Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (638)

Search Parameters:
Keywords = platinum resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3952 KiB  
Article
Investigating Layered Topological Magnetic Materials as Efficient Electrocatalysts for the Hydrogen Evolution Reaction under High Current Densities
by Sanju Gupta, Hanna Świątek, Mirosław Sawczak, Tomasz Klimczuk and Robert Bogdanowicz
Catalysts 2024, 14(10), 676; https://doi.org/10.3390/catal14100676 - 1 Oct 2024
Viewed by 378
Abstract
Despite considerable progress, high-performing durable catalysts operating under large current densities (i.e., >1000 mA/cm2) are still lacking. To discover platinum group metal-free (PGM-free) electrocatalysts for sustainable energy, our research involves investigating layered topological magnetic materials (semiconducting ferromagnets) as highly efficient electrocatalysts [...] Read more.
Despite considerable progress, high-performing durable catalysts operating under large current densities (i.e., >1000 mA/cm2) are still lacking. To discover platinum group metal-free (PGM-free) electrocatalysts for sustainable energy, our research involves investigating layered topological magnetic materials (semiconducting ferromagnets) as highly efficient electrocatalysts for the hydrogen evolution reaction under high current densities and establishes the novel relations between structure and electrochemical property mechanisms. The materials of interest include transition metal trihalides, i.e., CrCl3, VCl3, and VI3, wherein a structural unit, the layered structure, is formed by Cr (or V) atoms sandwiched between two halides (Cl or I), forming a tri-layer. A few layers of quantum crystals were exfoliated (~50−60 nm), encapsulated with graphene, and electrocatalytic HER tests were conducted in acid (0.5M H2SO4) and alkaline (1M KOH) electrolytes. We find a reasonable HER activity evolved requiring overpotentials in a range of 30–50 mV under 10 mA cm−2 and 400−510 mV (0.5M H2SO4) and 280−500 mV (1M KOH) under −1000 mA cm−2. Likewise, the Tafel slopes range from 27 to 36 mV dec−1 (Volmer–Tafel) and 110 to 190 mV dec−1 (Volmer–Herovsky), implying that these mechanisms work at low and high current densities, respectively. Weak interlayer coupling, spontaneous surface oxidation, the presence of a semi-oxide subsurface (e.g., O–CrCl3), intrinsic Cl (or I) vacancy defects giving rise to in-gap states, electron redistribution (orbital hybridization) affecting the covalency, and sufficiently conductive support interaction lowering the charge transfer resistance endow the optimized adsorption/desorption strength of H* on active sites and favorable electrocatalytic properties. Such behavior is expedited for bi-/tri-layers while exemplifying the critical role of quantum nature electrocatalysts with defect sites for industrial-relevant conditions. Full article
(This article belongs to the Section Catalysis for Sustainable Energy)
Show Figures

Figure 1

19 pages, 4219 KiB  
Article
Exploring Molecular Drivers of PARPi Resistance in BRCA1-Deficient Ovarian Cancer: The Role of LY6E and Immunomodulation
by Tirzah Braz Petta and Joseph Carlson
Int. J. Mol. Sci. 2024, 25(19), 10427; https://doi.org/10.3390/ijms251910427 - 27 Sep 2024
Viewed by 402
Abstract
Approximately 50% of patients diagnosed with ovarian cancer harbor tumors with mutations in BRCA1, BRCA2, or other genes involved in homologous recombination repair (HR). The presence of homologous recombination deficiency (HRD) is an approved biomarker for poly-ADP-ribose polymerase inhibitors (PARPis) as a maintenance [...] Read more.
Approximately 50% of patients diagnosed with ovarian cancer harbor tumors with mutations in BRCA1, BRCA2, or other genes involved in homologous recombination repair (HR). The presence of homologous recombination deficiency (HRD) is an approved biomarker for poly-ADP-ribose polymerase inhibitors (PARPis) as a maintenance treatment following a positive response to initial platinum-based chemotherapy. Despite this treatment option, the development of resistance to PARPis is common among recurrent disease patients, leading to a poor prognosis. In this study, we conducted a comprehensive analysis using publicly available datasets to elucidate the molecular mechanisms driving PARPi resistance in BRCA1-deficient ovarian cancer. Our findings reveal a central role for the interferon (IFN) pathway in mediating resistance in the context of BRCA1 deficiency. Through integrative bioinformatics approaches, we identified LY6E, an interferon-stimulated gene, as a key mediator of PARPi resistance, with its expression linked to an immunosuppressive tumor microenvironment (TME) encouraging tumor progression and invasion. LY6E amplification correlates with poor prognosis and increased expression of immune-related gene signatures, which is predictive of immunotherapy response. Interestingly, LY6E expression upon PARPi treatment resistance was found to be dependent on BRCA1 status. Gene expression analysis in the Orien/cBioPortal database revealed an association between LY6E and genes involved in DNA repair, such as Rad21 and PUF60, emphasizing the interplay between DNA repair pathways and immune modulation. Moreover, PUF60, Rad21, and LY6E are located on chromosome 8q24, a locus often amplified and associated with the progression of ovarian cancer. Overall, our study provides novel insights into the molecular determinants of PARPi resistance and highlights LY6E as a promising prognostic biomarker in the management of HRD ovarian cancer. Future studies are needed to fully elucidate the molecular mechanisms underlying the role of LY6E in PARPi resistance. Full article
Show Figures

Figure 1

18 pages, 1814 KiB  
Article
Analysis of ATP7A Expression and Ceruloplasmin Levels as Biomarkers in Patients Undergoing Neoadjuvant Chemotherapy for Advanced High-Grade Serous Ovarian Carcinoma
by David Lukanović, Sara Polajžer, Miha Matjašič, Borut Kobal and Katarina Černe
Int. J. Mol. Sci. 2024, 25(18), 10195; https://doi.org/10.3390/ijms251810195 - 23 Sep 2024
Viewed by 468
Abstract
Ovarian cancer (OC), particularly high-grade serous carcinoma (HGSC), is a leading cause of gynecological cancer mortality due to late diagnosis and chemoresistance. While studies on OC cell lines have shown that overexpression of the ATP7A membrane transporter correlates with resistance to platinum-based drugs [...] Read more.
Ovarian cancer (OC), particularly high-grade serous carcinoma (HGSC), is a leading cause of gynecological cancer mortality due to late diagnosis and chemoresistance. While studies on OC cell lines have shown that overexpression of the ATP7A membrane transporter correlates with resistance to platinum-based drugs (PtBMs) and cross-resistance to copper (Cu), clinical evidence is lacking. The functionality of ceruloplasmin (CP), the main Cu-transporting protein in the blood, is dependent on, among other things, ATP7A activity. This study investigated ATP7A expression and CP levels as potential biomarkers for predicting responses to PtBMs. We included 28 HGSC patients who underwent neoadjuvant chemotherapy (NACT). ATP7A expression in ovarian and peritoneal tissues before NACT and in peritoneal and omental tissues after NACT was analyzed via qPCR, and CP levels in ascites and plasma were measured via ELISA before and after NACT. In total, 54% of patients exhibited ATP7A expression in pretreatment tissue (ovary and/or peritoneum), while 43% of patients exhibited ATP7A expression in tissue after treatment (peritoneum and/or omentum). A significant association was found between higher ATP7A expression in the peritoneum before NACT and an unfavorable CA-125 elimination rate constant k (KELIM) score. Patients with omental ATP7A expression had significantly higher plasma mean CP levels before NACT. Plasma CP levels decreased significantly after NACT, and higher CP levels after NACT were associated with a shorter platinum-free interval (PFI). These findings suggest that the ATP7A transporter and CP have the potential to serve as predictive markers of chemoresistance, but further research is needed to validate their clinical utility. Full article
Show Figures

Figure 1

23 pages, 6728 KiB  
Article
Novel DNA Repair Inhibitors Targeting XPG to Enhance Cisplatin Therapy in Non-Small Cell Lung Cancer: Insights from In Silico and Cell-Based Studies
by Rita Manguinhas, Patrícia A. Serra, Nuno Gil, Rafael Rosell, Nuno G. Oliveira and Rita C. Guedes
Cancers 2024, 16(18), 3174; https://doi.org/10.3390/cancers16183174 - 16 Sep 2024
Viewed by 598
Abstract
NSCLC is marked by low survival and resistance to platinum-based chemotherapy. The XPG endonuclease has emerged as a promising biomarker for predicting the prognosis of cisplatin-treated patients and its downregulation having been reported to increase cisplatin efficacy. This study presents an integrated strategy [...] Read more.
NSCLC is marked by low survival and resistance to platinum-based chemotherapy. The XPG endonuclease has emerged as a promising biomarker for predicting the prognosis of cisplatin-treated patients and its downregulation having been reported to increase cisplatin efficacy. This study presents an integrated strategy for identifying small molecule inhibitors of XPG to improve cisplatin therapy in NSCLC. A structure-based virtual screening approach was adopted, including a structural and physicochemical analysis of the protein, and a library of small molecules with reported inhibitory activities was retrieved. This analysis identified Lys84 as a crucial residue for XPG activity by targeting its interaction with DNA. After molecular docking and virtual screening calculations, 61 small molecules were selected as potential XPG inhibitors, acquired from the ChemBridge database and then validated in H1299 cells, a NSCLC cell line exhibiting the highest ERCC5 expression. The MTS assay was performed as a first screening approach to determine whether these potential inhibitors could enhance cisplatin-induced cytotoxicity. Overall, among the eight compounds identified as the most promising, three of them revealed to significantly increase the impact of cisplatin. The inherent cytotoxicity of these compounds was further investigated in a non-tumoral lung cell line (BEAS-2B cells), which resulted in the identification of two non-cytotoxic candidates to be used in combination with cisplatin in order to improve its efficacy in NSCLC therapy. Full article
Show Figures

Figure 1

24 pages, 2351 KiB  
Review
The Drug Transporter P-Glycoprotein and Its Impact on Ceramide Metabolism—An Unconventional Ally in Cancer Treatment
by Johnson Ung, Miki Kassai, Su-Fern Tan, Thomas P. Loughran, David J. Feith and Myles C. Cabot
Int. J. Mol. Sci. 2024, 25(18), 9825; https://doi.org/10.3390/ijms25189825 - 11 Sep 2024
Viewed by 564
Abstract
The tumor-suppressor sphingolipid ceramide is recognized as a key participant in the cytotoxic mechanism of action of many types of chemotherapy drugs, including anthracyclines, Vinca alkaloids, the podophyllotoxin etoposide, taxanes, and the platinum drug oxaliplatin. These drugs can activate de novo synthesis of [...] Read more.
The tumor-suppressor sphingolipid ceramide is recognized as a key participant in the cytotoxic mechanism of action of many types of chemotherapy drugs, including anthracyclines, Vinca alkaloids, the podophyllotoxin etoposide, taxanes, and the platinum drug oxaliplatin. These drugs can activate de novo synthesis of ceramide or stimulate the production of ceramide via sphingomyelinases to limit cancer cell survival. On the contrary, dysfunctional sphingolipid metabolism, a prominent factor in cancer survival and therapy resistance, blunts the anticancer properties of ceramide-orchestrated cell death pathways, especially apoptosis. Although P-glycoprotein (P-gp) is famous for its role in chemotherapy resistance, herein, we propose alternate interpretations and discuss the capacity of this multidrug transporter as a “ceramide neutralizer”, an unwelcome event, highlighting yet another facet of P-gp’s versatility in drug resistance. We introduce sphingolipid metabolism and its dysfunctional regulation in cancer, present a summary of factors that contribute to chemotherapy resistance, explain how P-gp “neutralizes” ceramide by hastening its glycosylation, and consider therapeutic applications of the P-gp-ceramide connection in the treatment of cancer. Full article
Show Figures

Figure 1

23 pages, 21925 KiB  
Article
Optimising Sodium Borohydride Reduction of Platinum onto Nafion-117 in the Electroless Plating of Ionic Polymer–Metal Composites
by Eyman Manaf, Daniel P. Fitzpatrick, Clement L. Higginbotham and John G. Lyons
Actuators 2024, 13(9), 350; https://doi.org/10.3390/act13090350 - 10 Sep 2024
Viewed by 340
Abstract
The effects of process parameters on the electroless plating of ionic polymer–metal composites (IPMCs) were studied in this work. Specifically, the NaBH4 reduction of platinum onto Nafion-117 was characterised. The effects of the concurrent variation of NaBH4 concentration, stir time and [...] Read more.
The effects of process parameters on the electroless plating of ionic polymer–metal composites (IPMCs) were studied in this work. Specifically, the NaBH4 reduction of platinum onto Nafion-117 was characterised. The effects of the concurrent variation of NaBH4 concentration, stir time and temperature on surface resistance were studied through a full factorial design. The three-factor three-level factorial design resulted in 27 runs. Surface resistance was measured using a four-point probe. A regression model with an R2 value of 97.45% was obtained. Surface resistance was found to decrease with increasing stir time (20 to 60 min) and temperature (20 to 60 °C). These responses were attributed to increased platinisation rates, resulting in more uniform electrode deposition, confirmed by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDAX) analysis. Surface resistance decreased, going from 1% to 5% NaBH4 concentration, but increased from 5% to 10% concentration. This behaviour was attributed to surface morphology: increased grain size inducing porous electrodes, in line with findings in the literature. The maximum tip displacement, measured through a computer vision system, as well as the maximum blocking force, measured through an analytical balance setup, were obtained for all 27 samples. The varying results were discussed with regards to surface and cross-sectional SEMs, alongside EDAX analysis. Full article
(This article belongs to the Special Issue Electroactive Polymer (EAP) for Actuators and Sensors Applications)
Show Figures

Figure 1

21 pages, 6105 KiB  
Article
Oxyresveratrol Enhances the Anti-Cancer Effect of Cisplatin against Epithelial Ovarian Cancer Cells through Suppressing the Activation of Protein Kinase B (AKT)
by Phatarawat Thaklaewphan, Nitwara Wikan, Saranyapin Potikanond and Wutigri Nimlamool
Biomolecules 2024, 14(9), 1140; https://doi.org/10.3390/biom14091140 - 9 Sep 2024
Viewed by 589
Abstract
Epithelial ovarian carcinoma poses a significant challenge due to its resistance to chemotherapy and propensity for metastasis, thereby reducing the effectiveness of conventional treatments. Hence, the identification of novel compounds capable of augmenting the anti-cancer efficacy of platinum-based chemotherapy is imperative. Oxyresveratrol (OXY), [...] Read more.
Epithelial ovarian carcinoma poses a significant challenge due to its resistance to chemotherapy and propensity for metastasis, thereby reducing the effectiveness of conventional treatments. Hence, the identification of novel compounds capable of augmenting the anti-cancer efficacy of platinum-based chemotherapy is imperative. Oxyresveratrol (OXY), a derivative of resveratrol, has been demonstrated to possess antiproliferative and apoptosis-inducing effects across various cancer cell lines. Notably, OXY appears to exert its effects by inhibiting the PI3K/AKT/mTOR signaling pathway. However, the synergistic potential of OXY in combination with cisplatin against epithelial ovarian cancer has not yet been elucidated. The current study investigated the synergistic effects of OXY and cisplatin on the ovarian cancer cell lines SKOV3 and TOV21G. We found that OXY significantly enhanced cisplatin’s ability to reduce cell viability, induce apoptosis, induce cell cycle arrest, and increase the proportion of cells in the sub-G1 phase. Furthermore, OXY treatment alone dose-dependently inhibited the production of anti-apoptotic proteins including Mcl-1, Bcl-xL, and XIAP under EGF activation. Mechanistically, OXY suppressed the PI3K/AKT/mTOR signaling pathway by reducing phosphorylated AKT, while having no discernible effect on the MAPK pathway. These findings highlight OXY’s potential to enhance ovarian cancer cell sensitivity to chemotherapy, suggesting its development as a pharmaceutical adjunct for clinical use in combination therapies. Full article
Show Figures

Figure 1

22 pages, 6186 KiB  
Article
Synthesis of Some Eco-Friendly Materials for Gold Recovery
by Theodora Babău, Mihaela Ciopec, Narcis Duteanu, Adina Negrea, Petru Negrea, Nicoleta Sorina Nemeş, Bogdan Pascu, Maria Mihăilescu and Catalin Ianasi
Polymers 2024, 16(17), 2512; https://doi.org/10.3390/polym16172512 - 4 Sep 2024
Viewed by 460
Abstract
The aim of this study was to develop new materials with adsorbent properties that can be used for the adsorption recovery of Au(III) from aqueous solutions. To achieve this result, it is necessary to obtain inexpensive adsorbent materials in a granular form. Concomitantly, [...] Read more.
The aim of this study was to develop new materials with adsorbent properties that can be used for the adsorption recovery of Au(III) from aqueous solutions. To achieve this result, it is necessary to obtain inexpensive adsorbent materials in a granular form. Concomitantly, these materials must have a high adsorption capacity and selectivity. Other desired properties of these materials include a higher physical resistance, insolubility in water, and materials that can be regenerated or reused. Among the methods applied for the separation, purification, and preconcentration of platinum-group metal ions, adsorption is recognised as one of the most promising methods because of its simplicity, high efficiency, and wide availability. The studies were carried out using three supports: cellulose (CE), chitosan (Chi), and diatomea earth (Diat). These supports were functionalised by impregnation with extractants, using the ultrasound method. The extractants are environmentally friendly and relatively cheap amino acids, which contain in their structure pendant groups with nitrogen and sulphur heteroatoms (aspartic acid—Asp, l-glutamic acid—Glu, valine—Val, DL-cysteine—Cys, or serine—Ser). After preliminary testing from 75 synthesised materials, CE-Cys was chosen for the further recovery of Au(III) ions from aqueous solutions. To highlight the morphology and the functionalisation of the material, we physicochemically characterised the obtained material. Therefore, the analysis of the specific surface and porosity showed that the CE-Cys material has a specific surface of 4.6 m2/g, with a porosity of about 3 nm. The FT-IR analysis showed the presence, at a wavelength of 3340 cm−1, of the specific NH bond vibration for cysteine. At the same time, pHpZc was determined to be 2.8. The kinetic, thermodynamic, and equilibrium studies showed that the pseudo-second-order kinetic model best describes the adsorption process of Au(III) ions on the CE-Cys material. A maximum adsorption capacity of 12.18 mg per gram of the adsorbent material was achieved. It was established that the CE-Cys material can be reused five times with a good recovery degree. Full article
Show Figures

Figure 1

32 pages, 4110 KiB  
Review
Platinum Group Metals Nanoparticles in Breast Cancer Therapy
by Sibusiso Alven, Sendibitiyosi Gandidzanwa, Basabele Ngalo, Olwethu Poswayo, Tatenda Madanhire, Blessing A. Aderibigbe and Zenixole Tshentu
Pharmaceutics 2024, 16(9), 1162; https://doi.org/10.3390/pharmaceutics16091162 - 3 Sep 2024
Viewed by 959
Abstract
Despite various methods currently used in cancer therapy, breast cancer remains the leading cause of morbidity and mortality worldwide. Current therapeutics face limitations such as multidrug resistance, drug toxicity and off-target effects, poor drug bioavailability and biocompatibility, and inefficient drug delivery. Nanotechnology has [...] Read more.
Despite various methods currently used in cancer therapy, breast cancer remains the leading cause of morbidity and mortality worldwide. Current therapeutics face limitations such as multidrug resistance, drug toxicity and off-target effects, poor drug bioavailability and biocompatibility, and inefficient drug delivery. Nanotechnology has emerged as a promising approach to cancer diagnosis, imaging, and therapy. Several preclinical studies have demonstrated that compounds and nanoparticles formulated from platinum group metals (PGMs) effectively treat breast cancer. PGMs are chemically stable, easy to functionalise, versatile, and tunable. They can target hypoxic microenvironments, catalyse the production of reactive oxygen species, and offer the potential for combination therapy. PGM nanoparticles can be incorporated with anticancer drugs to improve efficacy and can be attached to targeting moieties to enhance tumour-targeting efficiency. This review focuses on the therapeutic outcomes of platinum group metal nanoparticles (PGMNs) against various breast cancer cells and briefly discusses clinical trials of these nanoparticles in breast cancer treatment. It further illustrates the potential applications of PGMNs in breast cancer and presents opportunities for future PGM-based nanomaterial applications in combatting breast cancer. Full article
(This article belongs to the Special Issue Nanomedicines in Cancer Therapy)
Show Figures

Figure 1

14 pages, 4738 KiB  
Article
The Role of ADCY1 in Regulating the Sensitivity of Platinum-Based Chemotherapy in NSCLC
by Ting Zou, Jun-Yan Liu, Zhao-Qian Liu, Di Xiao and Juan Chen
Pharmaceuticals 2024, 17(9), 1118; https://doi.org/10.3390/ph17091118 - 24 Aug 2024
Cited by 1 | Viewed by 712
Abstract
Lung cancer has the highest fatality rate among malignant tumors in the world. Finding new biomarkers of drug resistance is of great importance in the prognosis of lung cancer patients. We found that the polymorphisms of Adenylate Cyclase 1 (ADCY1) are significantly associated [...] Read more.
Lung cancer has the highest fatality rate among malignant tumors in the world. Finding new biomarkers of drug resistance is of great importance in the prognosis of lung cancer patients. We found that the polymorphisms of Adenylate Cyclase 1 (ADCY1) are significantly associated with platinum-based chemotherapy resistance in lung cancer patients in our previous research. In this study, we wanted to identify the mechanism of ADCY1 affecting platinum resistance. We used an MTT assay to find if the expression of ADCY1 is associated with the sensitivity of cisplatin in A549, H1299, and A549-DDP cells. Then, we performed CCK-8 tests to detect the absorbance of these cells stimulated by ADCY1, which can discover the cell proliferation that is affected by ADCY1. We investigated cell apoptosis and cell cycles regulated by ADCY1 through the flow cytometry assay. RNA sequencing was used to find the downstream genes affected by ADCY1 which may be associated with drug resistance in lung cancer patients. ADCY1 has higher expression in lung cancer cells than in normal cells. ADCY1 can affect cisplatin resistance in lung cancer cells by regulating cell proliferation, cell apoptosis, and the cell cycle. It may control cell apoptosis by regulating the classical apoptosis biomarkers Bax and Bcl2. Our study showed that ADCY1 may be a new biomarker in the prognosis of lung cancer patients. Much work remains to be carried out to clarify the mechanism in this important emerging field. Full article
(This article belongs to the Special Issue Adjuvant Therapies for Cancer Treatment)
Show Figures

Figure 1

0 pages, 502 KiB  
Article
Comparison of Weekly Paclitaxel Regimens in Recurrent Platinum-Resistant Ovarian Cancer: A Single Institution Retrospective Study
by Laurence Morin, Louis-Philippe Grenier, Nicolas Foucault, Éric Lévesque, François Fabi, Eve-Lyne Langlais, Alexandra Sebastianelli, Marianne Lavoie, Marc Lalancette, Marie Plante, Mahukpe Narcisse Ulrich Singbo and Vincent Castonguay
Curr. Oncol. 2024, 31(8), 4624-4631; https://doi.org/10.3390/curroncol31080345 - 15 Aug 2024
Viewed by 684
Abstract
Weekly paclitaxel (WP) is a chemotherapeutic cornerstone in the management of patients with platinum-resistant ovarian carcinoma. Multiple WP dosing regimens have been used clinically and studied individually. However, no formal comparison of these regimens is available to provide objective guidance in clinical decision [...] Read more.
Weekly paclitaxel (WP) is a chemotherapeutic cornerstone in the management of patients with platinum-resistant ovarian carcinoma. Multiple WP dosing regimens have been used clinically and studied individually. However, no formal comparison of these regimens is available to provide objective guidance in clinical decision making. The primary objective of this study was to compare the cumulative dose of paclitaxel delivered using 80 mg/m2/week, administered using either a 3 weeks out of 4 (WP3) or a 4 weeks out of 4 (WP4) regimen. The secondary objective was to evaluate the clinical outcomes associated with both regimens, including efficacy and toxicity parameters. Our retrospective cohort comprised 149 patients harboring platinum-resistant ovarian cancer treated at the CHU de Québec from January 2012 to January 2023. WP3 and WP4 reached a similar cumulative dose (1353.7 vs. 1404.2 mg/m2; p = 0.29). No significant differences in the clinical outcomes were observed. The frequency of dose reduction was significantly higher for WP4 than WP3 (44.7% vs. 4.9%; p < 0.01), mainly due to treatment intolerance from toxicity (34.0% vs. 3.9%; p < 0.01). Our data suggest that a WP3 regimen delivers a similar cumulative dose to WP4, hence offering a better tolerability profile without compromising efficacy. Full article
(This article belongs to the Topic Recent Advances in Anticancer Strategies)
Show Figures

Figure 1

18 pages, 14149 KiB  
Article
Aurora Kinase A Inhibition Potentiates Platinum and Radiation Cytotoxicity in Non-Small-Cell Lung Cancer Cells and Induces Expression of Alternative Immune Checkpoints
by Huijie Liu, Ayse Ece Cali Daylan, Jihua Yang, Ankit Tanwar, Alain Borczuk, Dongwei Zhang, Vincent Chau, Shenduo Li, Xuan Ge, Balazs Halmos, Xingxing Zang and Haiying Cheng
Cancers 2024, 16(16), 2805; https://doi.org/10.3390/cancers16162805 - 9 Aug 2024
Viewed by 782
Abstract
Despite major advances in non-small-cell lung cancer (NSCLC) treatment, the five-year survival rates for patients with non-oncogene-driven tumors remain low, necessitating combinatory approaches to improve outcomes. Our prior high-throughput RNAi screening identified Aurora kinase A (AURKA) as a potential key player in cisplatin [...] Read more.
Despite major advances in non-small-cell lung cancer (NSCLC) treatment, the five-year survival rates for patients with non-oncogene-driven tumors remain low, necessitating combinatory approaches to improve outcomes. Our prior high-throughput RNAi screening identified Aurora kinase A (AURKA) as a potential key player in cisplatin resistance. In this study, we investigated AURKA’s role in platinum and radiation sensitivity in multiple NSCLC cell lines and xenograft mouse models, as well as its effect on immune checkpoints, including PD-L1, B7x, B7-H3, and HHLA2. Of 94 NSCLC patient tumor specimens, 91.5% tested positive for AURKA expression, with 34% showing moderate-to-high levels. AURKA expression was upregulated following cisplatin treatment in NSCLC cell lines PC9 and A549. Both AURKA inhibition by alisertib and inducible AURKA knockdown potentiated the cytotoxic effects of cisplatin and radiation, leading to tumor regression in doxycycline-inducible xenograft mice. Co-treated cells exhibited increased DNA double-strand breaks, apoptosis, and senescence. Additionally, AURKA inhibition alone by alisertib increased PD-L1 and B7-H3 expression. In conclusion, our study demonstrates that AURKA inhibition enhances the efficacy of platinum-based chemotherapy in NSCLC cells and modulates the expression of multiple immune checkpoints. Therefore, combinatory regimens with AURKA inhibitors should be strategically designed and further studied within the evolving landscape of chemo-immunotherapy. Full article
Show Figures

Figure 1

25 pages, 5542 KiB  
Review
Extracellular Vesicles in Ovarian Cancer: From Chemoresistance Mediators to Therapeutic Vectors
by Barathan Muttiah, Nur Dina Muhammad Fuad, Faizul Jaafar and Nur Atiqah Haizum Abdullah
Biomedicines 2024, 12(8), 1806; https://doi.org/10.3390/biomedicines12081806 - 9 Aug 2024
Viewed by 920
Abstract
Ovarian cancer (OC) remains the deadliest gynecological malignancy, with alarming projections indicating a 42% increase in new cases and a 51% rise in mortality by 2040. This review explores the challenges in OC treatment, focusing on chemoresistance mechanisms and the potential of extracellular [...] Read more.
Ovarian cancer (OC) remains the deadliest gynecological malignancy, with alarming projections indicating a 42% increase in new cases and a 51% rise in mortality by 2040. This review explores the challenges in OC treatment, focusing on chemoresistance mechanisms and the potential of extracellular vesicles (EVs) as drug delivery agents. Despite advancements in treatment strategies, including cytoreductive surgery, platinum-based chemotherapy, and targeted therapies, the high recurrence rate underscores the need for innovative approaches. Key resistance mechanisms include drug efflux, apoptosis disruption, enhanced DNA repair, cancer stem cells, immune evasion, and the complex tumor microenvironment. Cancer-associated fibroblasts and extracellular vesicles play crucial roles in modulating the tumor microenvironment and facilitating chemoresistance. EVs, naturally occurring nanovesicles, emerge as promising drug carriers due to their low toxicity, high biocompatibility, and inherent targeting capabilities. They have shown potential in delivering chemotherapeutics like doxorubicin, cisplatin, and paclitaxel, as well as natural compounds such as curcumin and berry anthocyanidins, enhancing therapeutic efficacy while reducing systemic toxicity in OC models. However, challenges such as low production yields, heterogeneity, rapid clearance, and inefficient drug loading methods need to be addressed for clinical application. Ongoing research aims to optimize EV production, loading efficiency, and targeting, paving the way for novel and more effective therapeutic strategies in OC treatment. Overcoming these obstacles is crucial to unlocking the full potential of EV-based therapies and improving outcomes for OC patients. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

8 pages, 2476 KiB  
Communication
Effects of Substrates on the Performance of Pt Thin-Film Resistance Temperature Detectors
by Dingjia Liu, Ruina Jiao, Chunshui Sun and Yong Wang
Coatings 2024, 14(8), 969; https://doi.org/10.3390/coatings14080969 - 2 Aug 2024
Viewed by 585
Abstract
Pt thin-film resistance temperature detectors (RTDs) have been fabricated by magnetron sputtering on various substrates, including silica, polyimide (PI) and LaAlO3 (LAO) (100) single crystal. The influences of different substrates on the performance of Pt thin-film RTDs have been studied. It is [...] Read more.
Pt thin-film resistance temperature detectors (RTDs) have been fabricated by magnetron sputtering on various substrates, including silica, polyimide (PI) and LaAlO3 (LAO) (100) single crystal. The influences of different substrates on the performance of Pt thin-film RTDs have been studied. It is revealed that the substrates exhibit a significant dependence on the temperature coefficient of resistance (TCR). Silica, PI and LAO substrates yield TCRs of 3.2 × 10−3, 2.7 × 10−3 and 3.4 × 10−3 /K, respectively. The Pt thin-film RTDs on LAO substrate exhibit a significantly larger TCR, compared to most of the other reported values. These devices also demonstrate a fast response time of 680 μs, which is shorter than that of many other reported RTDs. Furthermore, Pt thin-film RTDs on PI substrates could serve as flexible detectors, maintaining a consistent linear relationship between resistance and temperature even when bent. Full article
(This article belongs to the Special Issue Advanced Thin Films Technologies for Optics, Electronics, and Sensing)
Show Figures

Figure 1

14 pages, 4933 KiB  
Article
Pilot Evaluation of Silicone Surrogates for Oral Mucosa Simulation in Craniofacial Surgical Training
by Mitchell D. Cin, Krishna Koka, Justin Darragh, Zahra Nourmohammadi, Usama Hamdan and David A. Zopf
Biomimetics 2024, 9(8), 464; https://doi.org/10.3390/biomimetics9080464 - 1 Aug 2024
Viewed by 675
Abstract
Surgical simulators are crucial in early craniofacial and plastic surgical training, necessitating synthetic materials that accurately replicate tissue properties. Recent critiques of our lab’s currently deployed silicone surrogate have highlighted numerous areas for improvement. To further refine our models, our group’s objective is [...] Read more.
Surgical simulators are crucial in early craniofacial and plastic surgical training, necessitating synthetic materials that accurately replicate tissue properties. Recent critiques of our lab’s currently deployed silicone surrogate have highlighted numerous areas for improvement. To further refine our models, our group’s objective is to find a composition of materials that is closest in fidelity to native oral mucosa during surgical rehearsal by expert craniofacial surgeons. Fifteen platinum silicone-based surrogate samples were constructed with variable hardness and slacker percentages. These samples underwent evaluation of tactile sensation, hardness, needle puncture, cut resistance, suture retention, defect repair, and tensile elasticity. Expert craniofacial surgeon evaluators provided focused qualitative feedback on selected top-performing samples for further assessment and statistical comparisons. An evaluation revealed surrogate characteristics that were satisfactory and exhibited good performance. Sample 977 exhibited the highest performance, and comparison with the original surrogate (sample 810) demonstrated significant improvements in critical areas, emphasizing the efficacy of the refined composition. The study identified a silicone composition that directly addresses the feedback received by our team’s original silicone surrogate. The study underscores the delicate balance between biofidelity and practicality in surgical simulation. The need for ongoing refinement in surrogate materials is evident to optimize training experiences for early surgical learners. Full article
(This article belongs to the Special Issue Biomimetic 3D/4D Printing)
Show Figures

Figure 1

Back to TopTop