Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = pea albumin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4591 KiB  
Article
Pea Albumin Alleviates Oleic Acid-Induced Lipid Accumulation in LO2 Cells Through Modulating Lipid Metabolism and Fatty Acid Oxidation Pathways
by Bing Fang, Jie Luo, Zhengwu Cui, Rong Liu, Pengjie Wang and Jian Zhang
Foods 2024, 13(21), 3482; https://doi.org/10.3390/foods13213482 - 30 Oct 2024
Viewed by 572
Abstract
Excessive lipid accumulation in the liver can cause NAFLD, leading to chronic liver injury. To relieve liver lipid accumulation by dietary proteins, this study used oleic acid (OA) induction to establish a stable in vitro LO2 cell lipid accumulation model. This model was [...] Read more.
Excessive lipid accumulation in the liver can cause NAFLD, leading to chronic liver injury. To relieve liver lipid accumulation by dietary proteins, this study used oleic acid (OA) induction to establish a stable in vitro LO2 cell lipid accumulation model. This model was used to explore the mechanism by which pea albumin (PA) regulates lipid levels in LO2 cells. PA has been shown to ameliorate OA-induced lipid accumulation in LO2 cells by reducing the aggregation of intracellular lipid droplets and lowering cell TG and TC levels. In addition, it can alleviate OA-induced LO2 cell damage and oxidative stress, reduce cellular ALT and AST secretion, lower cellular MDA levels, and increase GSH-Px viability. Regulation of lipid metabolism in LO2 cells involves inhibiting the cellular lipid synthesis pathway and activating the expression of proteins related to the triglyceride catabolic and fatty acid oxidation pathways. PA contributes to regulating lipid accumulation in LO2 cells. This study provides new insights into alleviating liver fat accumulation and a theoretical basis for exploring the mechanism of protein regulation of liver cell lipid metabolism. Full article
Show Figures

Figure 1

20 pages, 7158 KiB  
Article
Pea Albumin Extracted from Pea (Pisum sativum L.) Seeds Ameliorates High-Fat-Diet-Induced Non-Alcoholic Fatty Liver Disease by Regulating Lipogenesis and Lipolysis Pathways
by Shucheng Zhang, Zhengwu Cui, Hao Zhang, Pengjie Wang, Fuqing Wang and Jian Zhang
Nutrients 2024, 16(14), 2232; https://doi.org/10.3390/nu16142232 - 11 Jul 2024
Cited by 2 | Viewed by 1154
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now recognized as the most prevalent liver disease globally. Pea albumin (PA) has demonstrated positive impacts on reducing obesity and improving glucose metabolism. In this research, a mouse model of NAFLD induced by a high-fat diet (HFD) [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is now recognized as the most prevalent liver disease globally. Pea albumin (PA) has demonstrated positive impacts on reducing obesity and improving glucose metabolism. In this research, a mouse model of NAFLD induced by a high-fat diet (HFD) was employed to examine the impact of PA on NAFLD and explore its potential mechanisms. The findings revealed that mice subjected to a HFD developed pronounced fatty liver alterations. The intervention with PA significantly lowered serum TC by 26.81%, TG by 43.55%, and LDL-C by 57.79%. It also elevated HDL-C levels by 1.2 fold and reduced serum ALT by 37.94% and AST by 31.21% in mice fed a HFD. These changes contributed to the reduction in hepatic steatosis and lipid accumulation. Additionally, PA improved insulin resistance and inhibited hepatic oxidative stress and inflammatory responses. Mechanistic studies revealed that PA alleviated lipid accumulation in HFD-induced NAFLD by activating the phosphorylation of AMPKα and ACC, inhibiting the expression of SREBF1 and FASN to reduce hepatic lipogenesis, and increasing the expression of ATGL, PPARα, and PPARγ to promote lipolysis and fatty acid oxidation. These results indicate that PA could serve as a dietary supplement for alleviating NAFLD, offering a theoretical foundation for the rational intake of PA in NAFLD intervention. Full article
(This article belongs to the Special Issue Metabolic Features and Nutritional Interventions in Chronic Diseases)
Show Figures

Figure 1

13 pages, 12836 KiB  
Article
Physicochemical Quantitative Analysis of the Oil–Water Interface as Affected by the Mutual Interactions between Pea Protein Isolate and Mono- and Diglycerides
by Ziyan Wang, Jingwen Li, Chao Peng, Bin Li, Qian Shen and Yijie Chen
Viewed by 2147
Abstract
As a commercially available ingredient, the mono- and diglycerides (MDG) were widely used in a plant protein-based emulsion to provide effective, functional, emulsifying properties. The simultaneous addition of the MDG and pea protein isolate (PPI) was investigated by the methods of interfacial rheology [...] Read more.
As a commercially available ingredient, the mono- and diglycerides (MDG) were widely used in a plant protein-based emulsion to provide effective, functional, emulsifying properties. The simultaneous addition of the MDG and pea protein isolate (PPI) was investigated by the methods of interfacial rheology and quantitative protein proteomics. The physicochemical quantitative analysis of the oil–water interface revealed an interfacial stability mechanism for the protein adsorption layer. For a low MDG concentration, the interfacial quantities of vicilin and albumin were increased, which could be attributed to the adsorption rate. For a high MDG concentration, both vicilin and albumin were displaced by MDG and desorbed from the interface, while legumin was more difficult to displace due to its slow adsorption and the complex structure of protein molecules. The protein molecules with the structural rearrangement interacted with MDG, exhibiting potential effects on the interfacial film structure. Combined with some nanotechnologies, the new comprehension of protein-emulsifier interactions may promote food delivery systems. The research aims to develop an in-depth analysis of interfacial proteins, and provide more innovative and tailored functionalities for the application of the plant protein emulsion. Full article
Show Figures

Figure 1

19 pages, 17781 KiB  
Article
Effect of 3D Food Printing Processing on Polyphenol System of Loaded Aronia melanocarpa and Post-Processing Evaluation of 3D Printing Products
by Quancheng Zhou, Xijun Nan, Shucheng Zhang, Liang Zhang, Jian Chen, Jiayi Li, Honglei Wang and Zheng Ruan
Foods 2023, 12(10), 2068; https://doi.org/10.3390/foods12102068 - 20 May 2023
Cited by 1 | Viewed by 1865
Abstract
Aronia melanocarpa polyphenols (AMP) have good nutritional values and functions. This study aimed to explore the printability and storage properties of AM gels in 3D food printing (3DFP). Therefore, 3DFP was performed on a loaded AMP gel system to determine its textural properties, [...] Read more.
Aronia melanocarpa polyphenols (AMP) have good nutritional values and functions. This study aimed to explore the printability and storage properties of AM gels in 3D food printing (3DFP). Therefore, 3DFP was performed on a loaded AMP gel system to determine its textural properties, rheological properties, microstructure, swelling degree and storage performance. The results revealed that the best loading AMP gel system to meet the printability requirements of 3DFP processing was AM fruit pulp:methylcellulose:pea albumin: hyaluronic acid = 100:14:1:1. Compared with other ratios and before 3DFP processing, the best loading AMP gel system processed by 3DFP exhibited the lowest deviation of 4.19%, the highest hardness, the highest elasticity, the least adhesion, a compact structure, uniform porosity, difficulty in collapsing, good support, a high degree of crosslinking, and good water retention. Additionally, they could be stored for 14 d at 4 °C. After post-processing, the AMP gel had a favorable AMP release rate and good sustained release effect in gastrointestinal digestion, which conformed to the Ritger–Peppas equation model. The results revealed that the gel system had good printability and applicability for 3D printing; as well, 3DFP products had good storage properties. These conclusions provide a theoretical basis for the application of 3D printing using fruit pulp as a raw material. Full article
Show Figures

Figure 1

16 pages, 3708 KiB  
Article
Recovery and Utilization of Pea Albumins as Acidic Emulsion Stabilizer by Complexation with Dextran Sulfate
by Xingfei Li, Xinyu Zhang, Jie Long, Caimeng Zhang and Yufei Hua
Foods 2022, 11(23), 3784; https://doi.org/10.3390/foods11233784 - 24 Nov 2022
Cited by 1 | Viewed by 1819
Abstract
In this work, pea albumins (PAs) were efficiently recovered by complexation with dextran sulfate (DS), and the emulsifying ability and stability of PA/DS complexes were studied. The largest amounts of PAs (81.25%) were recovered at r = 5:1 and pHmax (pH 3.41) [...] Read more.
In this work, pea albumins (PAs) were efficiently recovered by complexation with dextran sulfate (DS), and the emulsifying ability and stability of PA/DS complexes were studied. The largest amounts of PAs (81.25%) were recovered at r = 5:1 and pHmax (pH 3.41) by forming insoluble complexes; and only soluble complexes were formed at r = 2:1 and over the whole pH range (2.0–7.0). The emulsions stabilized by PA/DS soluble complexes remained stable under acidic conditions due to the highly negatively charge (from −45.10 ± 0.40 to −57.23 ± 0.66 mV) and small particle size (0.168 ± 0.010–0.448 ± 0.004 μm), while emulsions stabilized by PAs alone generated a strong creaming and serum separation at pH 5 and 6. In terms of emulsifying stability, all PA emulsions and unheated PA/DS emulsions became unstable with different creaming index after 14 days storage. SDS-PAGE results showed that the interface adsorption proteins of unheated emulsions mainly consisted of PA1a, which was unfavorable to the stability of the interface. On the contrary, heat treatment (95 °C, 30 min) and complexation (PA/DS = 2:1) enhanced the adsorption of PA2 and lectin at the interface, inhibiting the aggregation of PA2 and lectin. This resulted in long-term stability of the PA/DS emulsions under acidic conditions. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

12 pages, 1121 KiB  
Review
Anticancer Properties of Aqueous Extracts from Leguminosae
by Luca Serventi, Xuanyi Cai, Ruitian Chen, Nadeesha Dilrukshi, Jingyi Su, Refi Priskila Novaleta Tuange and Elizabeth Eilidh Ham
Nutraceuticals 2022, 2(4), 323-334; https://doi.org/10.3390/nutraceuticals2040025 - 1 Nov 2022
Cited by 4 | Viewed by 3208
Abstract
Inflammation and cancer are diseases caused by genetic and environmental factors as well as altered microbiota. Diet plays a role, with leguminous such as beans (Phaseolus vulgaris, Vicia faba), chickpeas (Cicer arietinum), lentils (Lens culinaris), peas [...] Read more.
Inflammation and cancer are diseases caused by genetic and environmental factors as well as altered microbiota. Diet plays a role, with leguminous such as beans (Phaseolus vulgaris, Vicia faba), chickpeas (Cicer arietinum), lentils (Lens culinaris), peas (Pisum sativum) and soybeans (Glycine max), known to prevent such diseases. Processing of food leguminous yields aqueous side streams. These products are nothing short of water extracts of leguminous, containing albumin, globulin, saponins, and oligosaccharides. This review analysed the most recent findings on the anticancer activities of legume-soluble nutrients. Albumin from chickpeas and peas inhibits the pro-inflammatory mediator interleukins, while soy Bowman–Birk Inhibitor inhibits serine proteases. The peptide vicilin activates peroxisome proliferator-activated receptor, mediating triglyceride metabolism. Soyasaponins promote apoptosis of cancer cells by activating caspases and by enhancing the concentration of intracellular calcium. Soyasapogenol regulates specific protein pathways, leading to apoptosis. Oligosaccharides such as raffinose and stachyose promote the synthesis of short chain fatty acids, balancing the intestinal microbiota, as result of their prebiotic activity. Verbascoside also modulate signalling pathways, leading to apoptosis. In closing, water extracts of leguminous have the potential to be efficient anticancer ingredients, by means of numerous mechanisms based on the raw material and the process. Full article
(This article belongs to the Special Issue Natural Nutraceuticals in Actual Therapeutic Strategies)
Show Figures

Graphical abstract

16 pages, 2792 KiB  
Article
Pea Albumin Attenuates Dextran Sulfate Sodium-Induced Colitis by Regulating NF-κB Signaling and the Intestinal Microbiota in Mice
by Shucheng Zhang, Wenhua Jin, Weibo Zhang, Fazheng Ren, Pengjie Wang and Ning Liu
Nutrients 2022, 14(17), 3611; https://doi.org/10.3390/nu14173611 - 1 Sep 2022
Cited by 5 | Viewed by 2978
Abstract
Background: Inflammatory bowel disease remains a global burden with rapidly increasing incidence and prevalence in both industrialized countries and developing countries. In this study, we prepared pea albumin from pea seeds and determined its beneficial effects being anti-inflammatory and on gut microbiota modulation [...] Read more.
Background: Inflammatory bowel disease remains a global burden with rapidly increasing incidence and prevalence in both industrialized countries and developing countries. In this study, we prepared pea albumin from pea seeds and determined its beneficial effects being anti-inflammatory and on gut microbiota modulation in dextran sulfate sodium (DSS)-challenged mice. Method: Six-week-old C57BL/6N male mice received an equivalent volume (200 μL) of sterile phosphate balanced solution, 0.375, 0.75, or 1.50 g/kg body weight (BW) of pea albumin that was subjected to 2.0% DSS for 7 days to induce colitis. On day 17 of the experiment, all mice were sacrificed after blood sample collection, and colon tissue and colon contents were collected. BW change curve, colon length, myeloperoxidase (MPO) activity, mucus staining, immunofluorescence staining of T cells and macrophages, cytokines, pro-inflammatory genes expression, nuclear factor-κB (NF-κB) and signal transducer, and activator of transcription 3 (STAT3) signaling pathways as well as 16S DNA sequence were measured. Results: Our results show that pea albumin alleviates DSS-induced BW loss, colon length shortening, enhanced MPO activity, cytokines secretion, mucus deficiency, and inflammatory cell infiltration, as well as enhanced pro-inflammatory genes expression. In addition, the overactivation of NF-κB and STAT3 following DSS exposure is attenuated by pea albumin administration. Of particular interest, pea albumin oral administration restored gut microbiota dysbiosis as evidenced by enhanced α-diversity, restored β-diversity, and promoted relative abundance of Lactobacillus and Lachnospiraceae_NK4A136_group. Conclusion: Taken together, the data provided herein demonstrated that pea albumin plays a protective role in DSS-induced colitis by reducing inflammatory cell infiltration, pro-inflammatory genes expression and pro-inflammatory cytokines release, inactivation of NF-κB signal, and gut microbiota modulation. Full article
(This article belongs to the Topic Applied Sciences in Functional Foods)
Show Figures

Graphical abstract

15 pages, 3408 KiB  
Article
Pea Protein Extraction Assisted by Lactic Fermentation: Impact on Protein Profile and Thermal Properties
by Mehrsa Emkani, Bonastre Oliete and Rémi Saurel
Cited by 48 | Viewed by 6248
Abstract
Although pea protein has been widely explored, its consumption is still limited by undesirable sensory characteristics and low solubility. All these properties can be modified during protein extraction process. Besides, previous studies showed that lactic acid bacteria (LAB) have a positive effect on [...] Read more.
Although pea protein has been widely explored, its consumption is still limited by undesirable sensory characteristics and low solubility. All these properties can be modified during protein extraction process. Besides, previous studies showed that lactic acid bacteria (LAB) have a positive effect on legume protein ingredients in terms of flavor and functional properties. Hence, the objective of this work was to explore an alternative extraction method based on alkaline extraction/isoelectric precipitation (AEIEP) resulting in globulin-rich and residual albumin-rich fractions. Here, the decrease in pH was achieved by lactic fermentation instead of mineral acid addition. Different bacteria strains (Streptococcus thermophilus, Lactobacillus acidophilus and Bifidobacterium lactis) have been used alone or in co-culture, and the results were compared with the usual acidification. The extraction assisted by fermentation led to the increase by 20–30% in protein content/yield of the albumin fraction, meaning that the solubility of the extracted pea protein was increased. This result could be explained by the proteolytic activity of bacteria during lactic fermentation. Therefore, the thermal denaturation properties of the isolated protein fractions measured by differential scanning calorimetry could be mainly ascribed to differences in their polypeptide compositions. In particular, higher denaturation enthalpy in globulin fractions after fermentation compared to AEIEP (~15 J/g protein vs. ~13 J/g protein) revealed the relative enrichment of this fraction in pea legumins; a higher part of 7S globulins seemed to be consumed by lactic acid bacteria. Full article
Show Figures

Graphical abstract

15 pages, 14271 KiB  
Article
Analysis of Cerebrospinal Fluid Extracellular Vesicles by Proximity Extension Assay: A Comparative Study of Four Isolation Kits
by Sebastian Sjoqvist, Kentaro Otake and Yoshihiko Hirozane
Int. J. Mol. Sci. 2020, 21(24), 9425; https://doi.org/10.3390/ijms21249425 - 10 Dec 2020
Cited by 15 | Viewed by 4276
Abstract
There is a lack of reliable biomarkers for disorders of the central nervous system (CNS), and diagnostics still heavily rely on symptoms that are both subjective and difficult to quantify. The cerebrospinal fluid (CSF) is a promising source of biomarkers due to its [...] Read more.
There is a lack of reliable biomarkers for disorders of the central nervous system (CNS), and diagnostics still heavily rely on symptoms that are both subjective and difficult to quantify. The cerebrospinal fluid (CSF) is a promising source of biomarkers due to its close connection to the CNS. Extracellular vesicles are actively secreted by cells, and proteomic analysis of CSF extracellular vesicles (EVs) and their molecular composition likely reflects changes in the CNS to a higher extent compared with total CSF, especially in the case of neuroinflammation, which could increase blood–brain barrier permeability and cause an influx of plasma proteins into the CSF. We used proximity extension assay for proteomic analysis due to its high sensitivity. We believe that this methodology could be useful for de novo biomarker discovery for several CNS diseases. We compared four commercially available kits for EV isolation: MagCapture and ExoIntact (based on magnetic beads), EVSecond L70 (size-exclusion chromatography), and exoEasy (membrane affinity). The isolated EVs were characterized by nanoparticle tracking analysis, ELISA (CD63, CD81 and albumin), and proximity extension assay (PEA) using two different panels, each consisting of 92 markers. The exoEasy samples did not pass the built-in quality controls and were excluded from downstream analysis. The number of detectable proteins in the ExoIntact samples was considerably higher (~150% for the cardiovascular III panel and ~320% for the cell regulation panel) compared with other groups. ExoIntact also showed the highest intersample correlation with an average Pearson’s correlation coefficient of 0.991 compared with 0.985 and 0.927 for MagCapture and EVSecond, respectively. The median coefficient of variation was 5%, 8%, and 22% for ExoIntact, MagCapture, and EVSecond, respectively. Comparing total CSF and ExoIntact samples revealed 70 differentially expressed proteins in the cardiovascular III panel and 17 in the cell regulation panel. To our knowledge, this is the first time that CSF EVs were analyzed by PEA. In conclusion, analysis of CSF EVs by PEA is feasible, and different isolation kits give distinct results, with ExoIntact showing the highest number of identified proteins with the lowest variability. Full article
(This article belongs to the Special Issue Extracellular Vesicles as a New Source of Liquid Biopsy)
Show Figures

Figure 1

15 pages, 2383 KiB  
Article
A Pea (Pisum sativum L.) Seed Vicilins Hydrolysate Exhibits PPARγ Ligand Activity and Modulates Adipocyte Differentiation in a 3T3-L1 Cell Culture Model
by Raquel Ruiz, Raquel Olías, Alfonso Clemente and Luis A. Rubio
Foods 2020, 9(6), 793; https://doi.org/10.3390/foods9060793 - 16 Jun 2020
Cited by 16 | Viewed by 3684
Abstract
Legume consumption has been reported to induce beneficial effects on obesity-associated metabolic disorders, but the underlying mechanisms have not been fully clarified. In the current work, pea (Pisum sativum L.) seed meal proteins (albumins, legumins and vicilins) were isolated, submitted to a [...] Read more.
Legume consumption has been reported to induce beneficial effects on obesity-associated metabolic disorders, but the underlying mechanisms have not been fully clarified. In the current work, pea (Pisum sativum L.) seed meal proteins (albumins, legumins and vicilins) were isolated, submitted to a simulated gastrointestinal digestion, and the effects of their hydrolysates (pea albumins hydrolysates (PAH), pea legumins hydrolysates (PLH) and pea vicilin hydrolysates (PVH), respectively) on 3T3-L1 murine pre-adipocytes were investigated. The pea vicilin hydrolysate (PVH), but not native pea vicilins, increased lipid accumulation during adipocyte differentiation. PVH also increased the mRNA expression levels of the adipocyte fatty acid-binding protein (aP2) and decreased that of pre-adipocyte factor-1 (Pref-1) (a pre-adipocyte marker gene), suggesting that PVH promotes adipocyte differentiation. Moreover, PVH induced adiponectin and insulin-responsive glucose transporter 4 (GLUT4) and stimulated glucose uptake. The expression levels of peroxisome proliferator-activated receptor γ (PPARγ), a key regulator of adipocyte differentiation, were up-regulated in 3T3-L1 cells treated with PVH during adipocyte differentiation. Finally, PVH exhibited PPARγ ligand activity. Lactalbumin or other pea hydrolysates (PAH, PLH) did not exhibit such effects. These findings show that PVH stimulates adipocyte differentiation via, at least in part, the up-regulation of PPARγ expression levels and ligand activity. These effects of PVH might be relevant in the context of the beneficial health effects of legume consumption in obesity-associated metabolic disorders. Full article
(This article belongs to the Special Issue Advanced Research in Food Digestion)
Show Figures

Graphical abstract

10 pages, 784 KiB  
Article
Evaluation of Starch–Protein Interactions as a Function of pH
by Ángela Bravo-Núñez, Raquel Garzón, Cristina M. Rosell and Manuel Gómez
Cited by 58 | Viewed by 9703
Abstract
Protein–starch gels are becoming more common in food processing when looking for enriched foods. However, processing conditions scarcely are considered when producing those gels. The aim of this research was to study the effect of processing pH (4.5, 6.0, and 7.5) on the [...] Read more.
Protein–starch gels are becoming more common in food processing when looking for enriched foods. However, processing conditions scarcely are considered when producing those gels. The aim of this research was to study the effect of processing pH (4.5, 6.0, and 7.5) on the hydration and pasting properties, gel microstructure, and texture of corn starchy gels made with four different proteins (pea, rice, egg albumin, and whey) at a ratio of 1:1 starch/protein and a solid content of 12.28%. The water binding capacity of the starch–protein mixtures was positively influenced by low solubility of the protein used. Acidic pH decreased the apparent peak viscosity of both starch and starch–protein mixtures, with the exception of starch–albumin blends, which increased it. The gels’ microstructure showed that the uniformity of the protein-enriched gels was dependent on protein type and pH, leading to diverse hardness. In general, the starchy gels containing animal proteins (albumin and whey) were more affected by pH than those obtained with vegetal proteins (pea and rice). Therefore, processing pH might be an advisable method to modify the functionality of starch–protein gels. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

2084 KiB  
Review
Pea Albumin 1 Subunit b (PA1b), a Promising Bioinsecticide of Plant Origin
by Frédéric Gressent, Pedro Da Silva, Vanessa Eyraud, Lamis Karaki and Corinne Royer
Toxins 2011, 3(12), 1502-1517; https://doi.org/10.3390/toxins3121502 - 8 Dec 2011
Cited by 49 | Viewed by 9124
Abstract
PA1b (Pea Albumin 1, subunit b) is a peptide extract from pea seeds showing significant insecticidal activity against certain insects, such as cereal weevils (genus Sitophilus), the mosquitoes Culex pipiens and Aedes aegyptii, and certain species of aphids. PA1b has great potential [...] Read more.
PA1b (Pea Albumin 1, subunit b) is a peptide extract from pea seeds showing significant insecticidal activity against certain insects, such as cereal weevils (genus Sitophilus), the mosquitoes Culex pipiens and Aedes aegyptii, and certain species of aphids. PA1b has great potential for use on an industrial scale and for use in organic farming: it is extracted from a common plant; it is a peptide (and therefore suitable for transgenic applications); it can withstand many steps of extraction and purification without losing its activity; and it is present in a seed regularly consumed by humans and mammals without any known toxicity or allergenicity. The potential of this peptide to limit pest damage has stimulated research concerning its host range, its mechanism of action, its three-dimensional structure, the natural diversity of PA1b and its structure–function relationships. Full article
(This article belongs to the Special Issue Insecticidal Toxins)
Show Figures

Figure 1

Back to TopTop