerations, allowing this widespread pre/post-clinical approach. The fluorescence signal reduction due to decreased cell viability and increased MDA’s cellular death rate after 24 h of the 5-ALA-induced staining corresponds to the changes in lipid metabolism enzymes of MDAs cultured at different doses, which could be known as a cell death inducer function. Furthermore, statistical concerns have been studied using PCA multivariate component analysis to differentiate MDA cell lines administrated by 5-ALA. Full article
(This article belongs to the Section Biophotonics and Biomedical Optics)
Show Figures

Figure 1

15 pages, 3316 KiB  
Article
In Vitro Effect of Epigallocatechin Gallate on Heme Synthesis Pathway and Protoporphyrin IX Production
by Daniela León, María Elena Reyes, Helga Weber, Álvaro Gutiérrez, Claudio Tapia, Ramón Silva, Tamara Viscarra, Kurt Buchegger, Carmen Ili and Priscilla Brebi
Int. J. Mol. Sci. 2024, 25(16), 8683; https://doi.org/10.3390/ijms25168683 - 9 Aug 2024
Viewed by 451
Abstract
Photodynamic therapy (PDT) treats nonmelanoma skin cancer. PDT kills cells through reactive oxygen species (ROS), generated by interaction among cellular O2, photosensitizer and specific light. Protoporphyrin IX (PpIX) is a photosensitizer produced from methyl aminolevulinate (MAL) by heme group synthesis (HGS) pathway. [...] Read more.
Photodynamic therapy (PDT) treats nonmelanoma skin cancer. PDT kills cells through reactive oxygen species (ROS), generated by interaction among cellular O2, photosensitizer and specific light. Protoporphyrin IX (PpIX) is a photosensitizer produced from methyl aminolevulinate (MAL) by heme group synthesis (HGS) pathway. In PDT-resistant cells, PDT efficacy has been improved by addition of epigallocatechin gallate (EGCG). Therefore, the aim of this work is to evaluate the effect of EGCG properties over MAL-TFD and PpIX production on A-431 cell line. EGCG’s role over cell proliferation (flow cytometry and wound healing assay) and clonogenic capability (clonogenic assay) was evaluated in A-431 cell line, while the effect of EGCG over MAL-PDT was determined by cell viability assay (MTT), PpIX and ROS detection (flow cytometry), intracellular iron quantification and gene expression of HGS enzymes (RT-qPCR). Low concentrations of EGCG (<50 µM) did not have an antiproliferative effect over A-431 cells; however, EGCG inhibited clonogenic cell capability. Furthermore, EGCG (<50 µM) improved MAL-PDT cytotoxicity, increasing PpIX and ROS levels, exerting a positive influence on PpIX synthesis, decreasing intracellular iron concentration and modifying HGS enzyme gene expression such as PGB (upregulated) and FECH (downregulated). EGCG inhibits clonogenic capability and modulates PpIX synthesis, enhancing PDT efficacy in resistant cells. Full article
(This article belongs to the Special Issue Molecular Aspects of Photodynamic Therapy)
Show Figures

Figure 1

19 pages, 2281 KiB  
Article
Harnessing Porphyrin Accumulation in Liver Cancer: Combining Genomic Data and Drug Targeting
by Swamy R. Adapa, Pravin Meshram, Abdus Sami and Rays H. Y. Jiang
Biomolecules 2024, 14(8), 959; https://doi.org/10.3390/biom14080959 - 7 Aug 2024
Viewed by 563
Abstract
The liver, a pivotal organ in human metabolism, serves as a primary site for heme biosynthesis, alongside bone marrow. Maintaining precise control over heme production is paramount in healthy livers to meet high metabolic demands while averting potential toxicity from intermediate metabolites, notably [...] Read more.
The liver, a pivotal organ in human metabolism, serves as a primary site for heme biosynthesis, alongside bone marrow. Maintaining precise control over heme production is paramount in healthy livers to meet high metabolic demands while averting potential toxicity from intermediate metabolites, notably protoporphyrin IX. Intriguingly, our recent research uncovers a disrupted heme biosynthesis process termed ‘porphyrin overdrive’ in cancers that fosters the accumulation of heme intermediates, potentially bolstering tumor survival. Here, we investigate heme and porphyrin metabolism in both healthy and oncogenic human livers, utilizing primary human liver transcriptomics and single-cell RNA sequencing (scRNAseq). Our investigations unveil robust gene expression patterns in heme biosynthesis in healthy livers, supporting electron transport chain (ETC) and cytochrome P450 function without intermediate accumulation. Conversely, liver cancers exhibit rewired heme biosynthesis and a massive downregulation of cytochrome P450 gene expression. Notably, despite diminished drug metabolism, gene expression analysis shows that heme supply to the ETC remains largely unaltered or even elevated with patient cancer progression, suggesting a metabolic priority shift. Liver cancers selectively accumulate intermediates, which are absent in normal tissues, implicating their role in disease advancement as inferred by expression analysis. Furthermore, our findings in genomics establish a link between the aberrant gene expression of porphyrin metabolism and inferior overall survival in aggressive cancers, indicating potential targets for clinical therapy development. We provide in vitro proof-of-concept data on targeting porphyrin overdrive with a drug synergy strategy. Full article
(This article belongs to the Special Issue New Insights into Cytochrome P450s, 2nd Edition)
Show Figures

Figure 1

30 pages, 1617 KiB  
Systematic Review
Fluorescence-Guided Surgical Techniques in Adult Diffuse Low-Grade Gliomas: State-of-the-Art and Emerging Techniques: A Systematic Review
by Thiebaud Picart, Arthur Gautheron, Charly Caredda, Cédric Ray, Laurent Mahieu-Williame, Bruno Montcel and Jacques Guyotat
Cancers 2024, 16(15), 2698; https://doi.org/10.3390/cancers16152698 - 29 Jul 2024
Viewed by 581
Abstract
Diffuse low-grade gliomas are infiltrative tumors whose margins are not distinguishable from the adjacent healthy brain parenchyma. The aim was to precisely examine the results provided by the intraoperative use of macroscopic fluorescence in diffuse low-grade gliomas and to describe the new fluorescence-based [...] Read more.
Diffuse low-grade gliomas are infiltrative tumors whose margins are not distinguishable from the adjacent healthy brain parenchyma. The aim was to precisely examine the results provided by the intraoperative use of macroscopic fluorescence in diffuse low-grade gliomas and to describe the new fluorescence-based techniques capable of guiding the resection of low-grade gliomas. Only about 20% and 50% of low-grade gliomas are macroscopically fluorescent after 5-amino-levulinic acid (5-ALA) or fluorescein sodium intake, respectively. However, 5-ALA is helpful for detecting anaplastic foci, and thus choosing the best biopsy targets in diffuse gliomas. Spectroscopic detection of 5-ALA-induced fluorescence can detect very low and non-macroscopically visible concentrations of protoporphyrin IX, a 5-ALA metabolite, and, consequently, has excellent performances for the detection of low-grade gliomas. Moreover, these tumors have a specific spectroscopic signature with two fluorescence emission peaks, which is useful for distinguishing them not only from healthy brain but also from high-grade gliomas. Confocal laser endomicroscopy can generate intraoperative optic biopsies, but its sensitivity remains limited. In the future, the coupled measurement of autofluorescence and induced fluorescence, and the introduction of fluorescence detection technologies providing a wider field of view could result in the development of operator-friendly tools implementable in the operative routine. Full article
(This article belongs to the Special Issue Neurosurgical Management of Gliomas)
Show Figures

Figure 1

18 pages, 3664 KiB  
Article
Uncovering Porphyrin Accumulation in the Tumor Microenvironment
by Swamy R. Adapa, Abdus Sami, Pravin Meshram, Gloria C. Ferreira and Rays H. Y. Jiang
Genes 2024, 15(7), 961; https://doi.org/10.3390/genes15070961 - 22 Jul 2024
Viewed by 677
Abstract
Heme, an iron-containing tetrapyrrole, is essential in almost all organisms. Heme biosynthesis needs to be precisely regulated particularly given the potential cytotoxicity of protoporphyrin IX, the intermediate preceding heme formation. Here, we report on the porphyrin intermediate accumulation within the tumor microenvironment (TME), [...] Read more.
Heme, an iron-containing tetrapyrrole, is essential in almost all organisms. Heme biosynthesis needs to be precisely regulated particularly given the potential cytotoxicity of protoporphyrin IX, the intermediate preceding heme formation. Here, we report on the porphyrin intermediate accumulation within the tumor microenvironment (TME), which we propose to result from dysregulation of heme biosynthesis concomitant with an enhanced cancer survival dependence on mid-step genes, a process we recently termed “Porphyrin Overdrive”. Specifically, porphyrins build up in both lung cancer cells and stromal cells in the TME. Within the TME’s stromal cells, evidence supports cancer-associated fibroblasts (CAFs) actively producing porphyrins through an imbalanced pathway. Conversely, normal tissues exhibit no porphyrin accumulation, and CAFs deprived of tumor cease porphyrin overproduction, indicating that both cancer and tumor-stromal porphyrin overproduction is confined to the cancer-specific tissue niche. The clinical relevance of our findings is implied by establishing a correlation between imbalanced porphyrin production and overall poorer survival in more aggressive cancers. These findings illuminate the anomalous porphyrin dynamics specifically within the tumor microenvironment, suggesting a potential target for therapeutic intervention. Full article
(This article belongs to the Special Issue Genetics of Complex Human Disease 2024)
Show Figures

Figure 1

19 pages, 7891 KiB  
Article
The Combination of Molecular Hydrogen and Heme Oxygenase 1 Effectively Inhibits Neuropathy Caused by Paclitaxel in Mice
by Ignacio Martínez-Martel, Xue Bai, Rebecca Kordikowski, Christie R. A. Leite-Panissi and Olga Pol
Antioxidants 2024, 13(7), 856; https://doi.org/10.3390/antiox13070856 - 17 Jul 2024
Viewed by 782
Abstract
Chemotherapy-provoked peripheral neuropathy and its associated affective disorders are important adverse effects in cancer patients, and its treatment is not completely resolved. A recent study reveals a positive interaction between molecular hydrogen (H2) and a heme oxygenase (HO-1) enzyme inducer, cobalt [...] Read more.
Chemotherapy-provoked peripheral neuropathy and its associated affective disorders are important adverse effects in cancer patients, and its treatment is not completely resolved. A recent study reveals a positive interaction between molecular hydrogen (H2) and a heme oxygenase (HO-1) enzyme inducer, cobalt protoporphyrin IX (CoPP), in the inhibition of neuropathic pain provoked by nerve injury. Nevertheless, the efficacy of CoPP co-administered with hydrogen-rich water (HRW) on the allodynia and emotional disorders related to paclitaxel (PTX) administration has not yet been assessed. Using male C57BL/6 mice injected with PTX, we examined the effects of the co-administration of low doses of CoPP and HRW on mechanical and thermal allodynia and anxiodepressive-like behaviors triggered by PTX. Moreover, the impact of this combined treatment on the oxidative stress and inflammation caused by PTX in the amygdala (AMG) and dorsal root ganglia (DRG) were studied. Our results indicated that the antiallodynic actions of the co-administration of CoPP plus HRW are more rapid and higher than those given by each of them when independently administered. This combination inhibited anxiodepressive-like behaviors, the up-regulation of the inflammasome NLRP3 and 4-hydroxynonenal, as well as the high mRNA levels of some inflammatory mediators. This combination also increased the expression of NRF2, HO-1, superoxide dismutase 1, glutathione S-transferase mu 1, and/or the glutamate-cysteine ligase modifier subunit and decreased the protein levels of BACH1 in the DRG and/or AMG. Thus, it shows a positive interaction among HO-1 and H2 systems in controlling PTX-induced neuropathy by modulating inflammation and activating the antioxidant system. This study recommends the co-administration of CoPP plus HRW as an effective treatment for PTX-provoked neuropathy and its linked emotive deficits. Full article
(This article belongs to the Special Issue Experimental and Therapeutic Targeting of Heme Oxygenase)
Show Figures

Figure 1

18 pages, 5306 KiB  
Article
Does 5-ALA Fluorescence Microscopy Improve Complete Resectability in Cerebral/Cerebellar Metastatic Surgery? A Retrospective Data Analysis from a Cranial Center
by Hraq Mourad Sarkis, Samer Zawy Alsofy, Ralf Stroop, Marc Lewitz, Stephanie Schipmann, Markus Unnewehr, Werner Paulus, Makoto Nakamura and Christian Ewelt
Cancers 2024, 16(12), 2242; https://doi.org/10.3390/cancers16122242 - 17 Jun 2024
Viewed by 671
Abstract
(1) Background: In this study, the intraoperative fluorescence behavior of brain metastases after the administration of 5-aminolevulinic acid (5-ALA) was analyzed. The aim was to investigate whether the resection of brain metastases using 5-ALA fluorescence also leads to a more complete resections and [...] Read more.
(1) Background: In this study, the intraoperative fluorescence behavior of brain metastases after the administration of 5-aminolevulinic acid (5-ALA) was analyzed. The aim was to investigate whether the resection of brain metastases using 5-ALA fluorescence also leads to a more complete resections and thus to a prolongation of survival; (2) Methods: The following variables have been considered: age, sex, number of metastases, localization, involvement of eloquent area, correlation between fluorescence and primary tumor/subtype, resection, and survival time. The influence on the degree of resection was determined with a control MRI within the first three postoperative days; (3) Results: Brain metastases fluoresced in 57.5% of cases. The highest fluorescence rates of 73.3% were found in breast carcinoma metastases and the histologic subtype adenocarcinoma (68.1%). No correlation between fluorescence behavior and localization, primary tumor, or histological subtype was found. Complete resection was detected in 82.5%, of which 56.1% were fluorescence positive. There was a trend towards improved resectability (increase of 12.1%) and a significantly longer survival time (p = 0.009) in the fluorescence-positive group; (4) Conclusions: 5-ALA-assisted extirpation leads to a more complete resection and longer survival and can therefore represent a low-risk addition to modern surgery for brain metastases. Full article
(This article belongs to the Section Cancer Metastasis)
Show Figures

Figure 1

15 pages, 2304 KiB  
Article
Effect of 5-Aminolevulinic Acid (5-ALA) in “ALADENT” Gel Formulation and Photodynamic Therapy (PDT) against Human Oral and Pancreatic Cancers
by Domenica Lucia D’Antonio, Simona Marchetti, Pamela Pignatelli, Samia Umme, Domenico De Bellis, Paola Lanuti, Adriano Piattelli and Maria Cristina Curia
Biomedicines 2024, 12(6), 1316; https://doi.org/10.3390/biomedicines12061316 - 13 Jun 2024
Viewed by 932
Abstract
Oral squamous-cell and pancreatic carcinomas are aggressive cancers with a poor outcome. Photodynamic therapy (PDT) consists of the use of photosensitizer-induced cell and tissue damage that is activated by exposure to visible light. PDT selectively acts on cancer cells, which have an accumulation [...] Read more.
Oral squamous-cell and pancreatic carcinomas are aggressive cancers with a poor outcome. Photodynamic therapy (PDT) consists of the use of photosensitizer-induced cell and tissue damage that is activated by exposure to visible light. PDT selectively acts on cancer cells, which have an accumulation of photosensitizer superior to that of the normal surrounding tissues. 5-aminolevulinic acid (5-ALA) induces the production of protoporphyrin IX (PpIX), an endogenous photosensitizer activated in PDT. This study aimed to test the effect of a new gel containing 5% v/v 5-ALA (ALAD-PDT) on human oral CAL-27 and pancreatic CAPAN-2 cancer cell lines. The cell lines were incubated in low concentrations of ALAD-PDT (0.05%, 0.10%, 0.20%, 0.40%, 0.75%, 1.0%) for 4 h or 8 h, and then irradiated for 7 min with 630 nm RED light. The cytotoxic effects of ALAD-PDT were measured using the MTS assay. Apoptosis, cell cycle, and ROS assays were performed using flow cytometry. PpIX accumulation was measured using a spectrofluorometer after 10 min and 24 and 48 h of treatment. The viability was extremely reduced at all concentrations, at 4 h for CAPAN-2 and at 8 h for CAL-27. ALAD-PDT induced marked apoptosis rates in both oral and pancreatic cancer cells. Elevated ROS production and appreciable levels of PpIX were detected in both cell lines. The use of ALA-PDT as a topical or intralesional therapy would permit the use of very low doses to achieve effective results and minimize side effects. ALAD-PDT has the potential to play a significant role in complex oral and pancreatic anticancer therapies. Full article
(This article belongs to the Special Issue Photodynamic Therapy (3rd Edition))
Show Figures

Figure 1

18 pages, 6684 KiB  
Article
Impact of Phosphorylation at Various Sites on the Active Pocket of Human Ferrochelatase: Insights from Molecular Dynamics Simulations
by Mingshan Guo, Yuhong Lin, Chibuike David Obi, Peng Zhao, Harry A. Dailey, Amy E. Medlock and Yong Shen
Int. J. Mol. Sci. 2024, 25(12), 6360; https://doi.org/10.3390/ijms25126360 - 8 Jun 2024
Viewed by 797
Abstract
Ferrochelatase (FECH) is the terminal enzyme in human heme biosynthesis, catalyzing the insertion of ferrous iron into protoporphyrin IX (PPIX) to form protoheme IX (Heme). Phosphorylation increases the activity of FECH, and it has been confirmed that the activity of FECH phosphorylated at [...] Read more.
Ferrochelatase (FECH) is the terminal enzyme in human heme biosynthesis, catalyzing the insertion of ferrous iron into protoporphyrin IX (PPIX) to form protoheme IX (Heme). Phosphorylation increases the activity of FECH, and it has been confirmed that the activity of FECH phosphorylated at T116 increases. However, it remains unclear whether the T116 site and other potential phosphorylation modification sites collaboratively regulate the activity of FECH. In this study, we identified a new phosphorylation site, T218, and explored the allosteric effects of unphosphorylated (UP), PT116, PT218, and PT116 + PT218 states on FECH in the presence and absence of substrates (PPIX and Heme) using molecular dynamics (MD) simulations. Binding free energies were evaluated with the MM/PBSA method. Our findings indicate that the PT116 + PT218 state exhibits the lowest binding free energy with PPIX, suggesting the strongest binding affinity. Additionally, this state showed a higher binding free energy with Heme compared to UP, which facilitates Heme release. Moreover, employing multiple analysis methods, including free energy landscape (FEL), principal component analysis (PCA), dynamic cross-correlation matrix (DCCM), and hydrogen bond interaction analysis, we demonstrated that phosphorylation significantly affects the dynamic behavior and binding patterns of substrates to FECH. Insights from this study provide valuable theoretical guidance for treating conditions related to disrupted heme metabolism, such as various porphyrias and iron-related disorders. Full article
Show Figures

Figure 1

12 pages, 1988 KiB  
Article
Structural Optimization of Carboxy-Terminal Phenylalanine-Modified Dendrimers for T-Cell Association and Model Drug Loading
by Hiroya Shiba, Tomoka Hirose, Akinobu Sakai, Ikuhiko Nakase, Akikazu Matsumoto and Chie Kojima
Pharmaceutics 2024, 16(6), 715; https://doi.org/10.3390/pharmaceutics16060715 - 27 May 2024
Viewed by 799
Abstract
Dendrimers are potent nanocarriers in drug delivery systems because their structure can be precisely controlled. We previously reported that polyamidoamine (PAMAM) dendrimers that were modified with 1,2-cyclohexanedicarboxylic acid (CHex) and phenylalanine (Phe), PAMAM-CHex-Phe, exhibited an effective association with various immune cells, including T-cells. [...] Read more.
Dendrimers are potent nanocarriers in drug delivery systems because their structure can be precisely controlled. We previously reported that polyamidoamine (PAMAM) dendrimers that were modified with 1,2-cyclohexanedicarboxylic acid (CHex) and phenylalanine (Phe), PAMAM-CHex-Phe, exhibited an effective association with various immune cells, including T-cells. In this study, we synthesized various carboxy-terminal Phe-modified dendrimers with different linkers using phthalic acid and linear dicarboxylic acids to determine the association of these dendrimers with Jurkat cells, a T-cell model. PAMAM-n-hexyl-Phe demonstrated the highest association with Jurkat T-cells. In addition, dendri-graft polylysine (DGL) with CHex and Phe, DGL-CHex-Phe, was synthesized, and its association with Jurkat cells was investigated. The association of DGL-CHex-Phe with T-cells was higher than that of PAMAM-CHex-Phe. However, it was insoluble in water and thus it is unsuitable as a drug carrier. Model drugs, such as protoporphyrin IX and paclitaxel, were loaded onto these dendrimers, and the most model drug molecules could be loaded into PAMAM-CHex-Phe. PTX-loaded PAMAM-CHex-Phe exhibited cytotoxicity against Jurkat cells at a similar level to free PTX. These results suggest that PAMAM-CHex-Phe exhibited both efficient T-cell association and drug loading properties. Full article
Show Figures

Graphical abstract

Back to TopTop