Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = pH-dependent membrane fusion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 13849 KiB  
Article
Kinetic Landscape of Single Virus-like Particles Highlights the Efficacy of SARS-CoV-2 Internalization
by Aleksandar Atemin, Aneliya Ivanova, Wiley Peppel, Rumen Stamatov, Rodrigo Gallegos, Haley Durden, Sonya Uzunova, Michael D. Vershinin, Saveez Saffarian and Stoyno S. Stoynov
Viruses 2024, 16(8), 1341; https://doi.org/10.3390/v16081341 - 22 Aug 2024
Viewed by 3900
Abstract
The efficiency of virus internalization into target cells is a major determinant of infectivity. SARS-CoV-2 internalization occurs via S-protein-mediated cell binding followed either by direct fusion with the plasma membrane or endocytosis and subsequent fusion with the endosomal membrane. Despite the crucial role [...] Read more.
The efficiency of virus internalization into target cells is a major determinant of infectivity. SARS-CoV-2 internalization occurs via S-protein-mediated cell binding followed either by direct fusion with the plasma membrane or endocytosis and subsequent fusion with the endosomal membrane. Despite the crucial role of virus internalization, the precise kinetics of the processes involved remains elusive. We developed a pipeline, which combines live-cell microscopy and advanced image analysis, for measuring the rates of multiple internalization-associated molecular events of single SARS-CoV-2-virus-like particles (VLPs), including endosome ingression and pH change. Our live-cell imaging experiments demonstrate that only a few minutes after binding to the plasma membrane, VLPs ingress into RAP5-negative endosomes via dynamin-dependent scission. Less than two minutes later, VLP speed increases in parallel with a pH drop below 5, yet these two events are not interrelated. By co-imaging fluorescently labeled nucleocapsid proteins, we show that nucleocapsid release occurs with similar kinetics to VLP acidification. Neither Omicron mutations nor abrogation of the S protein polybasic cleavage site affected the rate of VLP internalization, indicating that they do not confer any significant advantages or disadvantages during this process. Finally, we observe that VLP internalization occurs two to three times faster in VeroE6 than in A549 cells, which may contribute to the greater susceptibility of the former cell line to SARS-CoV-2 infection. Taken together, our precise measurements of the kinetics of VLP internalization-associated processes shed light on their contribution to the effectiveness of SARS-CoV-2 propagation in cells. Full article
(This article belongs to the Special Issue Emerging Concepts in SARS-CoV-2 Biology and Pathology 2.0)
Show Figures

Figure 1

17 pages, 7361 KiB  
Article
Differentiating Cell Entry Potentials of SARS-CoV-2 Omicron Subvariants on Human Lung Epithelium Cells
by Revansiddha H. Katte, Yuanyun Ao, Wang Xu, Yang Han, Guohua Zhong, Dibya Ghimire, Jon Florence, Torry A. Tucker and Maolin Lu
Viruses 2024, 16(3), 391; https://doi.org/10.3390/v16030391 - 1 Mar 2024
Viewed by 1740
Abstract
The surface spike (S) glycoprotein mediates cell entry of SARS-CoV-2 into the host through fusion at the plasma membrane or endocytosis. Omicron lineages/sublineages have acquired extensive mutations in S to gain transmissibility advantages and altered antigenicity. The fusogenicity, antigenicity, and evasion of Omicron [...] Read more.
The surface spike (S) glycoprotein mediates cell entry of SARS-CoV-2 into the host through fusion at the plasma membrane or endocytosis. Omicron lineages/sublineages have acquired extensive mutations in S to gain transmissibility advantages and altered antigenicity. The fusogenicity, antigenicity, and evasion of Omicron subvariants have been extensively investigated at unprecedented speed to align with the mutation rate of S. Cells that overexpress receptors/cofactors are mostly used as hosts to amplify infection sensitivity to tested variants. However, systematic cell entry comparisons of most prior dominant Omicron subvariants using human lung epithelium cells are yet to be well-studied. Here, with human bronchial epithelium BEAS-2B cells as the host, we compared single-round virus-to-cell entry and cell-to-cell fusion of Omicron BA.1, BA.5, BQ.1.1, CH.1.1, XBB.1.5, and XBB.1.16 based upon split NanoLuc fusion readout assays and the S-pseudotyped lentivirus system. Virus-to-cell entry of tested S variants exhibited cell-type dependence. The parental Omicron BA.1 required more time to develop full entry to HEK293T-ACE2-TMPRSS2 than BEAS-2B cells. Compared to unchanged P681, S-cleavage constructs of P681H/R did not have any noticeable advantages in cell entry. Omicron BA.1 and its descendants entered BEAS-2B cells more efficiently than D614G, and it was slightly less or comparable to that of Delta. Serine protease-pretreated Omicron subvariants enhanced virus-to-cell entry in a dose-dependent manner, suggesting fusion at the plasma membrane persists as a productive cell entry route. Spike-mediated cell-to-cell fusion and total S1/S2 processing of Omicron descendants were similar. Our results indicate no obvious entry or fusion advantages of recent Omicron descendants over preceding variants since Delta, thus supporting immune evasion conferred by antigenicity shifts due to altered S sequences as probably the primary viral fitness driver. Full article
(This article belongs to the Special Issue Host Membranes and Virus Infection Cycle)
Show Figures

Figure 1

21 pages, 3437 KiB  
Article
Identification of Myelin Basic Protein Proximity Interactome Using TurboID Labeling Proteomics
by Evgeniya V. Smirnova, Tatiana V. Rakitina, Rustam H. Ziganshin, George A. Saratov, Georgij P. Arapidi, Alexey A. Belogurov and Anna A. Kudriaeva
Cells 2023, 12(6), 944; https://doi.org/10.3390/cells12060944 - 20 Mar 2023
Cited by 3 | Viewed by 4162
Abstract
Myelin basic protein (MBP) is one of the key structural elements of the myelin sheath and has autoantigenic properties in multiple sclerosis (MS). Its intracellular interaction network is still partially deconvoluted due to the unfolded structure, abnormally basic charge, and specific cellular localization. [...] Read more.
Myelin basic protein (MBP) is one of the key structural elements of the myelin sheath and has autoantigenic properties in multiple sclerosis (MS). Its intracellular interaction network is still partially deconvoluted due to the unfolded structure, abnormally basic charge, and specific cellular localization. Here we used the fusion protein of MBP with TurboID, an engineered biotin ligase that uses ATP to convert biotin to reactive biotin-AMP that covalently attaches to nearby proteins, to determine MBP interactome. Despite evident benefits, the proximity labeling proteomics technique generates high background noise, especially in the case of proteins tending to semi-specific interactions. In order to recognize unique MBP partners, we additionally mapped protein interaction networks for deaminated MBP variant and cyclin-dependent kinase inhibitor 1 (p21), mimicking MBP in terms of natively unfolded state, size and basic amino acid clusters. We found that in the plasma membrane region, MBP is colocalized with adhesion proteins occludin and myelin protein zero-like protein 1, solute carrier family transporters ZIP6 and SNAT1, Eph receptors ligand Ephrin-B1, and structural components of the vesicle transport machinery—synaptosomal-associated protein 23 (SNAP23), vesicle-associated membrane protein 3 (VAMP3), protein transport protein hSec23B and cytoplasmic dynein 1 heavy chain 1. We also detected that MBP potentially interacts with proteins involved in Fe2+ and lipid metabolism, namely, ganglioside GM2 activator protein, long-chain-fatty-acid-CoA ligase 4 (ACSL4), NADH-cytochrome b5 reductase 1 (CYB5R1) and metalloreductase STEAP3. Assuming the emerging role of ferroptosis and vesicle cargo docking in the development of autoimmune neurodegeneration, MBP may recruit and regulate the activity of these processes, thus, having a more inclusive role in the integrity of the myelin sheath. Full article
(This article belongs to the Special Issue Proteomic Applications in Ageing and Neurodegenerative Conditions)
Show Figures

Figure 1

16 pages, 6226 KiB  
Article
Characterization of a PIP Binding Site in the N-Terminal Domain of V-ATPase a4 and Its Role in Plasma Membrane Association
by Anh Chu, Yeqi Yao, Golam T. Saffi, Ji Hyun Chung, Roberto J. Botelho, Miroslawa Glibowicka, Charles M. Deber and Morris F. Manolson
Int. J. Mol. Sci. 2023, 24(5), 4867; https://doi.org/10.3390/ijms24054867 - 2 Mar 2023
Cited by 2 | Viewed by 2364
Abstract
Vacuolar ATPases (V-ATPases) are multi-subunit ATP-dependent proton pumps necessary for cellular functions, including pH regulation and membrane fusion. The evidence suggests that the V-ATPase a-subunit’s interaction with the membrane signaling lipid phosphatidylinositol (PIPs) regulates the recruitment of V-ATPase complexes to specific membranes. We [...] Read more.
Vacuolar ATPases (V-ATPases) are multi-subunit ATP-dependent proton pumps necessary for cellular functions, including pH regulation and membrane fusion. The evidence suggests that the V-ATPase a-subunit’s interaction with the membrane signaling lipid phosphatidylinositol (PIPs) regulates the recruitment of V-ATPase complexes to specific membranes. We generated a homology model of the N-terminal domain of the human a4 isoform (a4NT) using Phyre2.0 and propose a lipid binding domain within the distal lobe of the a4NT. We identified a basic motif, K234IKK237, critical for interaction with phosphoinositides (PIP), and found similar basic residue motifs in all four mammalian and both yeast a-isoforms. We tested PIP binding of wildtype and mutant a4NT in vitro. In protein lipid overlay assays, the double mutation K234A/K237A and the autosomal recessive distal renal tubular-causing mutation K237del reduced both PIP binding and association with liposomes enriched with PI(4,5)P2, a PIP enriched within plasma membranes. Circular dichroism spectra of the mutant protein were comparable to wildtype, indicating that mutations affected lipid binding, not protein structure. When expressed in HEK293, wildtype a4NT localized to the plasma membrane in fluorescence microscopy and co-purified with the microsomal membrane fraction in cellular fractionation experiments. a4NT mutants showed reduced membrane association and decreased plasma membrane localization. Depletion of PI(4,5)P2 by ionomycin caused reduced membrane association of the WT a4NT protein. Our data suggest that information contained within the soluble a4NT is sufficient for membrane association and that PI(4,5)P2 binding capacity is involved in a4 V-ATPase plasma membrane retention. Full article
(This article belongs to the Special Issue Biochemistry, Molecular Biology and Druggability of Proteins)
Show Figures

Figure 1

11 pages, 2725 KiB  
Review
Neurodegenerative Lysosomal Storage Disorders: TPC2 Comes to the Rescue!
by Sandra Prat Castro, Veronika Kudrina, Dawid Jaślan, Julia Böck, Anna Scotto Rosato and Christian Grimm
Cells 2022, 11(18), 2807; https://doi.org/10.3390/cells11182807 - 8 Sep 2022
Cited by 9 | Viewed by 4308
Abstract
Lysosomal storage diseases (LSDs) resulting from inherited gene mutations constitute a family of disorders that disturb lysosomal degradative function leading to abnormal storage of macromolecular substrates. In most LSDs, central nervous system (CNS) involvement is common and leads to the progressive appearance of [...] Read more.
Lysosomal storage diseases (LSDs) resulting from inherited gene mutations constitute a family of disorders that disturb lysosomal degradative function leading to abnormal storage of macromolecular substrates. In most LSDs, central nervous system (CNS) involvement is common and leads to the progressive appearance of neurodegeneration and early death. A growing amount of evidence suggests that ion channels in the endolysosomal system play a crucial role in the pathology of neurodegenerative LSDs. One of the main basic mechanisms through which the endolysosomal ion channels regulate the function of the endolysosomal system is Ca2+ release, which is thought to be essential for intracellular compartment fusion, fission, trafficking and lysosomal exocytosis. The intracellular TRPML (transient receptor potential mucolipin) and TPC (two-pore channel) ion channel families constitute the main essential Ca2+-permeable channels expressed on endolysosomal membranes, and they are considered potential drug targets for the prevention and treatment of LSDs. Although TRPML1 activation has shown rescue effects on LSD phenotypes, its activity is pH dependent, and it is blocked by sphingomyelin accumulation, which is characteristic of some LSDs. In contrast, TPC2 activation is pH-independent and not blocked by sphingomyelin, potentially representing an advantage over TRPML1. Here, we discuss the rescue of cellular phenotypes associated with LSDs such as cholesterol and lactosylceramide (LacCer) accumulation or ultrastructural changes seen by electron microscopy, mediated by the small molecule agonist of TPC2, TPC2-A1-P, which promotes lysosomal exocytosis and autophagy. In summary, new data suggest that TPC2 is a promising target for the treatment of different types of LSDs such as MLIV, NPC1, and Batten disease, both in vitro and in vivo. Full article
(This article belongs to the Section Intracellular and Plasma Membranes)
Show Figures

Figure 1

16 pages, 3897 KiB  
Article
Topological Relationships Cytoskeleton-Membrane Nanosurface-Morphology as a Basic Mechanism of Total Disorders of RBC Structures
by Elena Kozlova, Viktoria Sergunova, Ekaterina Sherstyukova, Olga Gudkova, Aleksandr Kozlov, Vladimir Inozemtsev, Snezhanna Lyapunova and Aleksandr Chernysh
Int. J. Mol. Sci. 2022, 23(4), 2045; https://doi.org/10.3390/ijms23042045 - 12 Feb 2022
Cited by 6 | Viewed by 2266
Abstract
The state of red blood cells (RBCs) and their functional possibilities depend on the structural organization of the membranes. Cell morphology and membrane nanostructure are compositionally and functionally related to the cytoskeleton network. In this work, the influence of agents (hemin, endogenous oxidation [...] Read more.
The state of red blood cells (RBCs) and their functional possibilities depend on the structural organization of the membranes. Cell morphology and membrane nanostructure are compositionally and functionally related to the cytoskeleton network. In this work, the influence of agents (hemin, endogenous oxidation during storage of packed RBCs, ultraviolet (UV) radiation, temperature, and potential of hydrogen (pH) changes) on the relationships between cytoskeleton destruction, membrane nanostructure, and RBC morphology was observed by atomic force microscope. It was shown that the influence of factors of a physical and biochemical nature causes structural rearrangements in RBCs at all levels of organization, forming a unified mechanism of disturbances in relationships “cytoskeleton-membrane nanosurface-cell morphology”. Filament ruptures and, consequently, large cytoskeleton pores appeared. The pores caused membrane topological defects in the form of separate grain domains. Increasing loading doses led to an increase in the number of large cytoskeleton pores and defects and their fusion at the membrane nanosurfaces. This caused the changes in RBC morphology. Our results can be used in molecular cell biology, membrane biophysics, and in fundamental and practical medicine. Full article
(This article belongs to the Special Issue Roles of Erythrocytes in Human Health and Disease)
Show Figures

Figure 1

21 pages, 27561 KiB  
Article
Diphyllin Shows a Broad-Spectrum Antiviral Activity against Multiple Medically Important Enveloped RNA and DNA Viruses
by Michal Štefánik, Dattatry Shivajirao Bhosale, Jan Haviernik, Petra Straková, Martina Fojtíková, Lucie Dufková, Ivana Huvarová, Jiří Salát, Jan Bartáček, Jan Svoboda, Miloš Sedlák, Daniel Růžek, Andrew D. Miller and Luděk Eyer
Viruses 2022, 14(2), 354; https://doi.org/10.3390/v14020354 - 9 Feb 2022
Cited by 14 | Viewed by 3444
Abstract
Diphyllin is a natural arylnaphtalide lignan extracted from tropical plants of particular importance in traditional Chinese medicine. This compound has been described as a potent inhibitor of vacuolar (H+)ATPases and hence of the endosomal acidification process that is required by numerous [...] Read more.
Diphyllin is a natural arylnaphtalide lignan extracted from tropical plants of particular importance in traditional Chinese medicine. This compound has been described as a potent inhibitor of vacuolar (H+)ATPases and hence of the endosomal acidification process that is required by numerous enveloped viruses to trigger their respective viral infection cascades after entering host cells by receptor-mediated endocytosis. Accordingly, we report here a revised, updated, and improved synthesis of diphyllin, and demonstrate its antiviral activities against a panel of enveloped viruses from Flaviviridae, Phenuiviridae, Rhabdoviridae, and Herpesviridae families. Diphyllin is not cytotoxic for Vero and BHK-21 cells up to 100 µM and exerts a sub-micromolar or low-micromolar antiviral activity against tick-borne encephalitis virus, West Nile virus, Zika virus, Rift Valley fever virus, rabies virus, and herpes-simplex virus type 1. Our study shows that diphyllin is a broad-spectrum host cell-targeting antiviral agent that blocks the replication of multiple phylogenetically unrelated enveloped RNA and DNA viruses. In support of this, we also demonstrate that diphyllin is more than just a vacuolar (H+)ATPase inhibitor but may employ other antiviral mechanisms of action to inhibit the replication cycles of those viruses that do not enter host cells by endocytosis followed by low pH-dependent membrane fusion. Full article
Show Figures

Figure 1

15 pages, 3165 KiB  
Article
The Impact of an Anchoring Layer on the Formation of Tethered Bilayer Lipid Membranes on Silver Substrates
by Indrė Aleknavičienė, Martynas Talaikis, Rima Budvytyte and Gintaras Valincius
Molecules 2021, 26(22), 6878; https://doi.org/10.3390/molecules26226878 - 15 Nov 2021
Cited by 4 | Viewed by 2443
Abstract
Tethered bilayer lipid membranes (tBLMs) have been known as stable and versatile experimental platforms for protein–membrane interaction studies. In this work, the assembly of functional tBLMs on silver substrates and the effect of the molecular chain-length of backfiller molecules on their properties were [...] Read more.
Tethered bilayer lipid membranes (tBLMs) have been known as stable and versatile experimental platforms for protein–membrane interaction studies. In this work, the assembly of functional tBLMs on silver substrates and the effect of the molecular chain-length of backfiller molecules on their properties were investigated. The following backfillers 3-mercapto-1-propanol (3M1P), 4-mercapto-1-butanol (4M1B), 6-mercapto-1-hexanol (6M1H), and 9-mercapto-1-nonanol (9M1N) mixed with the molecular anchor WC14 (20-tetradecyloxy-3,6,9,12,15,18,22 heptaoxahexatricontane-1-thiol) were used to form self-assembled monolayers (SAMs) on silver, which influenced a fusion of multilamellar vesicles and the formation of tBLMs. Spectroscopic analysis by SERS and RAIRS has shown that by using different-length backfiller molecules, it is possible to control WC14 anchor molecules orientation on the surface. An introduction of increasingly longer surface backfillers in the mixed SAM may be related to the increasing SAMs molecular order and more vertical orientation of WC14 at both the hydrophilic ethylenoxide segment and the hydrophobic lipid bilayer anchoring alkane chains. Since no clustering of WC14 alkane chains, which is deleterious for tBLM integrity, was observed on dry samples, the suitability of mixed-component SAMs for subsequent tBLM formation was further interrogated by electrochemical impedance spectroscopy (EIS). EIS showed the arrangement of well-insulating tBLMs if 3M1P was used as a backfiller. An increase in the length of the backfiller led to increased defectiveness of tBLMs. Despite variable defectiveness, all tBLMs responded to the pore-forming cholesterol-dependent cytolysin, vaginolysin in a manner consistent with the functional reconstitution of the toxin into phospholipid bilayer. This experiment demonstrates the biological relevance of tBLMs assembled on silver surfaces and indicates their utility as biosensing elements for the detection of pore-forming toxins in liquid samples. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Graphical abstract

17 pages, 1814 KiB  
Article
Evaluating Large Spontaneous Deletions in a Bovine Cell Line Selected for Bovine Viral Diarrhea Virus Resistance
by Aspen M. Workman, Michael P. Heaton, Dennis A. Webster, Gregory P. Harhay, Theodore S. Kalbfleisch, Timothy P. L. Smith, Shollie M. Falkenberg, Daniel F. Carlson and Tad S. Sonstegard
Viruses 2021, 13(11), 2147; https://doi.org/10.3390/v13112147 - 25 Oct 2021
Cited by 5 | Viewed by 2897
Abstract
Bovine viral diarrhea virus’s (BVDV) entry into bovine cells involves attachment of virions to cellular receptors, internalization, and pH-dependent fusion with endosomal membranes. The primary host receptor for BVDV is CD46; however, the complete set of host factors required for virus entry is [...] Read more.
Bovine viral diarrhea virus’s (BVDV) entry into bovine cells involves attachment of virions to cellular receptors, internalization, and pH-dependent fusion with endosomal membranes. The primary host receptor for BVDV is CD46; however, the complete set of host factors required for virus entry is unknown. The Madin-Darby bovine kidney (MDBK) cell line is susceptible to BVDV infection, while a derivative cell line (CRIB) is resistant at the level of virus entry. We performed complete genome sequencing of each to identify genomic variation underlying the resistant phenotype with the aim of identifying host factors essential for BVDV entry. Three large compound deletions in the BVDV-resistant CRIB cell line were identified and predicted to disrupt the function or expression of the genes PTPN12, GRID2, and RABGAP1L. However, CRISPR/Cas9 mediated knockout of these genes, individually or in combination, in the parental MDBK cell line did not impact virus entry or replication. Therefore, resistance to BVDV in the CRIB cell line is not due to the apparent spontaneous loss of PTPN12, GRID2, or RABGAP1L gene function. Identifying the functional cause of BVDV resistance in the CRIB cell line may require more detailed comparisons of the genomes and epigenomes. Full article
(This article belongs to the Topic Veterinary Infectious Diseases)
Show Figures

Figure 1

15 pages, 4950 KiB  
Article
P2X4 Receptors Mediate Ca2+ Release from Lysosomes in Response to Stimulation of P2X7 and H1 Histamine Receptors
by Sin-Lih Tan, Muruj Barri, Peace Atakpa-Adaji, Colin W. Taylor, Ewan St. John Smith and Ruth D. Murrell-Lagnado
Int. J. Mol. Sci. 2021, 22(19), 10492; https://doi.org/10.3390/ijms221910492 - 28 Sep 2021
Cited by 6 | Viewed by 2714
Abstract
The P2X4 purinergic receptor is targeted to endolysosomes, where it mediates an inward current dependent on luminal ATP and pH. Activation of P2X4 receptors was previously shown to trigger lysosome fusion, but the regulation of P2X4 receptors and their role in lysosomal Ca [...] Read more.
The P2X4 purinergic receptor is targeted to endolysosomes, where it mediates an inward current dependent on luminal ATP and pH. Activation of P2X4 receptors was previously shown to trigger lysosome fusion, but the regulation of P2X4 receptors and their role in lysosomal Ca2+ signaling are poorly understood. We show that lysosomal P2X4 receptors are activated downstream of plasma membrane P2X7 and H1 histamine receptor stimulation. When P2X4 receptors are expressed, the increase in near-lysosome cytosolic [Ca2+] is exaggerated, as detected with a low-affinity targeted Ca2+ sensor. P2X4-dependent changes in lysosome properties were triggered downstream of P2X7 receptor activation, including an enlargement of lysosomes indicative of homotypic fusion and a redistribution of lysosomes towards the periphery of the cell. Lysosomal P2X4 receptors, therefore, have a role in regulating lysosomal Ca2+ release and the regulation of lysosomal membrane trafficking. Full article
(This article belongs to the Special Issue Purinergic P2 Receptors: Structure and Function 2.0)
Show Figures

Figure 1

13 pages, 14179 KiB  
Article
CP100356 Hydrochloride, a P-Glycoprotein Inhibitor, Inhibits Lassa Virus Entry: Implication of a Candidate Pan-Mammarenavirus Entry Inhibitor
by Toru Takenaga, Zihan Zhang, Yukiko Muramoto, Sarah Katharina Fehling, Ai Hirabayashi, Yuki Takamatsu, Junichi Kajikawa, Sho Miyamoto, Masahiro Nakano, Shuzo Urata, Allison Groseth, Thomas Strecker and Takeshi Noda
Viruses 2021, 13(9), 1763; https://doi.org/10.3390/v13091763 - 3 Sep 2021
Cited by 5 | Viewed by 2815
Abstract
Lassa virus (LASV)—a member of the family Arenaviridae—causes Lassa fever in humans and is endemic in West Africa. Currently, no approved drugs are available. We screened 2480 small compounds for their potential antiviral activity using pseudotyped vesicular stomatitis virus harboring the LASV [...] Read more.
Lassa virus (LASV)—a member of the family Arenaviridae—causes Lassa fever in humans and is endemic in West Africa. Currently, no approved drugs are available. We screened 2480 small compounds for their potential antiviral activity using pseudotyped vesicular stomatitis virus harboring the LASV glycoprotein (VSV-LASVGP) and a related prototypic arenavirus, lymphocytic choriomeningitis virus (LCMV). Follow-up studies confirmed that CP100356 hydrochloride (CP100356), a specific P-glycoprotein (P-gp) inhibitor, suppressed VSV-LASVGP, LCMV, and LASV infection with half maximal inhibitory concentrations of 0.52, 0.54, and 0.062 μM, respectively, without significant cytotoxicity. Although CP100356 did not block receptor binding at the cell surface, it inhibited low-pH-dependent membrane fusion mediated by arenavirus glycoproteins. P-gp downregulation did not cause a significant reduction in either VSV-LASVGP or LCMV infection, suggesting that P-gp itself is unlikely to be involved in arenavirus entry. Finally, our data also indicate that CP100356 inhibits the infection by other mammarenaviruses. Thus, our findings suggest that CP100356 can be considered as an effective virus entry inhibitor for LASV and other highly pathogenic mammarenaviruses. Full article
(This article belongs to the Special Issue Antiviral Therapeutics for Emerging Viruses)
Show Figures

Figure 1

17 pages, 5422 KiB  
Article
Xanthohumol-Induced Rat Glioma C6 Cells Death by Triggering Mitochondrial Stress
by Shaozhi Hou, Yang Song, Di Sun, Shujun Zhu and Zhenhua Wang
Int. J. Mol. Sci. 2021, 22(9), 4506; https://doi.org/10.3390/ijms22094506 - 26 Apr 2021
Cited by 17 | Viewed by 3718
Abstract
AIM: To investigate the underlying mechanisms of xanthohumol (XN) on the proliferation inhibition and death of C6 glioma cells. METHODS: To determine the effects of XN on C6 cells, cell proliferation and mortality after XN treatment were assessed by SRB assay and trypan [...] Read more.
AIM: To investigate the underlying mechanisms of xanthohumol (XN) on the proliferation inhibition and death of C6 glioma cells. METHODS: To determine the effects of XN on C6 cells, cell proliferation and mortality after XN treatment were assessed by SRB assay and trypan blue assay respectively. Apoptotic rates were evaluated by flowcytometry after Annexin V-FITC/PI double staining. The influence of XN on the activity of caspase-3 was determined by Western blot (WB); and nuclear transposition of apoptosis-inducing factor (AIF) was tested by immunocytochemistry and WB. By MitoSOXTM staining, the mitochondrial ROS were detected. Mitochondrial function was also tested by MTT assay (content of succinic dehydrogenase), flow cytometry (mitochondrial membrane potential (MMP)—JC-1 staining; mitochondrial abundance—mito-Tracker green), immunofluorescence (MMP—JC-1 staining; mitochondrial morphology—mito-Tracker green), WB (mitochondrial fusion-fission protein—OPA1, mfn2, and DRP1; mitophagy-related proteins—Pink1, Parkin, LC3B, and P62), and high-performance liquid chromatography (HPLC) (energy charge). Finally, mitochondrial protein homeostasis of C6 cells after XN treatment with and without LONP1 inhibitor bortezomib was investigated by trypan blue assay (proliferative activity and mortality) and WB (mitochondrial protease LONP1). All cell morphology images were taken by a Leica Microsystems microscope. RESULTS: XN could lead to proliferation inhibition and death of C6 cells in a time- and dose-dependent manner and induce apoptosis of C6 cells through the AIF pathway. After long incubation of XN, mitochondria of C6 cells were seriously impaired, and mitochondria had a diffuse morphology and mitochondrial ROS were increased. The content of succinic dehydrogenase per cell was significantly decreased after XN insults of 24, 48, and 72 h. The energy charge was weakened after XN insult of 24 h. Furthermore, the MMP and mitochondrial abundance were significantly decreased; the protein expression levels of OPA1, mfn2, and DRP1 were down-regulated; and the protein expression levels of Pink1, Parkin, LC3B-II/LC3B-I, and p62 were up-regulated in long XN incubation times (24, 48, and 72 h). XN incubation with bortezomib for 48 h resulted in lower proliferative activity and higher mortality of C6 cells and caused the cell to have visible vacuoles. Moreover, the protein expression levels of LONP1 was up-regulated gradually as XN treatment time increased. CONCLUSION: These data supported that XN could induce AIF pathway apoptosis of the rat glioma C6 cells by affecting the mitochondria. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

10 pages, 2034 KiB  
Article
Antiviral Activity of Vacuolar ATPase Blocker Diphyllin against SARS-CoV-2
by Michal Stefanik, Petra Strakova, Jan Haviernik, Andrew D. Miller, Daniel Ruzek and Ludek Eyer
Microorganisms 2021, 9(3), 471; https://doi.org/10.3390/microorganisms9030471 - 25 Feb 2021
Cited by 20 | Viewed by 4110
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a causative agent of the pandemic coronavirus disease 2019 (COVID-19), which has resulted in over two million deaths worldwide to date. Diphyllin and diphyllinosides are known as natural blockers of cellular vacuolar ATPases, and so [...] Read more.
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a causative agent of the pandemic coronavirus disease 2019 (COVID-19), which has resulted in over two million deaths worldwide to date. Diphyllin and diphyllinosides are known as natural blockers of cellular vacuolar ATPases, and so can act as inhibitors of the pH-dependent fusion of viral envelopes with host cell endosomal membranes. Such pH-dependent fusion is a critical early step during the SARS-CoV-2 replication cycle. Accordingly, the anti-SARS-CoV-2 profiles and cytotoxicities of diphyllin, diphyllinoside cleistanthin B, and two structurally related compounds, helioxanthin 8-1 and helioxanthin 5-4-2, are evaluated here using in vitro cell-based assay systems. Neither helioxanthin exhibits any obvious anti-SARS-CoV-2 effects in vitro. By contrast diphyllin and cleistanthin B do exhibit anti-SARS-CoV-2 effects in Vero cells, with respective 50% effective concentrations (EC50) values of 1.92 and 6.51 µM. Diphyllin displays anti-SARS-CoV-2 effect also in colorectal adenocarcinoma (CaCo-2) cells. Moreover, when diphyllin is added at various times post infection, a significant decrease in viral titer is observed in SARS-CoV-2-infected Vero cells, even at high viral multiplicities of infection. Importantly, neither diphyllin nor cleistanthin B are found cytotoxic to Vero cells in concentrations up to 100 µM. However, the cytotoxic effect of diphyllin is more pronounced in Vero E6 and CaCo-2 cells. Overall, our data demonstrate that diphyllin and diphyllin analogues might be perfected as anti-SARS-CoV-2 agents in future preclinical studies, most especially if nanomedicine approaches may be invoked to optimize functional drug delivery to virus infected cells. Full article
(This article belongs to the Special Issue Antiviral Drug Discovery and Development in the Twenty-First Century)
Show Figures

Figure 1

16 pages, 4475 KiB  
Article
P27 Protects Neurons from Ischemic Damage by Suppressing Oxidative Stress and Increasing Autophagy in the Hippocampus
by Woosuk Kim, Hyun Jung Kwon, Hyo Young Jung, Kyu Ri Hahn, Yeo Sung Yoon, In Koo Hwang, Soo Young Choi and Dae Won Kim
Int. J. Mol. Sci. 2020, 21(24), 9496; https://doi.org/10.3390/ijms21249496 - 14 Dec 2020
Cited by 9 | Viewed by 2044
Abstract
p27Kip1 (p27), a well-known cell regulator, is involved in the regulation of cell death and survival. In the present study, we observed the effects of p27 against oxidative stress induced by H2O2 in HT22 cells and transient ischemia in [...] Read more.
p27Kip1 (p27), a well-known cell regulator, is involved in the regulation of cell death and survival. In the present study, we observed the effects of p27 against oxidative stress induced by H2O2 in HT22 cells and transient ischemia in gerbils. Tat (trans-acting activator of transcription) peptide and p27 fusion proteins were prepared to facilitate delivery into cells and across the blood-brain barrier. The tat-p27 fusion protein, rather than its control protein Control-p27, was delivered intracellularly in a concentration and incubation time-dependent manner and showed its activity in HT22 cells. The localization of the delivered Tat-p27 protein was also confirmted in the HT22 cells and hippocampus in gerbils. In addition, the optimal concentration (5 μM) of Tat-p27 was determined to protect neurons from cell death induced by 1 mM H2O2. Treatment with 5 μM Tat-p27 significantly ameliorated H2O2-induced DNA fragmentation and the formation of reactive oxygen species (ROS) in HT22 cells. Tat-p27 significantly mitigated the increase in locomotor activity a day after ischemia and neuronal damage in the hippocampal CA1 region. It also reduced the ischemia-induced membrane phospholipids and ROS formation. In addition, Tat-p27 significantly increased microtubule-associated protein 1A/1B light chain 3A/3B expression and ameliorated the H2O2 or ischemia-induced increases of p62 and decreases of beclin-1 in the HT22 cells and hippocampus. These results suggest that Tat-p27 protects neurons from oxidative or ischemic damage by reducing ROS-induced damage and by facilitating the formation of autophagosomes in hippocampal cells. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

15 pages, 2472 KiB  
Article
In Vitro and In Vivo Antiviral Activity of Nylidrin by Targeting the Hemagglutinin 2-Mediated Membrane Fusion of Influenza A Virus
by Yejin Jang, Jin Soo Shin, Joo-Youn Lee, Heegwon Shin, Sang Jick Kim and Meehyein Kim
Viruses 2020, 12(5), 581; https://doi.org/10.3390/v12050581 - 25 May 2020
Cited by 10 | Viewed by 4070
Abstract
Influenza A virus, one of the major human respiratory pathogens, is responsible for annual seasonal endemics and unpredictable periodic pandemics. Despite the clinical availability of vaccines and antivirals, the antigenic diversity and drug resistance of this virus makes it a persistent threat to [...] Read more.
Influenza A virus, one of the major human respiratory pathogens, is responsible for annual seasonal endemics and unpredictable periodic pandemics. Despite the clinical availability of vaccines and antivirals, the antigenic diversity and drug resistance of this virus makes it a persistent threat to public health, underlying the need for the development of novel antivirals. In a cell culture-based high-throughput screen, a β2-adrenergic receptor agonist, nylidrin, was identified as an antiviral compound against influenza A virus. The molecule was effective against multiple isolates of subtype H1N1, but had limited activity against subtype H3N2, depending on the strain. By examining the antiviral activity of its chemical analogues, we found that ifenprodil and clenbuterol also had reliable inhibitory effects against A/H1N1 strains. Field-based pharmacophore modeling with comparisons of active and inactive compounds revealed the importance of positive and negative electrostatic patterns of phenyl aminoethanol derivatives. Time-of-addition experiments and visualization of the intracellular localization of nucleoprotein NP demonstrated that an early step of the virus life cycle was suppressed by nylidrin. Ultimately, we discovered that nylidrin targets hemagglutinin 2 (HA2)-mediated membrane fusion by blocking conformational change of HA at acidic pH. In a mouse model, preincubation of a mouse-adapted influenza A virus (H1N1) with nylidrin completely blocked intranasal viral infection. The present study suggests that nylidrin could provide a core chemical skeleton for the development of a direct-acting inhibitor of influenza A virus entry. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

Back to TopTop