Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,339)

Search Parameters:
Keywords = prebiotic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 686 KiB  
Article
Development of Delivery Systems with Prebiotic and Neuroprotective Potential of Industrial-Grade Cannabis sativa L.
by Szymon Sip, Anna Stasiłowicz-Krzemień, Anna Sip, Piotr Szulc, Małgorzata Neumann, Aleksandra Kryszak and Judyta Cielecka-Piontek
Molecules 2024, 29(15), 3574; https://doi.org/10.3390/molecules29153574 - 29 Jul 2024
Abstract
This study delves into the transformative effects of supercritical carbon dioxide (scCO2) cannabis extracts and prebiotic substances (dextran, inulin, trehalose) on gut bacteria, coupled with a focus on neuroprotection. Extracts derived from the Białobrzeska variety of Cannabis sativa, utilising supercritical fluid [...] Read more.
This study delves into the transformative effects of supercritical carbon dioxide (scCO2) cannabis extracts and prebiotic substances (dextran, inulin, trehalose) on gut bacteria, coupled with a focus on neuroprotection. Extracts derived from the Białobrzeska variety of Cannabis sativa, utilising supercritical fluid extraction (SFE), resulted in notable cannabinoid concentrations (cannabidiol (CBD): 6.675 ± 0.166; tetrahydrocannabinol (THC): 0.180 ± 0.006; cannabigerol (CBG): 0.434 ± 0.014; cannabichromene (CBC): 0.490 ± 0.017; cannabinol (CBN): 1.696 ± 0.047 mg/gD). The assessment encompassed antioxidant activity via four in vitro assays and neuroprotective effects against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The extract boasting the highest cannabinoid content exhibited remarkable antioxidant potential and significant inhibitory activity against both enzymes. Further investigation into prebiotic deliveries revealed their proficiency in fostering the growth of beneficial gut bacteria while maintaining antioxidant and neuroprotective functionalities. This study sheds light on the active compounds present in the Białobrzeska variety, showcasing their therapeutic potential within prebiotic systems. Notably, the antioxidant, neuroprotective, and prebiotic properties observed underscore the promising therapeutic applications of these extracts. The results offer valuable insights for potential interventions in antioxidant, neuroprotective, and prebiotic domains. In addition, subsequent analyses of cannabinoid concentrations post-cultivation revealed nuanced changes, emphasising the need for further exploration into the dynamic interactions between cannabinoids and the gut microbiota. Full article
Show Figures

Figure 1

14 pages, 970 KiB  
Article
Optimization of Microbial Glycogen Production by Saccharomyces cerevisiae CEY1
by Hyungseok Choi, In-Seok Yeo, Godfrey Mwiti, Toan Nguyen Song Dinh, Hyein Kang, Chang Sup Kim and Jaehan Kim
Fermentation 2024, 10(8), 388; https://doi.org/10.3390/fermentation10080388 - 29 Jul 2024
Viewed by 127
Abstract
Glycogen is a highly branched polyglucan utilized as a carbohydrate reserve in major living systems. Industrially, it is used as a prebiotic and in the nanoencapsulation of drugs and nutraceuticals. In this study, optimal fermentation conditions enabling the highest glycogen accumulation in Saccharomyces [...] Read more.
Glycogen is a highly branched polyglucan utilized as a carbohydrate reserve in major living systems. Industrially, it is used as a prebiotic and in the nanoencapsulation of drugs and nutraceuticals. In this study, optimal fermentation conditions enabling the highest glycogen accumulation in Saccharomyces cerevisiae were experimentally evaluated for possible mass production. Production efficiency was assessed by comparing specific growth rates, specific glycogen production rates, and glycogen yields under each condition. The results demonstrated that fermentation at 30 °C with an aeration rate of 3 vvm using a medium containing 120 g/L glucose without ethanol was optimal for robust cell growth and maximum glycogen yield. Additionally, a rich medium outperformed a minimally defined medium, and a single sugar carbon source, as opposed to mixed sugars, resulted in significantly higher cell growth and glycogen yields (p < 0.05). The optimized fermentation parameters enabled a glycogen production rate of up to 0.232 ± 0.012 g-glycogen/g-cell/h and a glycogen yield of 0.603 ± 0.006 g-glycogen/g-glucose. These results provide meaningful information for future studies and/or large-scale glycogen production using S. cerevisiae. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

49 pages, 2800 KiB  
Review
Interactions between Dietary Antioxidants, Dietary Fiber and the Gut Microbiome: Their Putative Role in Inflammation and Cancer
by Camelia Munteanu and Betty Schwartz
Int. J. Mol. Sci. 2024, 25(15), 8250; https://doi.org/10.3390/ijms25158250 (registering DOI) - 28 Jul 2024
Viewed by 620
Abstract
The intricate relationship between the gastrointestinal (GI) microbiome and the progression of chronic non-communicable diseases underscores the significance of developing strategies to modulate the GI microbiota for promoting human health. The administration of probiotics and prebiotics represents a good strategy that enhances the [...] Read more.
The intricate relationship between the gastrointestinal (GI) microbiome and the progression of chronic non-communicable diseases underscores the significance of developing strategies to modulate the GI microbiota for promoting human health. The administration of probiotics and prebiotics represents a good strategy that enhances the population of beneficial bacteria in the intestinal lumen post-consumption, which has a positive impact on human health. In addition, dietary fibers serve as a significant energy source for bacteria inhabiting the cecum and colon. Research articles and reviews sourced from various global databases were systematically analyzed using specific phrases and keywords to investigate these relationships. There is a clear association between dietary fiber intake and improved colon function, gut motility, and reduced colorectal cancer (CRC) risk. Moreover, the state of health is reflected in the reciprocal and bidirectional relationships among food, dietary antioxidants, inflammation, and body composition. They are known for their antioxidant properties and their ability to inhibit angiogenesis, metastasis, and cell proliferation. Additionally, they promote cell survival, modulate immune and inflammatory responses, and inactivate pro-carcinogens. These actions collectively contribute to their role in cancer prevention. In different investigations, antioxidant supplements containing vitamins have been shown to lower the risk of specific cancer types. In contrast, some evidence suggests that taking antioxidant supplements can increase the risk of developing cancer. Ultimately, collaborative efforts among immunologists, clinicians, nutritionists, and dietitians are imperative for designing well-structured nutritional trials to corroborate the clinical efficacy of dietary therapy in managing inflammation and preventing carcinogenesis. This review seeks to explore the interrelationships among dietary antioxidants, dietary fiber, and the gut microbiome, with a particular focus on their potential implications in inflammation and cancer. Full article
Show Figures

Figure 1

16 pages, 1943 KiB  
Article
Attitudes and Practices of Dietitians Regarding Gut Microbiota in Health—An Online Survey of the European Federation of the Associations of Dietitians (EFAD)
by Evdokia K. Mitsou, Christina N. Katsagoni and Katarzyna Janiszewska
Nutrients 2024, 16(15), 2452; https://doi.org/10.3390/nu16152452 - 28 Jul 2024
Viewed by 231
Abstract
Explorations of the current attitudes and practices of dietitians regarding the gut microbiota in health are scarce. In this online survey, we assessed the attitudes and practices of dietitians across Europe concerning gut microbiome parameters and the manipulation of the gut microbiota. Pre-graduate [...] Read more.
Explorations of the current attitudes and practices of dietitians regarding the gut microbiota in health are scarce. In this online survey, we assessed the attitudes and practices of dietitians across Europe concerning gut microbiome parameters and the manipulation of the gut microbiota. Pre-graduate dietetic students and other professionals were also invited to participate. The potential interest and preferences of the participants for future educational initiatives about the gut microbiota and the educational resources used were further explored. A total of 179 full responses were recorded (dietitians, n = 155), mainly from the southern and western regions. Most of the participants (>90.0%) believed that probiotics and prebiotics have a place in nutritional practice and that fermented foods with live microbial cultures should be a part of food-based dietary guidelines. A strong belief in the beneficial roles of probiotics and prebiotics in some health situations was also reported among the participants. Most of the dietitians recognised the importance of gut microbiota manipulation and advised the use of probiotics and prebiotics in dietary practice, and they felt quite confident applying the relevant information in their daily practice. Nevertheless, misconceptions were identified, and further guideline-oriented education is necessary. The interest in future e-learning initiatives was high among the participants, and the sources of knowledge, educative formats, and potential areas for further educational efforts were indicated. Full article
(This article belongs to the Special Issue Role of Probiotics and Prebiotics in Gut Symbiosis)
Show Figures

Figure 1

20 pages, 3620 KiB  
Article
Comprehensive Nutritional and Functional Characterization of Novel Mycoprotein Derived from the Bioconversion of Durvillaea spp.
by Catalina Landeta-Salgado, Nicolás Salas-Wallach, Javiera Munizaga, María Paz González-Troncoso, César Burgos-Díaz, Lhaís Araújo-Caldas, Patricia Sartorelli, Irene Martínez and María Elena Lienqueo
Foods 2024, 13(15), 2376; https://doi.org/10.3390/foods13152376 - 27 Jul 2024
Viewed by 318
Abstract
This study aimed, for the first time, to determine the nutritional composition, beta-glucan and ergosterol contents, phenolic compound composition, and biological and functional activities of a novel mycoprotein produced through a bioconversion process of Durvillaea spp., a brown seaweed. An untargeted metabolomics approach [...] Read more.
This study aimed, for the first time, to determine the nutritional composition, beta-glucan and ergosterol contents, phenolic compound composition, and biological and functional activities of a novel mycoprotein produced through a bioconversion process of Durvillaea spp., a brown seaweed. An untargeted metabolomics approach was employed to screen metabolites and annotate molecules with nutraceutical properties. Two products, each representing a distinct consortia of co-cultured fungi, named Myco 1 and Myco 2, were analysed in this study. These consortia demonstrated superior properties compared to those of Durvillaea spp., showing significant increases in total protein (~238%), amino acids (~219%), and β-D-glucans (~112%). The protein contains all essential amino acids, a low fatty acid content, and exhibits high antioxidant activity (21.5–25.5 µmol TE/g). Additionally, Myco 2 exhibited the highest anti-alpha-glucosidase activity (IC50 = 16.5 mg/mL), and Myco 1 exhibited notable anti-lipase activity (IC50 = 10.5 mg/mL). Among the 69 top differentially abundant metabolites screened, 8 nutraceutical compounds were present in relatively high concentrations among the identified mycoproteins. The proteins and polysaccharides in the mycoprotein may play a crucial role in the formation and stabilization of emulsions, identifying it as a potent bioemulsifier. In conclusion, the bioconversion of Durvillaea spp. results in a mycoprotein with high-quality protein, significant nutritional and functional value, and prebiotic and nutraceutical potential due to the production of unique bioactive compounds. Full article
(This article belongs to the Topic Future Foods from the Sea)
17 pages, 1805 KiB  
Review
Chinese Artichoke (Stachys affinis Bunge): The Nutritional Profile, Bioactive Profile and Food Applications—A Review
by Rafał Wiśniewski and Joanna Harasym
Molecules 2024, 29(15), 3525; https://doi.org/10.3390/molecules29153525 - 26 Jul 2024
Viewed by 275
Abstract
Stachys affinis Bunge, known as Chinese artichoke, is a perennial plant originating from China, which has uprising scientific interest due to its complex and beneficial content. Chinese artichoke is rich in bioactive compounds useful for human health, including antioxidants, polyphenols, and prebiotics, [...] Read more.
Stachys affinis Bunge, known as Chinese artichoke, is a perennial plant originating from China, which has uprising scientific interest due to its complex and beneficial content. Chinese artichoke is rich in bioactive compounds useful for human health, including antioxidants, polyphenols, and prebiotics, and its edible tubers are high in essential nutrients and dietary fiber. Studies show its potential as a functional food ingredient in various products like rice bars, bread, and chocolate, enhancing their nutritional and sensory properties. Additionally, Chinese artichoke exhibits significant anti-inflammatory, neuroprotective, and antibacterial activities, warranting further research and utilization in the food industry. This review aims to summarize the existing knowledge of the S. affinis Bunge plant, focusing on its health-promoting aspects. Full article
(This article belongs to the Special Issue Bioactive Compounds from Foods for Health Benefits)
22 pages, 546 KiB  
Review
Cereal-Derived Water-Unextractable Arabinoxylans: Structure Feature, Effects on Baking Products and Human Health
by Manchun Huang, Juan Bai, Daniele Giuseppe Buccato, Jiayan Zhang, Yufeng He, Ying Zhu, Zihan Yang, Xiang Xiao and Maria Daglia
Foods 2024, 13(15), 2369; https://doi.org/10.3390/foods13152369 - 26 Jul 2024
Viewed by 252
Abstract
Arabinoxylans (AXs) are non-starch polysaccharides with complex structures naturally occurring in grains (i.e., barley, corn, and others), providing many health benefits, especially as prebiotics. AXs can be classified as water-extractable (WEAX) and water-unextractable (WUAX) based on their solubility, with properties influenced by grain [...] Read more.
Arabinoxylans (AXs) are non-starch polysaccharides with complex structures naturally occurring in grains (i.e., barley, corn, and others), providing many health benefits, especially as prebiotics. AXs can be classified as water-extractable (WEAX) and water-unextractable (WUAX) based on their solubility, with properties influenced by grain sources and extraction methods. Numerous studies show that AXs exert an important health impact, including glucose and lipid metabolism regulation and immune system enhancement, which is induced by the interactions between AXs and the gut microbiota. Recent research underscores the dependence of AX physiological effects on structure, advocating for a deeper understanding of structure-activity relationships. While systematic studies on WEAX are prevalent, knowledge gaps persist regarding WUAX, despite its higher grain abundance. Thus, this review reports recent data on WUAX structural properties (chemical structure, branching, and MW) in cereals under different treatments. It discusses WUAX applications in baking and the benefits deriving from gut fermentation. Full article
18 pages, 1864 KiB  
Article
Exploring the Core Formose Cycle: Catalysis and Competition
by Jeremy Kua and L. Philip Tripoli
Life 2024, 14(8), 933; https://doi.org/10.3390/life14080933 - 25 Jul 2024
Viewed by 318
Abstract
The core autocatalytic cycle of the formose reaction may be enhanced or eroded by the presence of simple molecules at life’s origin. Utilizing quantum chemistry, we calculate the thermodynamics and kinetics of reactions both within the core cycle and those that deplete the [...] Read more.
The core autocatalytic cycle of the formose reaction may be enhanced or eroded by the presence of simple molecules at life’s origin. Utilizing quantum chemistry, we calculate the thermodynamics and kinetics of reactions both within the core cycle and those that deplete the reactants and intermediates, such as the Cannizzaro reaction. We find that via disproportionation of aldehydes into carboxylic acids and alcohols, the Cannizzaro reaction furnishes simple catalysts for a variety of reactions. We also find that ammonia can catalyze both in-cycle and Cannizzaro reactions while hydrogen sulfide does not; both, however, play a role in sequestering reactants and intermediates in the web of potential reactions. Full article
(This article belongs to the Special Issue Feature Papers in Origins of Life 2024)
Show Figures

Figure 1

14 pages, 1054 KiB  
Review
Metabolic Syndrome and Psoriasis: Pivotal Roles of Chronic Inflammation and Gut Microbiota
by Paola Secchiero, Erika Rimondi, Annalisa Marcuzzi, Giovanna Longo, Chiara Papi, Marta Manfredini, Matteo Fields, Lorenzo Caruso, Roberta Di Caprio and Anna Balato
Int. J. Mol. Sci. 2024, 25(15), 8098; https://doi.org/10.3390/ijms25158098 - 25 Jul 2024
Viewed by 245
Abstract
In recent years, the incidence of metabolic syndrome (MS) has increased due to lifestyle-related factors in developed countries. MS represents a group of conditions that increase the risk of diabetes, cardiovascular diseases, and other severe health problems. Low-grade chronic inflammation is now considered [...] Read more.
In recent years, the incidence of metabolic syndrome (MS) has increased due to lifestyle-related factors in developed countries. MS represents a group of conditions that increase the risk of diabetes, cardiovascular diseases, and other severe health problems. Low-grade chronic inflammation is now considered one of the key aspects of MS and could be defined as a new cardiovascular risk factor. Indeed, an increase in visceral adipose tissue, typical of obesity, contributes to the development of an inflammatory state, which, in turn, induces the production of several proinflammatory cytokines responsible for insulin resistance. Psoriasis is a chronic relapsing inflammatory skin disease and is characterized by the increased release of pro-inflammatory cytokines, which can contribute to different pathological conditions within the spectrum of MS. A link between metabolic disorders and Psoriasis has emerged from evidence indicating that weight loss obtained through healthy diets and exercise was able to improve the clinical course and therapeutic response of Psoriasis in patients with obesity or overweight patients and even prevent its occurrence. A key factor in this balance is the gut microbiota; it is an extremely dynamic system, and this makes its manipulation through diet possible via probiotic, prebiotic, and symbiotic compounds. Given this, the gut microbiota represents an additional therapeutic target that can improve metabolism in different clinical conditions. Full article
(This article belongs to the Special Issue Targeted Therapy for Immune Diseases)
Show Figures

Figure 1

19 pages, 3770 KiB  
Article
Nutraceutical Additives Modulate Microbiota and Gut Health in Post-Weaned Piglets
by Jaime A. Ángel-Isaza, Víctor Herrera Franco, Albeiro López-Herrera and Jaime E. Parra-Suescun
Vet. Sci. 2024, 11(8), 332; https://doi.org/10.3390/vetsci11080332 - 25 Jul 2024
Viewed by 401
Abstract
Due to the challenge of weaning pigs and the need to reduce the use of antimicrobials in animal feed, there is a growing need to look for nutraceutical alternatives to reduce the adverse effects of the post-weaning period. We evaluate the effect of [...] Read more.
Due to the challenge of weaning pigs and the need to reduce the use of antimicrobials in animal feed, there is a growing need to look for nutraceutical alternatives to reduce the adverse effects of the post-weaning period. We evaluate the effect of different feed nutraceutical additives on the microbial communities, gut health biomarkers, and productivity of pigs during the post-weaning period. The study involved 240 piglets weaned on the 21st day of age and randomized to six different diets: D1-BD commercial standard feed, D2-AGP: D1 + 150 ppm zinc bacitracin, D3-MD: D1 + 550 ppm maltodextrin, D4-FOS: D1 + 300 ppm fructo-oligosaccharides, D5-EO: D1 + 70 ppm Lippia origanoides essential oil, and D6-SH: D1 + 750 ppm sodium humate. On day 30 post-weaning, zootechnical parameters were evaluated, and jejunal samples were taken to obtain morphometric variables, expression of barrier and enzymatic proteins, and analysis of microbial communities. Animals fed D4-FOS and D5-EO had the lowest feed conversion ratio and higher expression of barrier and enzymatic proteins compared to D1-BD, D2-AGP, and D3-MD. The use of the additives modified the gut microbial communities of the piglets. In conclusion, fructo-oligosaccharides and Lippia origanoides essential oil were the best alternatives to zinc bacitracin as antibiotic growth promoters. Full article
(This article belongs to the Special Issue Nutraceuticals to Mitigate the Secret Killers in Animals)
Show Figures

Figure 1

18 pages, 5057 KiB  
Article
DNA Takes Over on the Control of the Morphology of the Composite Self-Organized Structures of Barium and Calcium Silica–Carbonate Biomorphs, Implications for Prebiotic Chemistry on Earth
by Mayra Cuéllar-Cruz, Selene R. Islas and Abel Moreno
Earth 2024, 5(3), 293-310; https://doi.org/10.3390/earth5030016 - 24 Jul 2024
Viewed by 236
Abstract
The origin of life is associated with the existing environmental factors of the Precambrian Era of the Earth. The minerals rich in sodium silicates, in aluminum and in other chemical elements, such as kaolinite, were among the factors present at that time. Kaolinite [...] Read more.
The origin of life is associated with the existing environmental factors of the Precambrian Era of the Earth. The minerals rich in sodium silicates, in aluminum and in other chemical elements, such as kaolinite, were among the factors present at that time. Kaolinite is an abundant mineral on our planet, which indicates that it possibly had an essential role in the origin of the first blocks that constructed life on Earth. Evidence of this is the cherts, which are rocks with a high concentration of silica that retain the vestiges of the most ancient life on our planet. There are also inorganic structures called biomorphs that are like the cherts of the Precambrian, which take on a morphology and crystalline structure depending on the chemical molecules that make up the reaction mixture. To evaluate the interaction of kaolinite with DNA, the objective of this work is to synthesize biomorphs in the presence of kaolinite and genomic DNA that comes from a prokaryote and a eukaryote microorganism. Our results show that the difference between the prokaryote DNA and the eukaryote DNA favors the morphology and the crystalline phase of the calcium silica–carbonate biomorphs, while in the case of the barium silica–carbonate biomorphs, the environmental factors participate directly in the morphology but not in the crystalline phase. Results show that when a mineral such as kaolinite is present in genomic DNA, it is precisely the DNA that controls both the morphology and the crystalline phase as well as the chemical composition of the structure. This fact is relevant as it shows that, independently of the morphology or the of size of the organism, it is the genomic DNA that controls all the chemical elements toward the most stable structure, therefore allowing the perpetuation, conservation and maintenance of life on our planet (since the origin of the genomic DNA in the Precambrian Era to the present day). Full article
Show Figures

Figure 1

30 pages, 10529 KiB  
Article
Antioxidant, Antitumoral, Antimicrobial, and Prebiotic Activity of Magnetite Nanoparticles Loaded with Bee Pollen/Bee Bread Extracts and 5-Fluorouracil
by Cornelia-Ioana Ilie, Angela Spoiala, Cristina Chircov, Georgiana Dolete, Ovidiu-Cristian Oprea, Bogdan-Stefan Vasile, Simona Adriana Crainiceanu, Adrian-Ionut Nicoara, Ioana Cristina Marinas, Miruna Silvia Stan, Lia-Mara Ditu, Anton Ficai and Eliza Oprea
Antioxidants 2024, 13(8), 895; https://doi.org/10.3390/antiox13080895 - 24 Jul 2024
Viewed by 286
Abstract
The gut microbiota dysbiosis that often occurs in cancer therapy requires more efficient treatment options to be developed. In this concern, the present research approach is to develop drug delivery systems based on magnetite nanoparticles (MNPs) as nanocarriers for bioactive compounds. First, MNPs [...] Read more.
The gut microbiota dysbiosis that often occurs in cancer therapy requires more efficient treatment options to be developed. In this concern, the present research approach is to develop drug delivery systems based on magnetite nanoparticles (MNPs) as nanocarriers for bioactive compounds. First, MNPs were synthesized through the spraying-assisted coprecipitation method, followed by loading bee pollen or bee bread extracts and an antitumoral drug (5-fluorouracil/5-FU). The loaded-MNPs were morphologically and structurally characterized through transmission electron microscopy (TEM), selected area electron diffraction (SAED), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Dynamic Light Scattering (DLS), and thermogravimetric analysis. UV-Vis spectroscopy was applied to establish the release profiles and antioxidant activity. Furthermore, the antibacterial and antitumoral activity of loaded-MNPs was assessed. The results demonstrate that MNPs with antioxidant, antibacterial, antiproliferative, and prebiotic properties are obtained. Moreover, the data highlight the improvement of 5-FU antibacterial activity by loading on the MNPs’ surface and the synergistic effects between the anticancer drug and phenolic compounds (PCs). In addition, the prolonged release behavior of PCs for many hours (70–75 h) after the release of 5-FU from the developed nanocarriers is an advantage, at least from the point of view of the antioxidant activity of PCs. Considering the enhancement of L. rhamnosus MF9 growth and antitumoral activity, this study developed promising drug delivery alternatives for colorectal cancer therapy. Full article
(This article belongs to the Special Issue Applications of Antioxidant Nanoparticles, 2nd Edition)
Show Figures

Figure 1

17 pages, 1659 KiB  
Review
Postbiotics as Adjuvant Therapy in Cancer Care
by Vyshnavy Balendra, Roberto Rosenfeld, Chiara Amoroso, Cecilia Castagnone, Maria Grazia Rossino, Ornella Garrone and Michele Ghidini
Nutrients 2024, 16(15), 2400; https://doi.org/10.3390/nu16152400 - 24 Jul 2024
Viewed by 544
Abstract
Postbiotics are defined as a preparation of inanimate microorganisms and/or their components that confers a health benefit to the host. They range from cell wall fragments to metabolites, bacterial lysates, extracellular vesicles, and short-chain fatty acids (SCFAs). Postbiotics may influence carcinogenesis via a [...] Read more.
Postbiotics are defined as a preparation of inanimate microorganisms and/or their components that confers a health benefit to the host. They range from cell wall fragments to metabolites, bacterial lysates, extracellular vesicles, and short-chain fatty acids (SCFAs). Postbiotics may influence carcinogenesis via a variety of mechanisms. They can promote homeostatic immune responses, reduce inflammation, induce selective cytotoxicity against tumor cells, as well as the enabling the control of tumor cell proliferation and enhancing intestinal epithelial barrier function. Therefore, probiotics can serve as an adjunct strategy in anticancer treatment together with chemotherapy and immunotherapy. Up to now, the only relevant postbiotics used as interventions in oncological patients remain vitamin K molecules, with few phase-II and III trials available. In fact, postbiotics’ levels are strictly dependent on the gut microbiota’s composition, which may vary between individuals and can be altered under different physiological and pathological conditions. Therefore, the lack of consistent clinical evidence supporting postbiotics’ efficacy is due to their poor bioavailability, short half-life, and fluctuating levels. Synbiotics, a mixture of prebiotics and probiotics, are expected to have a more homogeneous bioavailability with respect to postbiotics and may have greater potential for future development. In this review, we focus on the role of postbiotics as an adjuvant therapy in cancer treatment. Full article
(This article belongs to the Special Issue Dietary Intake of Phytochemicals, Gut Microbiota and Appetite Control)
Show Figures

Figure 1

14 pages, 1644 KiB  
Article
Developing a Symbiotic Fermented Milk Product with Microwave-Treated Hawthorn Extract
by Aidana Utebaeva, Eleonora Gabrilyants and Zhansaya Abish
Fermentation 2024, 10(8), 377; https://doi.org/10.3390/fermentation10080377 - 24 Jul 2024
Viewed by 377
Abstract
The rising interest in functional foods has increased the use of probiotics and prebiotics in fermented dairy products to enhance gut health. This study focuses on developing a symbiotic fermented milk product using Lactobacillus acidophilus and Bifidobacterium bifidum activated with hawthorn extract as [...] Read more.
The rising interest in functional foods has increased the use of probiotics and prebiotics in fermented dairy products to enhance gut health. This study focuses on developing a symbiotic fermented milk product using Lactobacillus acidophilus and Bifidobacterium bifidum activated with hawthorn extract as a prebiotic. Three versions of the product were tested: a control and two variants with B. bifidum activated with 10−5 g/cm3 and 10−10 g/cm3 hawthorn extract, respectively. Key characteristics such as microbiological safety, sensory properties, amino acid profile, vitamin and mineral content, antioxidant capacity, and nutritional values were evaluated. Results showed that products enriched with hawthorn extract had favorable sensory properties and sustained high levels of lactic acid bacteria while being free of pathogens. Product 1 based on L. acidophilus and enriched with B. bifidum activated with hawthorn extract at a concentration of 10−5 g/cm3 demonstrated significant increases in L. acidophilus (24.1%) and B. bifidum (14.7%) after 7 days compared to the control. Both enriched products exhibited slower titratable acidity increases and higher viscosities over 14 days, indicating better preservation and texture stability. Product 1 was notably enriched with essential amino acids, vitamins, and minerals, alongside enhanced antioxidant properties due to increased flavonoid content. The technology developed ensures probiotic viability at 109–1010 CFU/cm3 after 14 days, making it viable for dairy production. Full article
(This article belongs to the Special Issue Analysis of Quality and Sensory Characteristics of Fermented Products)
Show Figures

Figure 1

21 pages, 5980 KiB  
Article
Amelioration of Serum Aβ Levels and Cognitive Impairment in APPPS1 Transgenic Mice Following Symbiotic Administration
by Chiara Traini, Irene Bulli, Giorgia Sarti, Fabio Morecchiato, Marco Coppi, Gian Maria Rossolini, Vincenzo Di Pilato and Maria Giuliana Vannucchi
Nutrients 2024, 16(15), 2381; https://doi.org/10.3390/nu16152381 - 23 Jul 2024
Viewed by 432
Abstract
Alzheimer’s disease (AD) is a neurodegenerative process responsible for almost 70% of all cases of dementia. The clinical signs consist in progressive and irreversible loss of memory, cognitive, and behavioral functions. The main histopathological hallmark is the accumulation of amyloid-ß (Aß) peptide fibrils [...] Read more.
Alzheimer’s disease (AD) is a neurodegenerative process responsible for almost 70% of all cases of dementia. The clinical signs consist in progressive and irreversible loss of memory, cognitive, and behavioral functions. The main histopathological hallmark is the accumulation of amyloid-ß (Aß) peptide fibrils in the brain. To date, the origin of Aß has not been determined. Recent studies have shown that the gut microbiota produces Aß, and dysbiotic states have been identified in AD patients and animal models of AD. Starting from the hypothesis that maintaining or restoring the microbiota’s eubiosis is essential to control Aß’s production and deposition in the brain, we used a mixture of probiotics and prebiotics (symbiotic) to treat APPPS1 male and female mice, an animal model of AD, from 2 to 8 months of age and evaluated their cognitive performances, mucus secretion, Aβ serum concentration, and microbiota composition. The results showed that the treatment was able to prevent the memory deficits, the reduced mucus secretion, the increased Aβ blood levels, and the imbalance in the gut microbiota found in APPPS1 mice. The present study demonstrates that the gut–brain axis plays a critical role in the genesis of cognitive impairment, and that modulation of the gut microbiota can ameliorate AD’s symptomatology. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

Back to TopTop