Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (346)

Search Parameters:
Keywords = pangenome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4713 KiB  
Article
The Gene Cluster Cj0423Cj0425 Negatively Regulates Biofilm Formation in Campylobacter jejuni
by Zhi Wang, Yuwei Wu, Ming Liu, Ling Chen, Kaishan Xiao, Zhenying Huang, Yibing Zhao, Huixian Wang, Yu Ding, Xiuhua Lin, Jiahui Zeng, Feiting Peng, Jumei Zhang, Juan Wang and Qingping Wu
Int. J. Mol. Sci. 2024, 25(22), 12116; https://doi.org/10.3390/ijms252212116 - 12 Nov 2024
Viewed by 360
Abstract
Abstract: Campylobacter jejuni (C. jejuni) is a zoonotic foodborne pathogen that is widely distributed worldwide. Its optimal growth environment is microaerophilic conditions (5% O2, 10% CO2), but it can spread widely in the atmospheric environment. Biofilms [...] Read more.
Abstract: Campylobacter jejuni (C. jejuni) is a zoonotic foodborne pathogen that is widely distributed worldwide. Its optimal growth environment is microaerophilic conditions (5% O2, 10% CO2), but it can spread widely in the atmospheric environment. Biofilms are thought to play an important role in this process. However, there are currently relatively few research works on the regulatory mechanisms of C. jejuni biofilm formation. In this study, a pan-genome analysis, combined with the analysis of biofilm phenotypic information, revealed that the gene cluster Cj0423Cj0425 is associated with the negative regulation of biofilm formation in C. jejuni. Through gene knockout experiments, it was observed that the Cj0423Cj0425 mutant strain significantly increased biofilm formation and enhanced flagella formation. Furthermore, pull-down assay revealed that Cj0424 interacts with 93 proteins involved in pathways such as fatty acid synthesis and amino acid metabolism, and it also contains the quorum sensing-related gene luxS. This suggests that Cj0423Cj0425 affects fatty acid synthesis and amino acid metabolism, influencing quorum sensing and strain motility, ultimately inhibiting biofilm formation. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 2737 KiB  
Article
Genomic Comparisons Revealed the Key Genotypes of Streptomyces sp. CB03234-GS26 to Optimize Its Growth and Relevant Production of Tiancimycins
by Huiming Liu, Jing Lin, Yong Huang, Yanwen Duan and Xiangcheng Zhu
Bioengineering 2024, 11(11), 1128; https://doi.org/10.3390/bioengineering11111128 - 8 Nov 2024
Viewed by 422
Abstract
Strain robustness and titer improvement are major challenges faced in the industrial development of natural products from Streptomyces. Tiancimycins (TNMs) produced by Streptomyces sp. CB03234 are promising anticancer payloads for antibody-drug conjugates, but further development is severely limited by the low titer [...] Read more.
Strain robustness and titer improvement are major challenges faced in the industrial development of natural products from Streptomyces. Tiancimycins (TNMs) produced by Streptomyces sp. CB03234 are promising anticancer payloads for antibody-drug conjugates, but further development is severely limited by the low titer of TNMs. Despite many efforts to generate various TNMs overproducers, the mechanisms underlying high TNMs production remain to be explored. Herein, genome resequencing and genomic comparisons of different TNMs overproducers were conducted to explore the unique genotypes in CB03234-GS26. Four target genes were selected for further bioinformatic analyses and genetic validations. The results indicated that the inactivation of histidine ammonia-lyase (HAL) showed the most significant effect by blocking the intracellular degradation of histidine to facilitate relevant enzymatic catalysis and thus improve the production of TNMs. Additionally, the potassium/proton antiporter (P/PA) was crucial for intracellular pH homeostasis, and its deficiency severely impaired the alkaline tolerance of the cells. Subsequent pan-genomic analysis suggested that HAL and P/PA are core enzymes that are highly conserved in Streptomyces. Therefore, HAL and P/PA represented novel targets to regulate secondary metabolism and enhance strain robustness and could become potential synthetic biological modules to facilitate development of natural products and strain improvement in Streptomyces. Full article
(This article belongs to the Special Issue Synthetic Biology and Bioprocess Engineering for High-Value Compounds)
Show Figures

Graphical abstract

22 pages, 2113 KiB  
Article
Transcriptomic Response of Rhizobium leguminosarum to Acidic Stress and Nutrient Limitation Is Versatile and Substantially Influenced by Extrachromosomal Gene Pool
by Kamil Żebracki, Piotr Koper, Magdalena Wójcik, Małgorzata Marczak and Andrzej Mazur
Int. J. Mol. Sci. 2024, 25(21), 11734; https://doi.org/10.3390/ijms252111734 - 31 Oct 2024
Viewed by 442
Abstract
Multipartite genomes are thought to confer evolutionary advantages to bacteria by providing greater metabolic flexibility in fluctuating environments and enabling rapid adaptation to new ecological niches and stress conditions. This genome architecture is commonly found in plant symbionts, including nitrogen-fixing rhizobia, such as [...] Read more.
Multipartite genomes are thought to confer evolutionary advantages to bacteria by providing greater metabolic flexibility in fluctuating environments and enabling rapid adaptation to new ecological niches and stress conditions. This genome architecture is commonly found in plant symbionts, including nitrogen-fixing rhizobia, such as Rhizobium leguminosarum bv. trifolii TA1 (RtTA1), whose genome comprises a chromosome and four extrachromosomal replicons (ECRs). In this study, the transcriptomic responses of RtTA1 to partial nutrient limitation and low acidic pH were analyzed using high-throughput RNA sequencing. RtTA1 growth under these conditions resulted in the differential expression of 1035 to 1700 genes (DEGs), which were assigned to functional categories primarily related to amino acid and carbohydrate metabolism, ribosome and cell envelope biogenesis, signal transduction, and transcription. These results highlight the complexity of the bacterial response to stress. Notably, the distribution of DEGs among the replicons indicated that ECRs played a significant role in the stress response. The transcriptomic data align with the Rhizobium pangenome analysis, which revealed an over-representation of functional categories related to transport, metabolism, and regulatory functions on ECRs. These findings confirm that ECRs contribute substantially to the ability of rhizobia to adapt to challenging environmental conditions. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 9179 KiB  
Article
Pan-Genome-Wide Investigation and Co-Expression Network Analysis of HSP20 Gene Family in Maize
by Hengyu Yan, Mingzhe Du, Jieyao Ding, Di Song, Weiwei Ma and Yubin Li
Int. J. Mol. Sci. 2024, 25(21), 11550; https://doi.org/10.3390/ijms252111550 - 27 Oct 2024
Viewed by 785
Abstract
Heat shock protein 20 (HSP20) is a diverse and functionally important protein family that plays a crucial role in plants’ tolerance to various abiotic stresses. In this study, we systematically analyzed the structural and functional characteristics of the HSP20 gene family within the [...] Read more.
Heat shock protein 20 (HSP20) is a diverse and functionally important protein family that plays a crucial role in plants’ tolerance to various abiotic stresses. In this study, we systematically analyzed the structural and functional characteristics of the HSP20 gene family within the Zea pan-genome. By identifying 56 HSP20 pan-genes, we revealed the variation in the number of these genes across different maize inbreds or relatives. Among those 56 genes, only 31 are present in more than 52 inbreds or relatives. Further phylogenetic analysis classified these genes into four major groups (Class A, B, C, D) and explored their diversity in subcellular localization, physicochemical properties, and the terminal structures of those HSP20s. Through collinearity analysis and Ka/Ks ratio calculations, we found that most HSP20 genes underwent purifying selection during maize domestication, although a few genes showed signs of positive selection pressure. Additionally, expression analysis showed that several HSP20 genes were significantly upregulated under high temperatures, particularly in tassels and leaves. Co-expression network analysis revealed that HSP20 genes were significantly enriched in GO terms related to environmental stress responses, suggesting that HSP20 genes not only play key roles in heat stress but may also be involved in regulating various other biological processes, such as secondary metabolism and developmental processes. These findings expand our understanding of the functions of the maize HSP20 family and provide new insights for further research into maize’s response mechanisms to environmental stresses. Full article
(This article belongs to the Special Issue Transcription Factors in Plant Gene Expression Regulation)
Show Figures

Figure 1

20 pages, 11630 KiB  
Article
Pangenome Data Analysis Reveals Characteristics of Resistance Gene Analogs Associated with Sclerotinia sclerotiorum Resistance in Sunflower
by Yan Lu, Jiaying Huang, Dongqi Liu, Xiangjiu Kong, Yang Song and Lan Jing
Life 2024, 14(10), 1322; https://doi.org/10.3390/life14101322 - 17 Oct 2024
Viewed by 564
Abstract
The sunflower, an important oilseed crop and food source across the world, is susceptible to several pathogens, which cause severe losses in sunflower production. The utilization of genetic resistance is the most economical, effective measure to prevent infectious diseases. Based on the sunflower [...] Read more.
The sunflower, an important oilseed crop and food source across the world, is susceptible to several pathogens, which cause severe losses in sunflower production. The utilization of genetic resistance is the most economical, effective measure to prevent infectious diseases. Based on the sunflower pangenome, in this study, we explored the variability of resistance gene analogs (RGAs) within the species. According to a comparative analysis of RGA candidates in the sunflower pangenome using the RGAugury pipeline, a total of 1344 RGAs were identified, comprising 1107 conserved, 199 varied, and 38 rare RGAs. We also identified RGAs associated with resistance against Sclerotinia sclerotiorum (S. sclerotiorum) in sunflower at the quantitative trait locus (QTL). A total of 61 RGAs were found to be located at four quantitative trait loci (QTLs). Through a detailed expression analysis of RGAs in one susceptible and two tolerant sunflower inbred lines (ILs) across various time points post inoculation, we discovered that 348 RGAs exhibited differential expression in response to Sclerotinia head rot (SHR), with 17 of these differentially expressed RGAs being situated within the QTL regions. In addition, 15 RGA candidates had gene introgression. Our data provide a better understanding of RGAs, which facilitate genomics-based improvements in disease resistance in sunflower. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

25 pages, 4909 KiB  
Article
Genomic Diversity of Streptomyces clavuligerus: Implications for Clavulanic Acid Biosynthesis and Industrial Hyperproduction
by Paula Ríos-Fernández, Carlos Caicedo-Montoya and Rigoberto Ríos-Estepa
Int. J. Mol. Sci. 2024, 25(20), 10992; https://doi.org/10.3390/ijms252010992 - 12 Oct 2024
Viewed by 881
Abstract
Streptomyces clavuligerus is a species used worldwide to industrially produce clavulanic acid (CA), a molecule that enhances antibiotic effectiveness against β-lactamase-producing bacterial strains. Despite its low inherent CA production, hyper-producing strains have been developed. However, genomic analyses specific to S. clavuligerus and CA biosynthesis [...] Read more.
Streptomyces clavuligerus is a species used worldwide to industrially produce clavulanic acid (CA), a molecule that enhances antibiotic effectiveness against β-lactamase-producing bacterial strains. Despite its low inherent CA production, hyper-producing strains have been developed. However, genomic analyses specific to S. clavuligerus and CA biosynthesis are limited. Genomic variations that may influence CA yield were explored using S. clavuligerus strain genomes from diverse sources. Despite the slight differences obtained by similarity index calculation, pan-genome estimation revealed that only half of the genes identified were present in all strains. As expected, core genes were associated with primary metabolism, while the remaining genes were linked to secondary metabolism. Differences at the sequence level were more likely to be found in regions close to the tips of the linear chromosome. Wild-type strains preserved larger chromosomal and plasmid regions compared to industrial and/or hyper-producing strains; such a grouping pattern was also found through refined phylogenetic analyses. These results provide essential insights for the development of hyper-producing S. clavuligerus strains, attending to the critical demand for this antibiotic enhancer and contributing to future strategies for CA production optimization. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

11 pages, 3477 KiB  
Article
Genomic Analysis of Novel Bacterial Species Corynebacterium ramonii ST344 Clone Strains Isolated from Human Skin Ulcer and Rescued Cats in Japan
by Chie Shitada, Mikoto Moriguchi, Hideyuki Hayashi, Kazutoshi Matsumoto, Misato Mori, Eisuke Tokuoka, Shunsuke Yahiro, Shouichirou Gejima, Kazuhiro Horiba, Takatoshi Yamamoto, Motohide Takahashi and Makoto Kuroda
Zoonotic Dis. 2024, 4(4), 234-244; https://doi.org/10.3390/zoonoticdis4040020 - 11 Oct 2024
Viewed by 533
Abstract
Some Corynebacterium strains produce toxins that are similar to those produced by Corynebacterium diphtheriae, leading to human infections that are often transmitted through zoonotic diseases. A novel species, which is formerly classified as Corynebacterium ulcerans lineage II, was recently re-evaluated and renamed [...] Read more.
Some Corynebacterium strains produce toxins that are similar to those produced by Corynebacterium diphtheriae, leading to human infections that are often transmitted through zoonotic diseases. A novel species, which is formerly classified as Corynebacterium ulcerans lineage II, was recently re-evaluated and renamed “Corynebacterium ramonii sp. nov.”. We isolated C. ramonii from a human skin ulcer in Japan in 2023 (KCU0303-001) and identified it as ST344 using a genomic analysis. In addition, C. ramonii KPHES-18084 (ST344) and six strains of C. ulcerans (ST337/ST1011) were isolated from the oral cavities of 7/208 rescued cats (3.4%). The human ulcer strain KCU0303-001 and the rescued cat strain KPHES-18084 were found to be ST344 and closely related clones by core-genome and pan-genome analyses, suggesting that ST344 may be endemic to both clinical and companion animals in Japan. In support of this finding, another clinical isolate of ST344 (TSU-28 strain) was reported in Japan in 2019. Although ST337 is the most common C. ulcerans infection, the second most recent clinical isolate of C. ramonii, ST344, might be increasing; therefore, further genomic surveillance is required to monitor C. ramonii and C. ulcerans infections. Full article
Show Figures

Figure 1

21 pages, 3046 KiB  
Article
Investigating Anthrax-Associated Virulence Genes among Archival and Contemporary Bacillus cereus Group Genomes
by Susanna J. Sabin, Cari A. Beesley, Chung K. Marston, Taylor K. Paisie, Christopher A. Gulvik, Gregory A. Sprenger, Jay E. Gee, Rita M. Traxler, Melissa E. Bell, John R. McQuiston and Zachary P. Weiner
Pathogens 2024, 13(10), 884; https://doi.org/10.3390/pathogens13100884 - 10 Oct 2024
Viewed by 828
Abstract
Bacillus anthracis causes anthrax through virulence factors encoded on two plasmids. However, non-B. anthracis organisms within the closely related, environmentally ubiquitous Bacillus cereus group (BCG) may cause an anthrax-like disease in humans through the partial adoption of anthrax-associated virulence genes, challenging the definition [...] Read more.
Bacillus anthracis causes anthrax through virulence factors encoded on two plasmids. However, non-B. anthracis organisms within the closely related, environmentally ubiquitous Bacillus cereus group (BCG) may cause an anthrax-like disease in humans through the partial adoption of anthrax-associated virulence genes, challenging the definition of anthrax disease. To elucidate these phenomena and their evolutionary past, we performed whole-genome sequencing on non-anthracis BCG isolates, including 93 archival (1967–2003) and 5 contemporary isolates (2019–2023). We produced annotated genomic assemblies and performed a pan-genome analysis to identify evidence of virulence gene homology and virulence gene acquisition by linear inheritance or horizontal gene transfer. At least one anthrax-associated virulence gene was annotated in ten isolates. Most homologous sequences in archival isolates showed evidence of pseudogenization and subsequent gene loss. The presence or absence of accessory genes, including anthrax-associated virulence genes, aligned with the phylogenetic structure of the BCG core genome. These findings support the hypothesis that anthrax-associated virulence genes were inherited from a common ancestor in the BCG and were retained or lost across different lineages, and contribute to a growing body of work informing public health strategies related to anthrax surveillance and identification. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

15 pages, 2600 KiB  
Article
Contribution of the Mobilome to the Configuration of the Resistome of Corynebacterium striatum
by Catherine Urrutia, Benjamin Leyton-Carcaman and Michel Abanto Marin
Int. J. Mol. Sci. 2024, 25(19), 10499; https://doi.org/10.3390/ijms251910499 - 29 Sep 2024
Viewed by 654
Abstract
Corynebacterium striatum, present in the microbiota of human skin and nasal mucosa, has recently emerged as a causative agent of hospital-acquired infections, notable for its resistance to multiple antimicrobials. Its mobilome comprises several mobile genetic elements, such as plasmids, transposons, insertion sequences [...] Read more.
Corynebacterium striatum, present in the microbiota of human skin and nasal mucosa, has recently emerged as a causative agent of hospital-acquired infections, notable for its resistance to multiple antimicrobials. Its mobilome comprises several mobile genetic elements, such as plasmids, transposons, insertion sequences and integrons, which contribute to the acquisition of antimicrobial resistance genes. This study analyzes the contribution of the C. striatum mobilome in the transfer and dissemination of resistance genes. In addition, integrative and conjugative elements (ICEs), essential in the dissemination of resistance genes between bacterial populations, whose role in C. striatum has not yet been studied, are examined. This study examined 365 C. striatum genomes obtained from the NCBI Pathogen Detection database. Phylogenetic and pangenome analyses were performed, the resistance profile of the bacterium was recognized, and mobile elements, including putative ICE, were detected. Bioinformatic analyses identified 20 antimicrobial resistance genes in this species, with the Ermx gene being the most predominant. Resistance genes were mainly associated with plasmid sequence regions and class 1 integrons. Although an ICE was detected, no resistance genes linked to this element were found. This study provided valuable information on the geographic spread and prevalence of outbreaks observed through phylogenetic and pangenome analyses, along with identifying antimicrobial resistance genes and mobile genetic elements that carry many of the resistance genes and may be the subject of future research and therapeutic approaches. Full article
(This article belongs to the Special Issue Evolution and Genomics: Relevance to Current Issues)
Show Figures

Figure 1

18 pages, 7978 KiB  
Article
Identification and Functional Characterization of Abiotic Stress Tolerance-Related PLATZ Transcription Factor Family in Barley (Hordeum vulgare L.)
by Kangfeng Cai, Xiujuan Song, Wenhao Yue, Lei Liu, Fangying Ge and Junmei Wang
Int. J. Mol. Sci. 2024, 25(18), 10191; https://doi.org/10.3390/ijms251810191 - 23 Sep 2024
Viewed by 770
Abstract
Plant AT-rich sequence and zinc-binding proteins (PLATZs) are a novel category of plant-specific transcription factors involved in growth, development, and abiotic stress responses. However, the PLATZ gene family has not been identified in barley. In this study, a total of 11 HvPLATZs were [...] Read more.
Plant AT-rich sequence and zinc-binding proteins (PLATZs) are a novel category of plant-specific transcription factors involved in growth, development, and abiotic stress responses. However, the PLATZ gene family has not been identified in barley. In this study, a total of 11 HvPLATZs were identified in barley, and they were unevenly distributed on five of the seven chromosomes. The phylogenetic tree, incorporating PLATZs from Arabidopsis, rice, maize, wheat, and barley, could be classified into six clusters, in which HvPLATZs are absent in Cluster VI. HvPLATZs exhibited conserved motif arrangements with a characteristic PLATZ domain. Two segmental duplication events were observed among HvPLATZs. All HvPLATZs were core genes present in 20 genotypes of the barley pan-genome. The HvPLATZ5 coding sequences were conserved among 20 barley genotypes, whereas HvPLATZ4/9/10 exhibited synonymous single nucleotide polymorphisms (SNPs); the remaining ones showed nonsynonymous variations. The expression of HvPLATZ2/3/8 was ubiquitous in various tissues, whereas HvPLATZ7 appeared transcriptionally silent; the remaining genes displayed tissue-specific expression. The expression of HvPLATZs was modulated by salt stress, potassium deficiency, and osmotic stress, with response patterns being time-, tissue-, and stress type-dependent. The heterologous expression of HvPLATZ3/5/6/8/9/10/11 in yeast enhanced tolerance to salt and osmotic stress, whereas the expression of HvPLATZ2 compromised tolerance. These results advance our comprehension and facilitate further functional characterization of HvPLATZs. Full article
(This article belongs to the Special Issue Advances in Plant Genomics and Genetics)
Show Figures

Figure 1

19 pages, 3230 KiB  
Article
The Phylogenomic Characterization of Planotetraspora Species and Their Cellulases for Biotechnological Applications
by Noureddine Bouras, Mahfoud Bakli, Guendouz Dif, Slim Smaoui, Laura Șmuleac, Raul Paşcalău, Esther Menendez and Imen Nouioui
Genes 2024, 15(9), 1202; https://doi.org/10.3390/genes15091202 - 12 Sep 2024
Viewed by 904
Abstract
This study aims to evaluate the in silico genomic characteristics of five species of the genus Planotetraspora: P. kaengkrachanensis, P. mira, P. phitsanulokensis, P. silvatica, and P. thailandica, with a view to their application in therapeutic research. [...] Read more.
This study aims to evaluate the in silico genomic characteristics of five species of the genus Planotetraspora: P. kaengkrachanensis, P. mira, P. phitsanulokensis, P. silvatica, and P. thailandica, with a view to their application in therapeutic research. The 16S rRNA comparison indicated that these species were phylogenetically distinct. Pairwise comparisons of digital DNA-DNA hybridization (dDDH) and OrthoANI values between these studied type strains indicated that dDDH values were below 62.5%, while OrthoANI values were lower than 95.3%, suggesting that the five species represent distinct genomospecies. These results were consistent with the phylogenomic study based on core genes and the pangenome analysis of these five species within the genus Planotetraspora. However, the genome annotation showed some differences between these species, such as variations in the number of subsystem category distributions across whole genomes (ranging between 1979 and 2024). Additionally, the number of CAZYme (Carbohydrate-Active enZYme) genes ranged between 298 and 325, highlighting the potential of these bacteria for therapeutic research applications. The in silico physico-chemical characteristics of cellulases from Planotetraspora species were analyzed. Their 3D structure was modeled, refined, and validated. A molecular docking analysis of this cellulase protein structural model was conducted with cellobiose, cellotetraose, laminaribiose, carboxymethyl cellulose, glucose, and xylose ligand. Our study revealed significant interaction between the Planotetraspora cellulase and cellotetraose substrate, evidenced by stable binding energies. This suggests that this bacterial enzyme holds great potential for utilizing cellotetraose as a substrate in various applications. This study enriches our understanding of the potential applications of Planotetraspora species in therapeutic research. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

18 pages, 5588 KiB  
Article
Pangenome Identification and Analysis of Terpene Synthase Gene Family Members in Gossypium
by Yueqin Song, Shengjie Han, Mengting Wang, Xueqi Ni, Xinzheng Huang and Yongjun Zhang
Int. J. Mol. Sci. 2024, 25(17), 9677; https://doi.org/10.3390/ijms25179677 - 6 Sep 2024
Viewed by 693
Abstract
Terpene synthases (TPSs), key gatekeepers in the biosynthesis of herbivore-induced terpenes, are pivotal in the diversity of terpene chemotypes across and within plant species. Here, we constructed a gene-based pangenome of the Gossypium genus by integrating the genomes of 17 diploid and 10 [...] Read more.
Terpene synthases (TPSs), key gatekeepers in the biosynthesis of herbivore-induced terpenes, are pivotal in the diversity of terpene chemotypes across and within plant species. Here, we constructed a gene-based pangenome of the Gossypium genus by integrating the genomes of 17 diploid and 10 tetraploid species. Within this pangenome, 208 TPS syntelog groups (SGs) were identified, comprising 2 core SGs (TPS5 and TPS42) present in all 27 analyzed genomes, 6 softcore SGs (TPS11, TPS12, TPS13, TPS35, TPS37, and TPS47) found in 25 to 26 genomes, 131 dispensable SGs identified in 2 to 24 genomes, and 69 private SGs exclusive to a single genome. The mutational load analysis of these identified TPS genes across 216 cotton accessions revealed a great number of splicing variants and complex splicing patterns. The nonsynonymous/synonymous Ka/Ks value for all 52 analyzed TPS SGs was less than one, indicating that these genes were subject to purifying selection. Of 208 TPS SGs encompassing 1795 genes, 362 genes derived from 102 SGs were identified as atypical and truncated. The structural analysis of TPS genes revealed that gene truncation is a major mechanism contributing to the formation of atypical genes. An integrated analysis of three RNA-seq datasets from cotton plants subjected to herbivore infestation highlighted nine upregulated TPSs, which included six previously characterized TPSs in G. hirsutum (AD1_TPS10, AD1_TPS12, AD1_TPS40, AD1_TPS42, AD1_TPS89, and AD1_TPS104), two private TPSs (AD1_TPS100 and AD2_TPS125), and one atypical TPS (AD2_TPS41). Also, a TPS-associated coexpression module of eight genes involved in the terpenoid biosynthesis pathway was identified in the transcriptomic data of herbivore-infested G. hirsutum. These findings will help us understand the contributions of TPS family members to interspecific terpene chemotypes within Gossypium and offer valuable resources for breeding insect-resistant cotton cultivars. Full article
(This article belongs to the Special Issue Physiology and Molecular Biology of Plant Stress Tolerance)
Show Figures

Figure 1

12 pages, 2631 KiB  
Article
Genomic Analyses of Methicillin-Susceptible and Methicillin-Resistant Staphylococcus pseudintermedius Strains Involved in Canine Infections: A Comprehensive Genotypic Characterization
by Maria Eduarda Rocha Jacques da Silva, Gabriela Merker Breyer, Mateus Matiuzzi da Costa, Bertram Brenig, Vasco Ariston de Carvalho Azevedo, Marisa Ribeiro de Itapema Cardoso and Franciele Maboni Siqueira
Pathogens 2024, 13(9), 760; https://doi.org/10.3390/pathogens13090760 - 4 Sep 2024
Viewed by 672
Abstract
Staphylococcus pseudintermedius is frequently associated with several bacterial infections in dogs, highlighting a One Health concern due to the zoonotic potential. Given the clinical significance of this pathogen, we performed comprehensive genomic analyses of 28 S. pseudintermedius strains isolated from canine infections throughout [...] Read more.
Staphylococcus pseudintermedius is frequently associated with several bacterial infections in dogs, highlighting a One Health concern due to the zoonotic potential. Given the clinical significance of this pathogen, we performed comprehensive genomic analyses of 28 S. pseudintermedius strains isolated from canine infections throughout whole-genome sequencing using Illumina HiSeq, and compared the genetic features between S. pseudintermedius methicillin-resistant (MRSP) and methicillin-susceptible (MSSP) strains. Our analyses determined that MRSP genomes are larger than MSSP strains, with significant changes in antimicrobial resistance genes and virulent markers, suggesting differences in the pathogenicity of MRSP and MSSP strains. In addition, the pangenome analysis of S. pseudintermedius from canine and human origins identified core and accessory genomes with 1847 and 3037 genes, respectively, which indicates that most of the S. pseudintermedius genome is highly variable. Furthermore, phylogenomic analysis clearly separated MRSP from MSSP strains, despite their infection sites, showing phylogenetic differences according to methicillin susceptibility. Altogether our findings underscore the importance of studying the evolutionary dynamics of S. pseudintermedius, which is crucial for the development of effective prevention and control strategies of resistant S. pseudintermedius infections. Full article
Show Figures

Figure 1

13 pages, 3329 KiB  
Article
Comparative Analysis of Transposable Elements in the Genomes of Citrus and Citrus-Related Genera
by Yilei Wu, Fusheng Wang, Keliang Lyu and Renyi Liu
Plants 2024, 13(17), 2462; https://doi.org/10.3390/plants13172462 - 3 Sep 2024
Viewed by 628
Abstract
Transposable elements (TEs) significantly contribute to the evolution and diversity of plant genomes. In this study, we explored the roles of TEs in the genomes of Citrus and Citrus-related genera by constructing a pan-genome TE library from 20 published genomes of Citrus [...] Read more.
Transposable elements (TEs) significantly contribute to the evolution and diversity of plant genomes. In this study, we explored the roles of TEs in the genomes of Citrus and Citrus-related genera by constructing a pan-genome TE library from 20 published genomes of Citrus and Citrus-related accessions. Our results revealed an increase in TE content and the number of TE types compared to the original annotations, as well as a decrease in the content of unclassified TEs. The average length of TEs per assembly was approximately 194.23 Mb, representing 41.76% (Murraya paniculata) to 64.76% (Citrus gilletiana) of the genomes, with a mean value of 56.95%. A significant positive correlation was found between genome size and both the number of TE types and TE content. Consistent with the difference in mean whole-genome size (39.83 Mb) between Citrus and Citrus-related genera, Citrus genomes contained an average of 34.36 Mb more TE sequences than Citrus-related genomes. Analysis of the estimated insertion time and half-life of long terminal repeat retrotransposons (LTR-RTs) suggested that TE removal was not the primary factor contributing to the differences among genomes. These findings collectively indicate that TEs are the primary determinants of genome size and play a major role in shaping genome structures. Principal coordinate analysis (PCoA) of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) identifiers revealed that the fragmented TEs were predominantly derived from ancestral genomes, while intact TEs were crucial in the recent evolutionary diversification of Citrus. Moreover, the presence or absence of intact TEs near the AdhE superfamily was closely associated with the bitterness trait in the Citrus species. Overall, this study enhances TE annotation in Citrus and Citrus-related genomes and provides valuable data for future genetic breeding and agronomic trait research in Citrus. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

16 pages, 3649 KiB  
Article
Pan-Genome Analysis of TRM Gene Family and Their Expression Pattern under Abiotic and Biotic Stresses in Cucumber
by Lili Zhao, Ke Wang, Zimo Wang, Shunpeng Chu, Chunhua Chen, Lina Wang and Zhonghai Ren
Horticulturae 2024, 10(9), 908; https://doi.org/10.3390/horticulturae10090908 - 27 Aug 2024
Viewed by 731
Abstract
Cucumber (Cucumis sativus L.) is a vital economic vegetable crop, and the TONNEAU1 Recruiting Motif (TRM) gene plays a key role in cucumber organ growth. However, the pan-genomic characteristics of the TRM gene family and their expression patterns under different stresses have [...] Read more.
Cucumber (Cucumis sativus L.) is a vital economic vegetable crop, and the TONNEAU1 Recruiting Motif (TRM) gene plays a key role in cucumber organ growth. However, the pan-genomic characteristics of the TRM gene family and their expression patterns under different stresses have not been reported in cucumber. In this study, we identified 29 CsTRMs from the pan-genomes of 13 cucumber accessions, with CsTRM29 existing only in PI183967. Most CsTRM proteins exhibited differences in sequence length, except five CsTRMs having consistent protein sequence lengths among the 13 accessions. All CsTRM proteins showed amino acid variations. An analysis of CsTRM gene expression patterns revealed that six CsTRM genes strongly changed in short-fruited lines compared with long-fruited lines. And four CsTRM genes strongly responded to salt and heat stress, while CsTRM14 showed responses to salt stress, powdery mildew, gray mold, and downy mildew. Some CsTRM genes were induced or suppressed at different treatment timepoints, suggesting that cucumber TRM genes may play different roles in responses to different stresses, with expression patterns varying with stress changes. Remarkably, the expression of CsTRM21 showed considerable change between long and short fruits and in responses to abiotic stresses (salt stress and heat stress), as well as biotic stresses (powdery mildew and gray mold), suggesting a dual role of CsTRM21 in both fruit shape determination and stress resistance. Collectively, this study provided a base for the further functional identification of CsTRM genes in cucumber plant growth and stress resistance. Full article
(This article belongs to the Special Issue Vegetable Genomics and Breeding Research)
Show Figures

Figure 1

Back to TopTop