Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,968)

Search Parameters:
Keywords = protected agriculture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2833 KiB  
Review
Biological Control Agents in Greenhouse Tomato Production (Solanum lycopersicum L.): Possibilities, Challenges and Policy Insights for Western Balkan Region
by Aleksandar Ivezić, Tamara Popović, Branislav Trudić, Jovan Krndija, Tijana Barošević, Ankica Sarajlić, Isidora Stojačić and Boris Kuzmanović
Horticulturae 2025, 11(2), 155; https://doi.org/10.3390/horticulturae11020155 - 2 Feb 2025
Viewed by 278
Abstract
Greenhouse tomato production holds strong economic importance in the Western Balkan (WB) countries, driven by escalating market demands. To align with global food safety trends, systematic advancements in cultivation practices and pest management strategies are essential for the WB region. Conventional reliance on [...] Read more.
Greenhouse tomato production holds strong economic importance in the Western Balkan (WB) countries, driven by escalating market demands. To align with global food safety trends, systematic advancements in cultivation practices and pest management strategies are essential for the WB region. Conventional reliance on chemical pesticides as the primary pest control method has led to various adverse outcomes, impacting pest management effectiveness and reducing product quality. The impact of climate change on agricultural productivity further emphasizes the need for environmentally friendly solutions in pest protection. To address these challenges and mitigate the detrimental effects of chemical pesticides, this review explores sustainable, alternative solutions, like biological control agents (BCAs), for tomato pest control in the WB region. With biological control gaining recognition as an effective approach, yet remaining underutilized in the WB, this review provides a thorough analysis of the most effective, commercially available BCAs, critically evaluating their advantages and limitations. Widespread BCA application could support the expansion of the tomato production sector while fostering sustainable agricultural practices. Furthermore, the review explores the role of BCAs within Integrated Pest Management (IPM) frameworks in tomato production, emphasizing their alignment with Sustainable Development Goals (SDGs), particularly for countries aiming for EU integration. Full article
(This article belongs to the Special Issue Enhancing Biological Control of Insect Pests of Horticultural Crops)
Show Figures

Figure 1

23 pages, 6217 KiB  
Article
Forewarned Is Forearmed: Documentation on the Invasion Risk of Asclepias speciosa in Greece and Europe
by Nikos Krigas, Catherine Dijon, Ioulietta Samartza, Dimitrios N. Avtzis, Ioannis Anestis, Elias Pipinis and Zigmantas Gudžinskas
Agriculture 2025, 15(3), 324; https://doi.org/10.3390/agriculture15030324 - 1 Feb 2025
Viewed by 448
Abstract
Biological invasions threaten biodiversity and agroecosystems, and early warning systems can minimise the spread of invasive alien species with limited resources. This study documents the presence of the alien plant Asclepias speciosa Torr., native to North America, that was first discovered in 2022 [...] Read more.
Biological invasions threaten biodiversity and agroecosystems, and early warning systems can minimise the spread of invasive alien species with limited resources. This study documents the presence of the alien plant Asclepias speciosa Torr., native to North America, that was first discovered in 2022 on Mount Vrontou, Central Macedonia, Northern Greece. This is the second European record of this alien species, after Lithuania, confirming its adaptability to contrasting European biogeographical regions. To enable future monitoring, this study provided new data on morphological traits of the species (above-ground parts), climatic tolerance (precipitation and temperature regimes), habitats with co-occurring species, pollinators, current reproductive potential, and seed germination at controlled temperatures (10 °C, 15 °C, and 20 °C). The high probability of misidentification with the highly invasive A. syriaca in European inventories supports the theory that A. speciosa may have been present in Europe long before it was officially reported. The lack of an EU-mandated reassessment of A. syriaca monitoring raises concerns regarding the potential invasion risk of A. speciosa in European natural and semi-natural areas or agricultural lands. Inspection mechanisms, early warning systems, and preventive measures are therefore essential to protect local biodiversity and agriculture from potential A. speciosa invasion, a risk that may be exacerbated by climate change. Full article
Show Figures

Figure 1

22 pages, 16461 KiB  
Article
Water Management Instructions as an Element of Improving the State of the Pakoski Reservoir (Central–Western Poland)
by Bogumił Nowak, Grzegorz Dumieński and Agnieszka Ławniczak-Malińska
Water 2025, 17(3), 403; https://doi.org/10.3390/w17030403 - 1 Feb 2025
Viewed by 327
Abstract
The management of reservoir dams in the context of observed climate changes and changing environmental conditions is becoming an increasingly significant challenge. Changes in the regimes of rivers feeding the reservoirs, sudden floods, long periods of drought, shallowing of reservoirs, water pollution, and [...] Read more.
The management of reservoir dams in the context of observed climate changes and changing environmental conditions is becoming an increasingly significant challenge. Changes in the regimes of rivers feeding the reservoirs, sudden floods, long periods of drought, shallowing of reservoirs, water pollution, and algal blooms create unprecedented threats to the operation of these reservoirs. Among these challenges, the most crucial seems to be the proper management of available water resources, which condition the existence of the reservoir. The location of the reservoir has a significant impact on how water management is conducted. In the case of mountain and upland reservoirs created for flood protection of areas downstream, water management practices differ significantly from those for lowland reservoirs, which primarily serve to retain water for industrial and agricultural needs in the area, with an additional flood protection function. The aim of this study was to assess the factors determining the supply of lowland reservoirs using the example of the Pakoski Reservoir (Central–Western Poland) and to propose actions that would allow more efficient management of water resources in the catchment and reservoir, enabling the preservation of the current morphometric parameters in the face of climate change, adverse environmental phenomena, and increased anthropogenic pressure in the catchment area. This study focused on the Pakoski Reservoir, located in the southern part of the Kuyavian–Pomeranian Voivodeship. It was constructed fifty years ago as a result of damming water in the river systems of the Noteć and Mała Noteć Rivers. For decades, it served its functions, and its management posed no major issues. However, over the past decade, due to environmental changes and human activities in the catchment area, the reservoir has increasingly faced problems with filling. Full article
(This article belongs to the Special Issue Climate Change and Hydrological Processes)
Show Figures

Figure 1

19 pages, 5660 KiB  
Article
Monitoring of Cropland Non-Agriculturalization Based on Google Earth Engine and Multi-Source Data
by Liuming Yang, Qian Sun, Rong Gui and Jun Hu
Appl. Sci. 2025, 15(3), 1474; https://doi.org/10.3390/app15031474 - 31 Jan 2025
Viewed by 465
Abstract
Cropland is fundamental to food security, and monitoring cropland non-agriculturalization through satellite enforcement can effectively manage and protect cropland. However, existing research primarily focuses on optical imagery, and there are problems such as low data processing efficiency and long updating cycles, which make [...] Read more.
Cropland is fundamental to food security, and monitoring cropland non-agriculturalization through satellite enforcement can effectively manage and protect cropland. However, existing research primarily focuses on optical imagery, and there are problems such as low data processing efficiency and long updating cycles, which make it difficult to meet the needs of large-scale rapid monitoring. To comprehensively and accurately obtain cropland change information, this paper proposes a method based on the Google Earth Engine (GEE) cloud platform, combining optical imagery and synthetic aperture radar (SAR) data for quick and accurate detection of cropland non-agriculturalization. The method uses existing land-use/land cover (LULC) products to quickly update cropland mapping, employs change vector analysis (CVA) for detecting non-agricultural changes in cropland, and introduces vegetation indices to remove pseudo-changes. Using Shanwei City, Guangdong Province, as a case study, the results show that (1) the cropland map generated in this study aligns well with the actual distribution of cropland, achieving an accuracy of 90.8%; (2) compared to using optical imagery alone, the combined optical and SAR data improves monitoring accuracy by 22.7%, with an overall accuracy of 73.65%; (3) in the past five years, cropland changes in Shanwei followed a pattern of an initial increase followed by a decrease. The research in this paper can provide technical reference for the rapid monitoring of cropland non-agriculturalization on a large scale, so as to promote cropland protection and rational utilization of cropland. Full article
Show Figures

Figure 1

14 pages, 3532 KiB  
Article
Quantifying the Impact of Surface Ozone on Human Health and Crop Yields in China
by Yi Cui, Jiayan Wang, Jinghan Wang, Mingjie Kang and Hui Zhao
Atmosphere 2025, 16(2), 162; https://doi.org/10.3390/atmos16020162 - 31 Jan 2025
Viewed by 250
Abstract
In recent years, surface ozone (O3) pollution has emerged as a significant barrier to the continued improvement of air quality in China, making O3 risk assessment a critical research priority. Using nationwide O3 monitoring data, this research investigated the [...] Read more.
In recent years, surface ozone (O3) pollution has emerged as a significant barrier to the continued improvement of air quality in China, making O3 risk assessment a critical research priority. Using nationwide O3 monitoring data, this research investigated the spatial characteristics of O3 pollution and assessed its potential impacts on human health and crop yields. The results showed that the maximum daily 8 h average O3 (MDA8 O3) exhibited higher concentrations in eastern and northern regions, and lower concentrations in the western and southern regions of China. Long-term O3 exposure was associated with an estimated 175,154 all-cause deaths nationwide, with the highest health risks observed in Shandong, Henan, and Jiangsu provinces. The AOT40 values for the winter wheat and single-rice growing seasons in China were 9.30 × 103 ppb·h and 1.29 × 104 ppb·h, respectively. Moreover, O3 exposure led to relative yield losses of 22.1% for winter wheat and 9.3% for single rice, corresponding to crop yield losses (CPLs) of 63 million metric tons and 14 million metric tons, respectively. Higher winter wheat CPL values were primarily concentrated in Henan, Shandong, and Hebei, while higher single rice CPL values were observed in Jiangsu, Hubei, and Anhui. This study presents a novel coupling of O3 pollution exposure with human health and agricultural risk assessments across China, emphasizing the need for region-specific O3 management strategies to protect public health and ensure agricultural sustainability. In conclusion, this study highlights the importance of targeted O3 control in densely populated and major crop-producing areas to mitigate health risks and yield losses, thus safeguarding ecosystem health and food security. Full article
(This article belongs to the Special Issue Coordinated Control of PM2.5 and O3 and Its Impacts in China)
Show Figures

Figure 1

23 pages, 4736 KiB  
Article
Assessing the Efficiency of Phragmites australis in Wastewater Treatment as a Natural Approach to Water Quality Improvement
by Laid Bouchaala, Nabil Charchar, Nedjoud Grara, Ilham Ben Amor, Soumeia Zeghoud, Hadia Hemmami, Moussa Houhamdi, Agnieszka Szparaga, Otilia Cristina Murariu, Gianluca Caruso and Stefano Bellucci
Sustainability 2025, 17(3), 1102; https://doi.org/10.3390/su17031102 - 29 Jan 2025
Viewed by 549
Abstract
The Oued Zénati, a vital waterway in Algeria, faces severe pollution from urban discharges, hospital wastewater, and agricultural activities, threatening both the ecosystem and public health. This pollution is characterized by high nutrient levels, suspended solids, and fecal contamination indicators, jeopardizing biodiversity and [...] Read more.
The Oued Zénati, a vital waterway in Algeria, faces severe pollution from urban discharges, hospital wastewater, and agricultural activities, threatening both the ecosystem and public health. This pollution is characterized by high nutrient levels, suspended solids, and fecal contamination indicators, jeopardizing biodiversity and human well-being. To explore natural restoration solutions, this study assessed the purification potential of reeds (Phragmites australis) found in the Oued Zénati riverbed. Water quality was analyzed at three sites: a non-polluted control site (S1), a wastewater discharge area (S2), and a reed-dense area (S3). Results revealed a significant deterioration in water quality at site S2, with high concentrations of nutrients, suspended solids (SS), and fecal contamination indicators. However, a notable improvement in water quality was observed at site S3, downstream of the reed-dense area, with reductions in fecal coliforms (68.5%), fecal streptococci (92.3%), and phosphates (40.3%), and increased levels of dissolved oxygen (DO). These findings suggest that phytoremediation using P. australis could offer a cost-effective, sustainable, and eco-friendly solution for restoring the Oued Zénati. This study recommends establishing phragmifiltration stations, developing artificial wetlands, and enhancing sanitation systems, including hospital wastewater treatment. Public awareness campaigns promoting water and environmental protection are crucial for long-term success. This phytoremediation approach offers economic, ecological, and aesthetic advantages over conventional wastewater treatment techniques. Full article
Show Figures

Figure 1

16 pages, 494 KiB  
Systematic Review
New Methodologies and Techniques for Biomonitoring Pesticide Exposure in Agricultural Workers: A Systematic Review
by Andreia Moreira, Joana Guedes and Manuela Vieira da Silva
Toxics 2025, 13(2), 104; https://doi.org/10.3390/toxics13020104 - 28 Jan 2025
Viewed by 316
Abstract
Biomonitoring allows for the assessment of internal exposure to various pesticides and metabolites. Following PRISMA guidelines, this systematic review aims to summarise innovative biomonitoring techniques for assessing pesticide exposure in agricultural workers, their advantages and limitations, and their applicability. The search of the [...] Read more.
Biomonitoring allows for the assessment of internal exposure to various pesticides and metabolites. Following PRISMA guidelines, this systematic review aims to summarise innovative biomonitoring techniques for assessing pesticide exposure in agricultural workers, their advantages and limitations, and their applicability. The search of the Medline/PubMed, ScienceDirect, Scopus, and Web of Science databases identified 14 articles dealing with new techniques for biomonitoring pesticide exposure in agricultural workers. These new methodologies have identified several biomarkers associated with exposure to organophosphates. Most of the included studies combine and/or improve traditional methods to overcome their limitations. This leads to more sensitive, specific, and precise techniques with lower detection and quantification limits. Therefore, it is necessary to thoroughly analyse and test new biomonitoring methods for assessing pesticide exposure. These techniques can complement qualitative risk assessments and aid in developing strategies to protect public health and the environment. Full article
(This article belongs to the Special Issue Pesticide Risk Assessment, Emerging and Re-Emerging Problems)
16 pages, 5811 KiB  
Article
Enhancing Spraying Performance with Active Stability Control in Multi-Link Mechanisms
by Naiyu Shi, He Li, Yongkang Yang, Hongliang Hua, Junhong Ye, Zheng Chen and Ting Xu
Machines 2025, 13(2), 104; https://doi.org/10.3390/machines13020104 - 28 Jan 2025
Viewed by 358
Abstract
This study proposes an active stability control method for the multi-link mechanism of spraying equipment to enhance its spraying performance. Traditional spraying operations typically focus on protecting only the tops of crops, whereas the multi-link mechanism can adjust the angle and position of [...] Read more.
This study proposes an active stability control method for the multi-link mechanism of spraying equipment to enhance its spraying performance. Traditional spraying operations typically focus on protecting only the tops of crops, whereas the multi-link mechanism can adjust the angle and position of the nozzles in coordination, achieving comprehensive protection for the crops. However, the characteristic of uneven output speed in the multi-link mechanism results in variations in the spraying amount at different positions. To address this issue, this study developed a method for actively adjusting the stability of the output end speed. First, a differential equation was established to relate the input speed to the output speed using vector methods, implicit function transformation to explicit functions, and regression analysis. The feasibility of this method was verified through simulations using MATLAB Simulink R2018a and Adams 2018. Prototype test results indicate that this speed adjustment method improved the stability of the output angular velocity, reducing the coverage rate variation between the upward, sideways, and downward of the leaves by 12.53% during the spraying process. Therefore, the method proposed in this study can enhance the uniformity of spraying, further improving the utilization of pesticides, which is beneficial for the green ecological sustainable development in the agricultural field. Additionally, this control method is also applicable to other types of link mechanisms, providing a reference for improving the output stability of link mechanisms. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

14 pages, 3090 KiB  
Article
Biochar Nanoparticles Reduce Ciprofloxacin Accumulation and Restore Growth and Hormonal Balance in Rice Seedlings
by Xiaohan Chen, Jieyu Chen, Yanhong Zhang, Chen Ling and Yu Shen
Plants 2025, 14(3), 380; https://doi.org/10.3390/plants14030380 - 26 Jan 2025
Viewed by 389
Abstract
Ciprofloxacin (CIP), a widely used fluoroquinolone antibiotic, poses a growing environmental concern due to its persistence in agricultural soils and potential adverse effects on crop production. While previous studies have documented CIP’s negative impacts on plant growth, effective strategies to protect crops from [...] Read more.
Ciprofloxacin (CIP), a widely used fluoroquinolone antibiotic, poses a growing environmental concern due to its persistence in agricultural soils and potential adverse effects on crop production. While previous studies have documented CIP’s negative impacts on plant growth, effective strategies to protect crops from antibiotic stress remain limited. Biochar-based approaches show promise, but their application at the nanoscale for antibiotic stress management is largely unexplored. This study demonstrates how biochar nanoparticles (BNPs) effectively mitigate CIP-induced stress in rice seedlings through adsorption mechanisms. Rice seedlings were treated with 5 and 10 mg L−1 CIP, with and without 0.2 g L−1 BNPs. Results showed that CIP significantly disrupted plant growth, decreasing shoot length by 20.5% and root length by 45.2%, along with reduced biomass. Application of BNPs effectively reduced CIP bioavailability by over 80%, leading to a decreased CIP accumulation of 49.7% in shoots and 33.1% in roots. The addition of BNPs mitigated these growth impacts by restoring shoot length to 98.2% of control levels at 5 mg L−1 CIP and improving root growth and biomass accumulation. BNPs also mitigated CIP-induced hormone imbalance, evidenced by a recovery in IAA levels by 8.9%, an increase in 6-BA by 152.6%, and an enhancement in SA levels by 12.7–13.6%. These findings demonstrate the significant potential of nanoscale biochar in reducing antibiotic stress in agricultural systems and provide insights into plant responses under these conditions. This research offers a promising strategy for enhancing crop resilience in areas affected by pharmaceutical pollutants. Full article
Show Figures

Figure 1

26 pages, 10692 KiB  
Article
Six Decades of Rural Landscape Transformation in Five Lebanese Villages
by Abed Al Kareem Yehya, Thanh Thi Nguyen, Martin Wiehle, Rami Zurayk and Andreas Buerkert
Land 2025, 14(2), 262; https://doi.org/10.3390/land14020262 - 26 Jan 2025
Viewed by 457
Abstract
During the last six decades, Lebanon’s landscapes have undergone significant regime shifts whose causes are under-investigated. Using land cover maps from 1962 and satellite imagery from 2014 and 2023 in five randomly selected villages across Lebanon’s major agroecological zones (AEZs), we identified salient [...] Read more.
During the last six decades, Lebanon’s landscapes have undergone significant regime shifts whose causes are under-investigated. Using land cover maps from 1962 and satellite imagery from 2014 and 2023 in five randomly selected villages across Lebanon’s major agroecological zones (AEZs), we identified salient trends in the urbanization-driven transformation of land use and land cover (LULC). Household socio-economic characteristics and environmental pressures were analyzed as independent variables influencing land use decisions. Logistic regression (LR) was employed to assess the significance of these variables in shaping farmers’ choices to transition toward “perennialization”—namely fruit tree monocropping or protected agriculture. The LR results indicate that education reduced the likelihood of “perennialization” by 45% (p < 0.001). Farm size positively influenced “perennialization” (p < 0.01), suggesting that land availability encourages this agricultural practice. In contrast, water availability negatively affects “perennialization” (p < 0.01), though farmers may still opt to irrigate by purchasing water during shortages. Our findings underline the complex interplay of socio-economic and environmental dynamics and historical events in shaping Lebanon’s rural landscapes and they offer insights into similar transformations across the Middle East and North Africa (MENA) region. Full article
Show Figures

Figure 1

20 pages, 3999 KiB  
Article
Evaluation of Statistical Models of NDVI and Agronomic Variables in a Protected Agriculture System
by Edgar Vladimir Gutiérrez-Castorena, Joseph Alejandro Silva-Núñez, Francia Deyanira Gaytán-Martínez, Vicente Vidal Encinia-Uribe, Gustavo Andrés Ramírez-Gómez and Emilio Olivares-Sáenz
Horticulturae 2025, 11(2), 131; https://doi.org/10.3390/horticulturae11020131 - 26 Jan 2025
Viewed by 358
Abstract
Vegetable production in intensive protected agriculture systems has evolved due to its intensity and economic importance. Sensors are increasingly common for decision-making in crop management and control of environmental variables, obtaining optimal yields, such as estimating vegetation indices. Innovation and technological advances in [...] Read more.
Vegetable production in intensive protected agriculture systems has evolved due to its intensity and economic importance. Sensors are increasingly common for decision-making in crop management and control of environmental variables, obtaining optimal yields, such as estimating vegetation indices. Innovation and technological advances in unmanned vehicle platforms have improved spatial, spectral, and temporal resolution. However, in protected agriculture systems, the use is limited due to the assumption of having controlled environmental conditions for indeterminate vegetable production. Therefore, sequential monitoring of NDVI is proposed during the 2022 and 2023 agricultural cycles using the Green Seeker® sensor and agronomic variables. This has created a database to generate predictive models of development and yield as a function of nutrient status. The results obtained indicate high significance levels for the development and NDVI curves in all phenological stages; in contrast to the yield predictive models, this is due to the maximum values (close to one) recorded for NDVI inside the greenhouse in comparison to the yield prediction obtained from the 18th week of harvest. Evaluating the models between NDVI and agronomic variables is not an index that offers certainty in predicting yield in indeterminate crops in protected agriculture production systems. This is due to the constant optimal development in response to controlled environmental conditions, nutrient status, and water supply inside the greenhouse, without the sustainability of yield, which decreases in the final stages of production until production becomes economically unprofitable. Full article
Show Figures

Figure 1

20 pages, 2292 KiB  
Article
Application of Cold Atmospheric Pressure Plasma Jet Results in Achievement of Universal Antibacterial Properties on Various Plant Seeds
by Jakub Orlowski, Agata Motyka-Pomagruk, Anna Dzimitrowicz, Pawel Pohl, Dominik Terefinko, Ewa Lojkowska, Piotr Jamroz and Wojciech Sledz
Appl. Sci. 2025, 15(3), 1255; https://doi.org/10.3390/app15031255 - 26 Jan 2025
Viewed by 410
Abstract
In view of a constant growth in the human population on Earth, the provision of a necessary amount of high-quality food looks challenging. As over 10% of the crop yields are annually lost due to the presence of phytopathogens, the development of novel, [...] Read more.
In view of a constant growth in the human population on Earth, the provision of a necessary amount of high-quality food looks challenging. As over 10% of the crop yields are annually lost due to the presence of phytopathogens, the development of novel, eco-friendly methods of pest eradication might contribute to avoiding nutritional shortages. Here, we propose a controlled application of cold atmospheric pressure plasma (CAPP) generated in the form of an atmospheric pressure plasma jet (APPJ), for which we conducted multivariate optimization of the working parameters with the use of the design of experiments (DoE) in addition to the response surface methodology (RSM). After estimating the optimal operating conditions of APPJ, we determined the inactivation rates caused by 2 min CAPP exposure towards bacterial phytopathogens from three species Dickeya solani, Pectobacterium atrosepticum and Pectobacterium carotovorum artificially inoculated on the surface of plant seeds from four species. Logarithmic reductions, as a key result of this work, were enclosed in the range of 1.61–4.95 in the case of Cucumis sativus, Pisum sativum, and Vigna radiata, while for the bacteria-inoculated Zea mays seeds, lower antibacterial properties of APPJ equaling 0.86–1.12 logs were noted. The herein applied exposure to APPJ did not reveal any statistically significant detrimental effects on the germination of plant seeds, seed coat integrity, or early plant growth. Even plant growth promotion by 20.96% was observed for the APPJ-exposed Zea mays seeds. By applying colorimetric assays and optical emission spectrometry (OES), we determined the oxidative potential in addition to identifying the reactive oxygen species (ROS) OH, HO2, O2, O3, and 1O2 and the reactive nitrogen species (RNS) N, NO2, and NO3 responsible for the antibacterial properties of APPJ. In summary, universal antiphytopathogenic properties of the APPJ treatment reached due to proper optimization of the working conditions were revealed against three bacterial strains from the family Pectobacteriaceae inoculated on the seeds from diverse plant species. The data presented herein may contribute to future development of the plasma agriculture field and provide alternatives to pesticides or the prevention-based control methods towards plant pathogenic bacteria. Full article
(This article belongs to the Special Issue Recent Advances in the Improvement of Food Quality and Safety)
Show Figures

Figure 1

30 pages, 5685 KiB  
Article
Widely Targeted Metabolomics and Transcriptomics Analysis of the Response and Adaptation Mechanisms of Trifolium ambiguum to Low-Temperature Stress
by Kefan Cao, Sijing Wang, Huimin Zhang, Yiming Ma, Qian Wu and Mingjiu Wang
Agronomy 2025, 15(2), 308; https://doi.org/10.3390/agronomy15020308 - 26 Jan 2025
Viewed by 352
Abstract
Caucasian clover (Trifolium ambiguum M.Bieb.) is a perennial legume known for its exceptional cold tolerance, commonly used in agriculture and ecosystems in cold climates. Given the impact of climate change, enhancing the cold adaptation of Caucasian clover is crucial for sustaining agricultural [...] Read more.
Caucasian clover (Trifolium ambiguum M.Bieb.) is a perennial legume known for its exceptional cold tolerance, commonly used in agriculture and ecosystems in cold climates. Given the impact of climate change, enhancing the cold adaptation of Caucasian clover is crucial for sustaining agricultural productivity. This study employs metabolomics, transcriptomics, and Weighted Gene Co-expression Network Analysis (WGCNA) to investigate the molecular mechanisms of Caucasian clover’s response to low-temperature stress. Metabolomic analysis showed that low-temperature stress triggered the accumulation of fatty acids, amino acids, and antioxidants, which are critical for maintaining membrane stability and antioxidant capacity, thus protecting the plant from oxidative damage. Transcriptomic analysis revealed significant upregulation of genes involved in cold adaptation, particularly those related to antioxidant defense, membrane lipid repair, and signal transduction, including genes in the ABA signaling pathway and antioxidant enzymes, thereby improving cold tolerance. WGCNA identified gene modules closely linked to cold adaptation, especially those involved in antioxidant defense, fatty acid metabolism, signal transduction, and membrane repair. These modules function synergistically, with coordinated gene expression enhancing cold resistance. This study also investigated the isoflavonoid biosynthesis pathway under low-temperature stress, highlighting its role in enhancing antioxidant capacity and cold tolerance. Low-temperature stress induced upregulation of key enzyme genes, such as Isoflavone Synthase (IFS) and Isoflavone-7-O-Glucosyltransferase (IF7GT), promoting antioxidant metabolite accumulation and further enhancing the plant’s cold adaptation. Overall, this study offers novel molecular insights into the cold tolerance mechanisms of Caucasian clover and provides valuable theoretical support for breeding cold-resistant crops in cold climates. Full article
Show Figures

Figure 1

17 pages, 1599 KiB  
Review
Utilizing Olive Fly Ecology Towards Sustainable Pest Management
by Giorgos Stavrianakis, Efstratios Sentas, Sofia Zafeirelli, Thomas Tscheulin and Thanasis Kizos
Biology 2025, 14(2), 125; https://doi.org/10.3390/biology14020125 - 25 Jan 2025
Viewed by 447
Abstract
The olive fly (Bactrocera oleae, OLF) is a major pest of global significance that occurs in places where olive cultivation thrives. This paper highlights the economic and environmental damage caused by OLF infestations, including reduced olive oil yield and quality, disrupted [...] Read more.
The olive fly (Bactrocera oleae, OLF) is a major pest of global significance that occurs in places where olive cultivation thrives. This paper highlights the economic and environmental damage caused by OLF infestations, including reduced olive oil yield and quality, disrupted supply chains, and ecosystem imbalances due to heavy insecticide use. Understanding olive fly ecology is crucial for developing effective control strategies. The review explores the fly’s life cycle, its relationship with olive trees, and how environmental factors like temperature and humidity influence population dynamics. Additionally, studying the role of natural enemies and agricultural practices can pave the way for sustainable control methods that minimize environmental harm. Climate change, intensive cultivation, and the development of resistance to insecticides necessitate a shift towards sustainable practices. This includes exploring alternative control methods like biological control with natural enemies and attract-and-kill strategies. Furthermore, a deeper understanding of OLF ecology, including its response to temperature and its ability to find refuge in diverse landscapes, is critical for predicting outbreaks and implementing effective protection strategies. By employing a holistic approach that integrates ecological knowledge with sustainable control methods, we can ensure the continued viability of olive cultivation, protect the environment, and produce high-quality olive oil. Full article
Show Figures

Figure 1

29 pages, 1466 KiB  
Article
Cutting-Edge Sensor Design: MIP Nanoparticle-Functionalized Nanofibers for Gas-Phase Detection of Limonene in Predictive Agriculture
by Fabricio Nicolàs Molinari, Marcello Marelli, Enrico Berretti, Simone Serrecchia, Roxana Elisabeth Coppola, Fabrizio De Cesare and Antonella Macagnano
Polymers 2025, 17(3), 326; https://doi.org/10.3390/polym17030326 - 25 Jan 2025
Viewed by 380
Abstract
As population growth and climate change intensify pressures on agriculture, innovative strategies are vital for ensuring food security, optimizing resources, and protecting the environment. This study introduces a novel approach to predictive agriculture by utilizing the unique properties of terpenes, specifically S(-)-limonene, emitted [...] Read more.
As population growth and climate change intensify pressures on agriculture, innovative strategies are vital for ensuring food security, optimizing resources, and protecting the environment. This study introduces a novel approach to predictive agriculture by utilizing the unique properties of terpenes, specifically S(-)-limonene, emitted by plants under stress. Advanced sensors capable of detecting subtle limonene variations offer the potential for early stress diagnosis and precise crop interventions. This research marks a significant leap in sensor technology, introducing an innovative active sensing material that combines molecularly imprinted polymer (MIP) technology with electrospinning. S(-)-limonene-selective MIP nanoparticles, engineered using methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA), were synthesized with an average diameter of ~160 nm and integrated into polyvinylpyrrolidone (PVP) nanofibers reinforced with multiwall carbon nanotubes (MWCNTs). This design produced a conductive and highly responsive sensing layer. The sensor exhibited rapid stabilization (200 s), a detection limit (LOD) of 190 ppb, and a selectivity index of 73% against similar monoterpenes. Optimal performance was achieved at 55% relative humidity, highlighting environmental conditions’ importance. This pioneering use of polymeric MIP membranes in chemiresistive sensors for limonene detection opens new possibilities for monitoring VOCs, with applications in agricultural stress biomarkers, contaminant detection, and air quality monitoring, advancing precision agriculture and environmental protection. Full article
(This article belongs to the Special Issue New Advances in Molecularly Imprinted Polymer)
Back to TopTop