Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (246)

Search Parameters:
Keywords = proton beam therapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6840 KiB  
Article
Does the Maximum Initial Beam Energy for Proton Therapy Have to Be 230 MeV?
by Chris J. Beltran, Alvaro Perales and Keith M. Furutani
Quantum Beam Sci. 2024, 8(3), 23; https://doi.org/10.3390/qubs8030023 - 3 Sep 2024
Viewed by 182
Abstract
Proton therapy is increasingly widespread and requires an accelerator to provide the high energy protons. Most often, the accelerators used for proton therapy are cyclotrons and the maximum initial beam energy (MIBE) is about 230 MeV or more to be able to achieve [...] Read more.
Proton therapy is increasingly widespread and requires an accelerator to provide the high energy protons. Most often, the accelerators used for proton therapy are cyclotrons and the maximum initial beam energy (MIBE) is about 230 MeV or more to be able to achieve a range of approximately 30 cm in water. We ask whether such a high energy is necessary for adequate dosimetry for pathologies to be treated with proton beams. Eight patients of different clinical sites (brain, prostate, and head and neck cancers) were selected to conduct this study. We analyzed the tumor dose coverage and homogeneity, as well as healthy tissue protection for MIBE values of 120, 160, 180, 200 and 230 MeV. For each patient, a proton plan was developed using the particular MIBE and then using multifield optimization (MFO). In this way, 34 plans in total were generated to fulfill the unique clinical goals. This study found that MIBE of 120 MeV for brain tumors; 160 MeV for head and neck cancer; and remarkably, for prostate cancer, only 160 MeV for one patient case and 180 MeV for the remainder satisfied the clinical goals (words: 187 < approx. 200 words or less) Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2024)
Show Figures

Figure 1

15 pages, 1168 KiB  
Systematic Review
Evaluating the Effectiveness of Proton Beam Therapy Compared to Conventional Radiotherapy in Non-Metastatic Rectal Cancer: A Systematic Review of Clinical Outcomes
by Kelvin Le, James Norton Marchant and Khang Duy Ricky Le
Medicina 2024, 60(9), 1426; https://doi.org/10.3390/medicina60091426 - 31 Aug 2024
Viewed by 263
Abstract
Background and Objectives: Conventional radiotherapies used in the current management of rectal cancer commonly cause iatrogenic radiotoxicity. Proton beam therapy has emerged as an alternative to conventional radiotherapy with the aim of improving tumour control and reducing off-set radiation exposure to surrounding [...] Read more.
Background and Objectives: Conventional radiotherapies used in the current management of rectal cancer commonly cause iatrogenic radiotoxicity. Proton beam therapy has emerged as an alternative to conventional radiotherapy with the aim of improving tumour control and reducing off-set radiation exposure to surrounding tissue. However, the real-world treatment and oncological outcomes associated with the use of proton beam therapy in rectal cancer remain poorly characterised. This systematic review seeks to evaluate the radiation dosages and safety of proton beam therapy compared to conventional radiotherapy in patients with non-metastatic rectal cancer. Materials and Methods: A computer-assisted search was performed on the Medline, Embase and Cochrane Central databases. Studies that evaluated the adverse effects and oncological outcomes of proton beam therapy and conventional radiotherapy in adult patients with non-metastatic rectal cancer were included. Results: Eight studies were included in this review. There was insufficient evidence to determine the adverse treatment outcomes of proton beam therapy versus conventional radiotherapy. No current studies assessed radiotoxicities nor oncological outcomes. Pooled dosimetric comparisons between proton beam therapy and various conventional radiotherapies were associated with reduced radiation exposure to the pelvis, bowel and bladder. Conclusions: This systematic review demonstrates a significant paucity of evidence in the current literature surrounding adverse effects and oncological outcomes related to proton beam therapy compared to conventional radiotherapy for non-metastatic rectal cancer. Pooled analyses of dosimetric studies highlight greater predicted radiation-sparing effects with proton beam therapy in this setting. This evidence, however, is based on evidence at a moderate risk of bias and clinical heterogeneity. Overall, more robust, prospective clinical trials are required. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

23 pages, 1736 KiB  
Review
The Potential for Targeting G2/M Cell Cycle Checkpoint Kinases in Enhancing the Efficacy of Radiotherapy
by Emma Melia and Jason L. Parsons
Cancers 2024, 16(17), 3016; https://doi.org/10.3390/cancers16173016 - 29 Aug 2024
Viewed by 280
Abstract
Radiotherapy is one of the main cancer treatments being used for ~50% of all cancer patients. Conventional radiotherapy typically utilises X-rays (photons); however, there is increasing use of particle beam therapy (PBT), such as protons and carbon ions. This is because PBT elicits [...] Read more.
Radiotherapy is one of the main cancer treatments being used for ~50% of all cancer patients. Conventional radiotherapy typically utilises X-rays (photons); however, there is increasing use of particle beam therapy (PBT), such as protons and carbon ions. This is because PBT elicits significant benefits through more precise dose delivery to the cancer than X-rays, but also due to the increases in linear energy transfer (LET) that lead to more enhanced biological effectiveness. Despite the radiotherapy type, the introduction of DNA damage ultimately drives the therapeutic response through stimulating cancer cell death. To combat this, cells harbour cell cycle checkpoints that enables time for efficient DNA damage repair. Interestingly, cancer cells frequently have mutations in key genes such as TP53 and ATM that drive the G1/S checkpoint, whereas the G2/M checkpoint driven through ATR, Chk1 and Wee1 remains intact. Therefore, targeting the G2/M checkpoint through specific inhibitors is considered an important strategy for enhancing the efficacy of radiotherapy. In this review, we focus on inhibitors of Chk1 and Wee1 kinases and present the current biological evidence supporting their utility as radiosensitisers with different radiotherapy modalities, as well as clinical trials that have and are investigating their potential for cancer patient benefit. Full article
(This article belongs to the Special Issue Personalized Radiotherapy in Cancer Care)
Show Figures

Figure 1

15 pages, 2855 KiB  
Article
Boron Nanoparticle-Enhanced Proton Therapy: Molecular Mechanisms of Tumor Cell Sensitization
by Anton L. Popov, Danil D. Kolmanovich, Nikita N. Chukavin, Ivan V. Zelepukin, Gleb V. Tikhonowski, Andrei I. Pastukhov, Anton A. Popov, Alexander E. Shemyakov, Sergey M. Klimentov, Vladimir A. Ryabov, Sergey M. Deyev, Irina N. Zavestovskaya and Andrei V. Kabashin
Molecules 2024, 29(16), 3936; https://doi.org/10.3390/molecules29163936 - 21 Aug 2024
Viewed by 534
Abstract
Boron-enhanced proton therapy has recently appeared as a promising approach to increase the efficiency of proton therapy on tumor cells, and this modality can further be improved by the use of boron nanoparticles (B NPs) as local sensitizers to achieve enhanced and targeted [...] Read more.
Boron-enhanced proton therapy has recently appeared as a promising approach to increase the efficiency of proton therapy on tumor cells, and this modality can further be improved by the use of boron nanoparticles (B NPs) as local sensitizers to achieve enhanced and targeted therapeutic outcomes. However, the mechanisms of tumor cell elimination under boron-enhanced proton therapy still require clarification. Here, we explore possible molecular mechanisms responsible for the enhancement of therapeutic outcomes under boron NP-enhanced proton therapy. Spherical B NPs with a mode size of 25 nm were prepared by methods of pulsed laser ablation in water, followed by their coating by polyethylene glycol to improve their colloidal stability in buffers. Then, we assessed the efficiency of B NPs as sensitizers of cancer cell killing under irradiation with a 160.5 MeV proton beam. Our experiments showed that the combined effect of B NPs and proton irradiation induces an increased level of superoxide anion radical generation, which leads to the depolarization of mitochondria, a drop in their membrane mitochondrial potential, and the development of apoptosis. A comprehensive gene expression analysis (via RT-PCR) confirmed increased overexpression of 52 genes (out of 87 studied) involved in the cell redox status and oxidative stress, compared to 12 genes in the cells irradiated without B NPs. Other possible mechanisms responsible for the B NPs-induced radiosensitizing effect, including one related to the generation of alpha particles, are discussed. The obtained results give a better insight into the processes involved in the boron-induced enhancement of proton therapy and enable one to optimize parameters of proton therapy in order to maximize therapeutic outcomes. Full article
(This article belongs to the Special Issue Nanoparticle-Based Drug Delivery Systems)
Show Figures

Figure 1

10 pages, 2004 KiB  
Article
Proton Pencil Beam Scanning Facilitates the Safe Treatment of Extended Radiation Targets for Hodgkin Lymphoma: A Report from the Proton Collaborative Group Registry
by Maryam Ebadi, Mark Pankuch, Sean Boyer, John Chang, Craig Stevens, Matthew D. Hall, Shaakir Hasan, James E. Bates, Stella Flampouri, Adam J. Kole, Pranshu Mohindra, Carl Rossi, Parag Sanghvi, Lisa McGee, Zaker Rana and Yolanda D. Tseng
Cancers 2024, 16(15), 2736; https://doi.org/10.3390/cancers16152736 - 1 Aug 2024
Viewed by 605
Abstract
Because proton beam therapy (PBT) can lower the dose of radiation to the heart, lungs, and breast, it is an established radiation modality for patients with Hodgkin lymphoma (HL). Pencil beam scanning (PBS) PBT facilitates the treatment of more extensive targets. This may [...] Read more.
Because proton beam therapy (PBT) can lower the dose of radiation to the heart, lungs, and breast, it is an established radiation modality for patients with Hodgkin lymphoma (HL). Pencil beam scanning (PBS) PBT facilitates the treatment of more extensive targets. This may be especially of value for lymphoma patients who require RT to both mediastinal and axillary targets, defined here as extended target RT (ETRT), given the target distribution and need to minimize the lung, heart, and breast dose. Using the Proton Collaborative Group registry, we identified patients with HL treated with PBT to both their mediastinum and axilla, for which DICOM-RT was available. All patients were treated with PBS. To evaluate the dosimetric impact of PBS, we compared delivered PBS plans with VMAT butterfly photon plans optimized to have the same target volume coverage, when feasible. Between 2016 and 2021, twelve patients (median 26 years) received PBS ETRT (median 30.6 Gy (RBE)). Despite the large superior/inferior (SI, median 22.2 cm) and left/right (LR, median 22.8 cm) extent of the ETRT targets, all patients were treated with one isocenter except for two patients (both with SI and LR > 30 cm). Most commonly, anterior beams, with or without posterior beams, were used. Compared to photons, PBS had greater target coverage, better conformity, and lower dose heterogeneity while achieving lower doses to the lungs and heart, but not to the breast. No acute grade 3+ toxicities were reported, including pneumonitis. Proton ETRT in this small cohort was safely delivered with PBS and was associated with an improved sparing of the heart and lungs compared to VMAT. Full article
(This article belongs to the Special Issue Advances in Proton Pencil Beam Scanning Therapy)
Show Figures

Figure 1

13 pages, 1746 KiB  
Article
In Silico Comparison of Three Different Beam Arrangements for Intensity-Modulated Proton Therapy for Postoperative Whole Pelvic Irradiation of Prostate Cancer
by Emile Gogineni, Hao Chen, Ian K. Cruickshank, Andrew Koempel, Aarush Gogineni, Heng Li and Curtiland Deville
Cancers 2024, 16(15), 2702; https://doi.org/10.3390/cancers16152702 - 30 Jul 2024
Viewed by 537
Abstract
Background and purpose: Proton therapy has been shown to provide dosimetric benefits in comparison with IMRT when treating prostate cancer with whole pelvis radiation; however, the optimal proton beam arrangement has yet to be established. The aim of this study was to evaluate [...] Read more.
Background and purpose: Proton therapy has been shown to provide dosimetric benefits in comparison with IMRT when treating prostate cancer with whole pelvis radiation; however, the optimal proton beam arrangement has yet to be established. The aim of this study was to evaluate three different intensity-modulated proton therapy (IMPT) beam arrangements when treating the prostate bed and pelvis in the postoperative setting. Materials and Methods: Twenty-three post-prostatectomy patients were planned using three different beam arrangements: two-field (IMPT2B) (opposed laterals), three-field (IMPT3B) (opposed laterals inferiorly matched to a posterior–anterior beam superiorly), and four-field (IMPT4B) (opposed laterals inferiorly matched to two posterior oblique beams superiorly) arrangements. The prescription was 50 Gy radiobiological equivalent (GyE) to the pelvis and 70 GyE to the prostate bed. Comparisons were made using paired two-sided Wilcoxon signed-rank tests. Results: CTV coverages were met for all IMPT plans, with 99% of CTVs receiving ≥ 100% of prescription doses. All organ at risk (OAR) objectives were met with IMPT3B and IMPT4B plans, while several rectum objectives were exceeded by IMPT2B plans. IMPT4B provided the lowest doses to OARs for the majority of analyzed outcomes, with significantly lower doses than IMPT2B +/− IMPT3B for bladder V30–V50 and mean dose; bowel V15–V45 and mean dose; sigmoid maximum dose; rectum V40–V72.1, maximum dose, and mean dose; femoral head V37–40 and maximum dose; bone V40 and mean dose; penile bulb mean dose; and skin maximum dose. Conclusion: This study is the first to compare proton beam arrangements when treating the prostate bed and pelvis. four-field plans provided better sparing of the bladder, bowel, and rectum than 2- and three-field plans. The data presented herein may help inform the future delivery of whole pelvis IMPT for prostate cancer. Full article
(This article belongs to the Collection Particle Therapy: State-of-the-Art and Future Prospects)
Show Figures

Figure 1

10 pages, 1941 KiB  
Systematic Review
Systematic Review and Meta-Analysis of Particle Beam Therapy versus Photon Radiotherapy for Skull Base Chordoma: TRP-Chordoma 2024
by Takashi Saito, Masashi Mizumoto, Yoshiko Oshiro, Shosei Shimizu, Yinuo Li, Masatoshi Nakamura, Sho Hosaka, Kei Nakai, Takashi Iizumi, Masako Inaba, Hiroko Fukushima, Ryoko Suzuki, Kazushi Maruo and Hideyuki Sakurai
Cancers 2024, 16(14), 2569; https://doi.org/10.3390/cancers16142569 - 17 Jul 2024
Viewed by 617
Abstract
[Objective] The aim of this study was to compare the efficacy of particle beam therapy (PT) with photon radiotherapy (RT) for treatment of skull base chordoma. [Methods] A systematic review was conducted for skull base chordoma treated with PT or photon RT reported [...] Read more.
[Objective] The aim of this study was to compare the efficacy of particle beam therapy (PT) with photon radiotherapy (RT) for treatment of skull base chordoma. [Methods] A systematic review was conducted for skull base chordoma treated with PT or photon RT reported from 1990 to 2022. Data were extracted for overall survival (OS) and progression-free survival (PFS), late adverse events, age, gender, gross total resection (GTR) rates, tumor volume, total irradiation dose, and treatment modality. Random-effects meta-regression analysis with the treatment modality as an explanatory variable was performed for each outcome to compare the modalities. [Results] A meta-analysis of 30 selected articles found 3- and 5-year OS rates for PT vs. photon RT or combined photon RT/proton beam therapy (PBT) of 90.8% (95% CI: 87.4–93.3%) vs. 89.5% (95% CI: 83.0–93.6%), p = 0.6543; 80.0% (95% CI: 75.7–83.6%) vs. 89.5% (95% CI: 83.0–93.6%), p = 0.6787. The 5-year PFS rates for PT vs. photon RT or photon RT/PBT were 67.8% (95% CI: 56.5–76.7%) vs. 40.2% (95% CI: 31.6–48.7%), p = 0.0004. A random-effects model revealed that the treatment modality (PT vs. photon RT or photon RT/PBT) was not a significant factor for 3-year OS (p = 0.42) and 5-year OS (p = 0.11), but was a significant factor for 5-year PFS (p < 0.0001). The rates of brain necrosis were 8–50% after PT and 0–4% after photon RT or photon RT/PBT. [Conclusion] This study shows that PT results in higher PFS compared to photon RT for skull base chordoma, but that there is a tendency for a higher incidence of brain necrosis with PT. Publication and analysis of further studies is needed to validate these findings. Full article
(This article belongs to the Section Systematic Review or Meta-Analysis in Cancer Research)
Show Figures

Figure 1

11 pages, 651 KiB  
Review
Treatment Strategies for Locoregional Recurrence in Esophageal Squamous-Cell Carcinoma: An Updated Review
by Atsushi Mitamura, Shingo Tsujinaka, Toru Nakano, Kentaro Sawada and Chikashi Shibata
Cancers 2024, 16(14), 2539; https://doi.org/10.3390/cancers16142539 - 14 Jul 2024
Viewed by 1024
Abstract
Emerging evidence has shown remarkable advances in the multimodal treatment of esophageal squamous-cell carcinoma. Despite these advances, the oncological outcomes for advanced esophageal cancer remain controversial due to the frequent observation of local recurrence in the regional or other lymph nodes and distant [...] Read more.
Emerging evidence has shown remarkable advances in the multimodal treatment of esophageal squamous-cell carcinoma. Despite these advances, the oncological outcomes for advanced esophageal cancer remain controversial due to the frequent observation of local recurrence in the regional or other lymph nodes and distant metastasis after curative treatment. For cases of locoregional recurrence in the cervical lymph nodes alone, salvage surgery with lymph node dissection generally provides a good prognosis. However, if recurrence occurs in multiple regions, the oncological efficacy of surgery may be limited. Radiotherapy/chemoradiotherapy can be employed for unresectable or recurrent cases, as well as for selected cases in neo- or adjuvant settings. Dose escalation and toxicity are potential issues with conventional three-dimensional conformal radiotherapy; however, more precise therapeutic efficacy can be obtained using technical modifications with improved targeting and conformality, or with the use of proton beam therapy. The introduction of immune checkpoint inhibitors, including pembrolizumab or nivolumab, in addition to chemotherapy, has been shown to improve the overall survival in unresectable, advanced/recurrent cases. For patients with lymph node recurrence in multiple regions, chemotherapy (5-fluorouracil [5-FU] plus cisplatin) and combination therapy with nivolumab and ipilimumab have shown comparable oncological efficacy. Further prospective studies are needed to improve the treatment outcomes in patients with esophageal cancer with locoregional recurrence. Full article
(This article belongs to the Special Issue “Cancer Metastasis” in 2023–2024)
Show Figures

Figure 1

8 pages, 963 KiB  
Article
Quantifying the Dosimetric Impact of Proton Range Uncertainties on RBE-Weighted Dose Distributions in Intensity-Modulated Proton Therapy for Bilateral Head and Neck Cancer
by Suresh Rana, Noufal Manthala Padannayil, Linh Tran, Anatoly B. Rosenfeld, Hina Saeed and Michael Kasper
Curr. Oncol. 2024, 31(7), 3690-3697; https://doi.org/10.3390/curroncol31070272 - 27 Jun 2024
Viewed by 858
Abstract
Background: In current clinical practice, intensity-modulated proton therapy (IMPT) head and neck cancer (HNC) plans are generated using a constant relative biological effectiveness (cRBE) of 1.1. The primary goal of this study was to explore the dosimetric impact of proton range uncertainties on [...] Read more.
Background: In current clinical practice, intensity-modulated proton therapy (IMPT) head and neck cancer (HNC) plans are generated using a constant relative biological effectiveness (cRBE) of 1.1. The primary goal of this study was to explore the dosimetric impact of proton range uncertainties on RBE-weighted dose (RWD) distributions using a variable RBE (vRBE) model in the context of bilateral HNC IMPT plans. Methods: The current study included the computed tomography (CT) datasets of ten bilateral HNC patients who had undergone photon therapy. Each patient’s plan was generated using three IMPT beams to deliver doses to the CTV_High and CTV_Low for doses of 70 Gy(RBE) and 54 Gy(RBE), respectively, in 35 fractions through a simultaneous integrated boost (SIB) technique. Each nominal plan calculated with a cRBE of 1.1 was subjected to the range uncertainties of ±3%. The McNamara vRBE model was used for RWD calculations. For each patient, the differences in dosimetric metrices between the RWD and nominal dose distributions were compared. Results: The constrictor muscles, oral cavity, parotids, larynx, thyroid, and esophagus showed average differences in mean dose (Dmean) values up to 6.91 Gy(RBE), indicating the impact of proton range uncertainties on RWD distributions. Similarly, the brachial plexus, brain, brainstem, spinal cord, and mandible showed varying degrees of the average differences in maximum dose (Dmax) values (2.78–10.75 Gy(RBE)). The Dmean and Dmax to the CTV from RWD distributions were within ±2% of the dosimetric results in nominal plans. Conclusion: The consistent trend of higher mean and maximum doses to the OARs with the McNamara vRBE model compared to cRBE model highlighted the need for consideration of proton range uncertainties while evaluating OAR doses in bilateral HNC IMPT plans. Full article
Show Figures

Figure 1

13 pages, 2655 KiB  
Article
Multi-Point Sensing via Organic Optical Fibres for FLASH Proton Therapy
by Crystal Penner, Samuel Usherovich, Sophia Andru, Camille Bélanger-Champagne, Janina Hohnholz, Boris Stoeber, Cheryl Duzenli and Cornelia Hoehr
Electronics 2024, 13(11), 2211; https://doi.org/10.3390/electronics13112211 - 6 Jun 2024
Viewed by 655
Abstract
Optical fibres are gaining popularity for relative dosimetry in proton therapy due to their spatial resolution and ability for near real-time acquisition. For FLASH proton therapy, these fibres need to handle higher dose rates and larger doses than for conventional proton dose rates. [...] Read more.
Optical fibres are gaining popularity for relative dosimetry in proton therapy due to their spatial resolution and ability for near real-time acquisition. For FLASH proton therapy, these fibres need to handle higher dose rates and larger doses than for conventional proton dose rates. We developed a multi-point fibre sensor embedded in a 3D-printed phantom which can measure the profile of a FLASH proton beam. Seven PMMA fibres of 1 mm diameter were embedded in a custom 3D-printed plastic phantom of the same density as the fibres. The phantom was placed in a proton beam with FLASH dose rates at the TRIUMF Proton Therapy Research Centre (PTRC). The sensor was exposed to different proton energies, 13.5 MeV, 19 MeV and 40.4 MeV, achieved by adding PMMA bolus in front of the phantom and three different beam currents, varying the dose rates from 7.5 to 101 Gy/s. The array was able to record beam profiles in both transverse and axial directions in relative agreement with measurements from EBT-XD radiochromic films (transverse) and Monte Carlo simulations (axial). A decrease in light output over time was observed, which might be caused by radiation damage in the matrix of the fibre and characterised by an exponential decay function. Full article
(This article belongs to the Special Issue Applications of Optical Fiber Sensors)
Show Figures

Figure 1

10 pages, 1603 KiB  
Article
Beam Position Projection Algorithms in Proton Pencil Beam Scanning
by Konrad P. Nesteruk, Stephen G. Bradley, Hanne M. Kooy and Benjamin M. Clasie
Cancers 2024, 16(11), 2098; https://doi.org/10.3390/cancers16112098 - 31 May 2024
Viewed by 390
Abstract
Beam position uncertainties along the beam trajectory arise from the accelerator, beamline, and scanning magnets (SMs). They can be monitored in real time, e.g., through strip ionization chambers (ICs), and treatments can be paused if needed. Delivery is more reliable and accurate if [...] Read more.
Beam position uncertainties along the beam trajectory arise from the accelerator, beamline, and scanning magnets (SMs). They can be monitored in real time, e.g., through strip ionization chambers (ICs), and treatments can be paused if needed. Delivery is more reliable and accurate if the beam position is projected from monitored nozzle parameters to the isocenter, allowing for accurate online corrections to be performed. Beam position projection algorithms are also used in post-delivery log file analyses. In this paper, we investigate the four potential algorithms that can be applied to all pencil beam scanning (PBS) nozzles. For some combinations of nozzle configurations and algorithms, however, the projection uses beam properties determined offline (e.g., through beam tuning or technical commissioning). The best algorithm minimizes either the total uncertainty (i.e., offline and online) or the total offline uncertainty in the projection. Four beam position algorithms are analyzed (A1–A4). Two nozzle lengths are used as examples: a large nozzle (1.5 m length) and a small nozzle (0.4 m length). Three nozzle configurations are considered: IC after SM, IC before SM, and ICs on both sides. Default uncertainties are selected for ion chamber measurements, nozzle entrance beam position and angle, and scanning magnet angle. The results for other uncertainties can be determined by scaling these results or repeating the error propagation. We show the propagation of errors from two locations and the SM angle to the isocenter for all the algorithms. The best choice of algorithm depends on the nozzle length and is A1 and A3 for the large and small nozzles, respectively. If the total offline uncertainty is to be minimized (a better choice if the offline uncertainty is not stable), the best choice of algorithm changes to A1 for the small nozzle for some hardware configurations. Reducing the nozzle length can help to reduce the gantry size and make proton therapy more accessible. This work is important for designing smaller nozzles and, consequently, smaller gantries. This work is also important for log file analyses. Full article
(This article belongs to the Special Issue Advances in Proton Pencil Beam Scanning Therapy)
Show Figures

Figure 1

13 pages, 1595 KiB  
Article
Proton Beam Therapy for Treating Patients with Hepatocellular Carcinoma with Major Portal Vein Tumor Invasion: A Single Center Retrospective Study
by Toshiki Ishida, Masashi Mizumoto, Takashi Saito, Toshiyuki Okumura, Kosei Miura, Hirokazu Makishima, Takashi Iizumi, Haruko Numajiri, Keiichiro Baba, Motohiro Murakami, Masatoshi Nakamura, Kei Nakai and Hideyuki Sakurai
Cancers 2024, 16(11), 2050; https://doi.org/10.3390/cancers16112050 - 29 May 2024
Cited by 1 | Viewed by 806
Abstract
Hepatocellular carcinoma (HCC) with portal vein tumor thrombosis (PVTT) has a poor prognosis and is generally not indicated for surgery. Proton beam therapy (PBT) may offer an alternative treatment. In this study, long-term outcomes were examined in 116 patients (median age 66 years, [...] Read more.
Hepatocellular carcinoma (HCC) with portal vein tumor thrombosis (PVTT) has a poor prognosis and is generally not indicated for surgery. Proton beam therapy (PBT) may offer an alternative treatment. In this study, long-term outcomes were examined in 116 patients (median age 66 years, 100 males) with HCC with advanced PVTT (Vp3 or Vp4) who received PBT from April 2008 to March 2018. Of these patients, 63 received PBT as definitive treatment and 53 as palliative treatment. The representative dose was 72.6 Gy (RBE) in 22 fractions. Eight patients died in follow-up, including 72 due to tumor progression. The 5-year overall survival (OS) rate was 18.0% (95% CI 9.8–26.2%) and the 5-year local control (LC) rate was 86.1% (74.9–97.3%). In multivariate analyses, performance status and treatment strategy were significantly associated with OS. The median follow-up period for survivors with definitive treatment was 33.5 (2–129) months, and the 5-year OS rate was 25.1% (12.9–37.3%) in these cases. The median survival time after definitive irradiation was >20 months. The 5-year OS rate was 9.1% (0–19.7%) for palliative irradiation. These results compare favorably with those of other therapies and suggest that PBT is a useful option for cases of HCC with advanced PVTT that cannot undergo surgery, with an expected survival benefit and good local control. Determining the optimal indication for this treatment is a future challenge. Full article
Show Figures

Figure 1

26 pages, 2106 KiB  
Review
Revolutionizing Glioblastoma Treatment: A Comprehensive Overview of Modern Therapeutic Approaches
by Karol Sadowski, Adrianna Jażdżewska, Jan Kozłowski, Aleksandra Zacny, Tomasz Lorenc and Wioletta Olejarz
Int. J. Mol. Sci. 2024, 25(11), 5774; https://doi.org/10.3390/ijms25115774 - 26 May 2024
Cited by 4 | Viewed by 1842
Abstract
Glioblastoma is the most common malignant primary brain tumor in the adult population, with an average survival of 12.1 to 14.6 months. The standard treatment, combining surgery, radiotherapy, and chemotherapy, is not as efficient as we would like. However, the current possibilities are [...] Read more.
Glioblastoma is the most common malignant primary brain tumor in the adult population, with an average survival of 12.1 to 14.6 months. The standard treatment, combining surgery, radiotherapy, and chemotherapy, is not as efficient as we would like. However, the current possibilities are no longer limited to the standard therapies due to rapid advancements in biotechnology. New methods enable a more precise approach by targeting individual cells and antigens to overcome cancer. For the treatment of glioblastoma, these are gamma knife therapy, proton beam therapy, tumor-treating fields, EGFR and VEGF inhibitors, multiple RTKs inhibitors, and PI3K pathway inhibitors. In addition, the increasing understanding of the role of the immune system in tumorigenesis and the ability to identify tumor-specific antigens helped to develop immunotherapies targeting GBM and immune cells, including CAR-T, CAR-NK cells, dendritic cells, and immune checkpoint inhibitors. Each of the described methods has its advantages and disadvantages and faces problems, such as the inefficient crossing of the blood–brain barrier, various neurological and systemic side effects, and the escape mechanism of the tumor. This work aims to present the current modern treatments of glioblastoma. Full article
(This article belongs to the Special Issue Emerging Therapies for Glioblastoma)
Show Figures

Figure 1

17 pages, 1166 KiB  
Article
Helium Ion Therapy for Advanced Juvenile Nasopharyngeal Angiofibroma
by Line Hoeltgen, Eva Meixner, Philipp Hoegen-Saßmannshausen, Ji-Young Kim, Maximilian Deng, Katharina Seidensaal, Thomas Held, Klaus Herfarth, Thomas Haberer, Jürgen Debus, Andrea Mairani, Semi Harrabi and Thomas Tessonnier
Cancers 2024, 16(11), 1993; https://doi.org/10.3390/cancers16111993 - 24 May 2024
Viewed by 852
Abstract
Helium ion therapy (HRT) is a promising modality for the treatment of pediatric tumors and those located close to critical structures due to the favorable biophysical properties of helium ions. This in silico study aimed to explore the potential benefits of HRT in [...] Read more.
Helium ion therapy (HRT) is a promising modality for the treatment of pediatric tumors and those located close to critical structures due to the favorable biophysical properties of helium ions. This in silico study aimed to explore the potential benefits of HRT in advanced juvenile nasopharyngeal angiofibroma (JNA) compared to proton therapy (PRT). We assessed 11 consecutive patients previously treated with PRT for JNA in a definitive or postoperative setting with a relative biological effectiveness (RBE) weighted dose of 45 Gy (RBE) in 25 fractions at the Heidelberg Ion-Beam Therapy Center. HRT plans were designed retrospectively for dosimetric comparisons and risk assessments of radiation-induced complications. HRT led to enhanced target coverage in all patients, along with sparing of critical organs at risk, including a reduction in the brain integral dose by approximately 27%. In terms of estimated risks of radiation-induced complications, HRT led to a reduction in ocular toxicity, cataract development, xerostomia, tinnitus, alopecia and delayed recall. Similarly, HRT led to reduced estimated risks of radiation-induced secondary neoplasms, with a mean excess absolute risk reduction of approximately 30% for secondary CNS malignancies. HRT is a promising modality for advanced JNA, with the potential for enhanced sparing of healthy tissue and thus reduced radiation-induced acute and long-term complications. Full article
(This article belongs to the Section Pediatric Oncology)
Show Figures

Figure 1

15 pages, 1209 KiB  
Review
Proton Therapy in Non-Rhabdomyosarcoma Soft Tissue Sarcomas of Children and Adolescents
by Sabina Vennarini, Francesca Colombo, Alfredo Mirandola, Ester Orlandi, Emilia Pecori, Stefano Chiaravalli, Maura Massimino, Michela Casanova and Andrea Ferrari
Cancers 2024, 16(9), 1694; https://doi.org/10.3390/cancers16091694 - 26 Apr 2024
Viewed by 809
Abstract
This paper provides insights into the use of Proton Beam Therapy (PBT) in pediatric patients with non-rhabdomyosarcoma soft tissue sarcomas (NRSTS). NRSTS are a heterogeneous group of rare and aggressive mesenchymal extraskeletal tumors, presenting complex and challenging clinical management scenarios. The overall survival [...] Read more.
This paper provides insights into the use of Proton Beam Therapy (PBT) in pediatric patients with non-rhabdomyosarcoma soft tissue sarcomas (NRSTS). NRSTS are a heterogeneous group of rare and aggressive mesenchymal extraskeletal tumors, presenting complex and challenging clinical management scenarios. The overall survival rate for patients with NRSTS is around 70%, but the outcome is strictly related to the presence of various variables, such as the histological subtype, grade of malignancy and tumor stage at diagnosis. Multimodal therapy is typically considered the preferred treatment for high-grade NRSTS. Radiotherapy plays a key role in the treatment of children and adolescents with NRSTS. However, the potential for radiation-induced side effects partially limits its use. Therefore, PBT represents a very suitable therapeutic option for these patients. The unique depth-dose characteristics of protons can be leveraged to minimize doses to healthy tissue significantly, potentially allowing for increased tumor doses and enhanced preservation of surrounding tissues. These benefits suggest that PBT may improve local control while reducing toxicity and improving quality of life. While clear evidence of therapeutic superiority of PBT over other modern photon techniques in NRSTS is still lacking—partly due to the limited data available—PBT can be an excellent treatment option for young patients with these tumors. A dedicated international comprehensive collaborative approach is essential to better define its role within the multidisciplinary management of NRSTS. Shared guidelines for PBT indications—based on the patient’s age, estimated outcome, and tumor location—and centralization in high-level referral centers are needed to optimize the use of resources, since access to PBT remains a challenge due to the limited number of available proton therapy facilities. Full article
(This article belongs to the Section Pediatric Oncology)
Show Figures

Figure 1

Back to TopTop