Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (28,162)

Search Parameters:
Keywords = oxidative stress

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1619 KiB  
Article
The Metallothionein System in Tetrahymena thermophila Is Iron-Inducible
by Davide Gualandris, Davide Rotondo, Candida Lorusso, Antonietta La Terza, Antonio Calisi and Francesco Dondero
Toxics 2024, 12(10), 725; https://doi.org/10.3390/toxics12100725 (registering DOI) - 8 Oct 2024
Viewed by 66
Abstract
Metallothioneins are multifunctional proteins implicated in various cellular processes. They have been used as biomarkers of heavy metal exposure and contamination due to their intrinsic ability to bind heavy metals and their transcriptional response to both physiological and noxious metal ions such as [...] Read more.
Metallothioneins are multifunctional proteins implicated in various cellular processes. They have been used as biomarkers of heavy metal exposure and contamination due to their intrinsic ability to bind heavy metals and their transcriptional response to both physiological and noxious metal ions such as cadmium (Cd) and mercury (Hg). In this study, we aimed to clarify the role of iron and reactive oxygen species (ROSs) in the induction of the metallothionein system (Mtt) in the ciliate protozoan Tetrahymena thermophila. We investigated the relative mRNA abundances of the metallothionein genes Mtt1, Mtt2/4, and Mtt5, revealing for the first time their responsiveness to iron exposure. Furthermore, by using inhibitors of superoxide dismutase (SOD) and catalase (CAT), alone or in combination with iron, we highlighted the roles of superoxide ion and endogenous hydrogen peroxide, as well as the complex interplay between the metal and ROSs. These results enhance our understanding of the metallothionein system in ciliates and suggest that ROSs may be a primary evolutionary driver for the selection of these proteins in nature. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Figure 1

16 pages, 1393 KiB  
Article
Antinociceptive Behavior, Glutamine/Glutamate, and Neopterin in Early-Stage Streptozotocin-Induced Diabetic Neuropathy in Liraglutide-Treated Mice under a Standard or Enriched Environment
by Pavlina Gateva, Milen Hristov, Natasha Ivanova, Debora Vasileva, Alexandrina Ivanova, Zafer Sabit, Todor Bogdanov, Sonia Apostolova and Rumiana Tzoneva
Int. J. Mol. Sci. 2024, 25(19), 10786; https://doi.org/10.3390/ijms251910786 (registering DOI) - 8 Oct 2024
Viewed by 73
Abstract
Diabetic neuropathy (DN) is a common complication of long-lasting type 1 and type 2 diabetes, with no curative treatment available. Here, we tested the effect of the incretin mimetic liraglutide in DN in mice with early-stage type 1 diabetes bred in a standard [...] Read more.
Diabetic neuropathy (DN) is a common complication of long-lasting type 1 and type 2 diabetes, with no curative treatment available. Here, we tested the effect of the incretin mimetic liraglutide in DN in mice with early-stage type 1 diabetes bred in a standard laboratory or enriched environment. With a single i.p. injection of streptozotocin 150 mg/kg, we induced murine diabetes. Liraglutide (0.4 mg/kg once daily, i.p. for ten days since the eighth post-streptozotocin day) failed to decrease the glycemia in the diabetic mice; however, it alleviated their antinociceptive behavior, as tested with formalin. The second phase of the formalin test had significantly lower results in liraglutide-treated mice reared in the enriched environment vs. liraglutide-treated mice under standard conditions [2.00 (0.00–11.00) vs. 29.00 (2.25–41.50) s, p = 0.016]. Liraglutide treatment, however, decreased the threshold of reactivity in the von Fray test. A significantly higher neopterin level was demonstrated in the diabetic control group compared to treatment-naïve controls and the liraglutide-treated diabetic mice (p < 0.001). The glutamine/glutamate ratio in both liraglutide-treated groups, either reared under standard conditions (p = 0.003) or an enriched environment (p = 0.002), was significantly higher than in the diabetic controls. This study demonstrates an early liraglutide effect on pain sensation in two streptozotocin-induced diabetes mouse models by reducing some inflammatory and oxidative stress parameters. Full article
(This article belongs to the Special Issue Neurodegeneration: From Genetics to Molecules—2nd Edition)
Show Figures

Figure 1

8 pages, 979 KiB  
Communication
Evaluating the Efficacy of an Extract for UV Defense and Mitigation of Oxidative Stress, Transitioning from Biomass to Bioprotection
by Emanuel Vamanu, Milena Lakićević, Nebojša Dedović, Georgiana Dumitru, Ileana Georgiana Badea, Florentina Gatea and Laura Dorina Dinu
Agronomy 2024, 14(10), 2306; https://doi.org/10.3390/agronomy14102306 (registering DOI) - 8 Oct 2024
Viewed by 93
Abstract
This study evaluated natural extracts from plant biomass for UV protection and oxidative stress reduction. Conducted in Bucharest, Romania, it focused on medicinal mushrooms and pomegranate bark. The biotechnological process involved a two-phase extraction: hot water processing of Ganoderma lucidum, Hericium erinaceus [...] Read more.
This study evaluated natural extracts from plant biomass for UV protection and oxidative stress reduction. Conducted in Bucharest, Romania, it focused on medicinal mushrooms and pomegranate bark. The biotechnological process involved a two-phase extraction: hot water processing of Ganoderma lucidum, Hericium erinaceus, Inonotus obliquus, and Tremella mushrooms, followed by ethanol extraction with pomegranate bark and green tea. The spectrophotometric analysis identified phenolics and flavonoids. The ethanol extract showed higher phenolic content and antioxidant activity, particularly in DPPH radical scavenging. UVB exposure tests demonstrated its protective effect, comparable to vitamin B3, delaying oxidative stress onset by 30 min. This research underscores the potential of using natural biomass extracts in skincare, promoting environmental sustainability and economic viability by converting agricultural waste into valuable bioactive compounds. Full article
Show Figures

Figure 1

13 pages, 1042 KiB  
Review
Exploring Angiotensin II and Oxidative Stress in Radiation-Induced Cataract Formation: Potential for Therapeutic Intervention
by Vidya P. Kumar, Yali Kong, Riana Dolland, Sandra R. Brown, Kan Wang, Damian Dolland, David Mu and Milton L. Brown
Antioxidants 2024, 13(10), 1207; https://doi.org/10.3390/antiox13101207 (registering DOI) - 8 Oct 2024
Viewed by 153
Abstract
Radiation-induced cataracts (RICs) represent a significant public health challenge, particularly impacting individuals exposed to ionizing radiation (IR) through medical treatments, occupational settings, and environmental factors. Effective therapeutic strategies require a deep understanding of the mechanisms underlying RIC formation (RICF). This study investigates the [...] Read more.
Radiation-induced cataracts (RICs) represent a significant public health challenge, particularly impacting individuals exposed to ionizing radiation (IR) through medical treatments, occupational settings, and environmental factors. Effective therapeutic strategies require a deep understanding of the mechanisms underlying RIC formation (RICF). This study investigates the roles of angiotensin II (Ang II) and oxidative stress in RIC development, with a focus on their combined effects on lens transparency and cellular function. Key mechanisms include the generation of reactive oxygen species (ROS) and oxidative damage to lens proteins and lipids, as well as the impact of Ang II on inflammatory responses and cellular apoptosis. While the generation of ROS from water radiolysis is well established, the impact of Ang II on RICs is less understood. Ang II intensifies oxidative stress by activating type 1 receptors (AT1Rs) on lens epithelial cells, resulting in increased ROS production and inflammatory responses. This oxidative damage leads to protein aggregation, lipid peroxidation, and apoptosis, ultimately compromising lens transparency and contributing to cataract formation. Recent studies highlight Ang II’s dual role in promoting both oxidative stress and inflammation, which accelerates cataract development. RICs pose a substantial public health concern due to their widespread prevalence and impact on quality of life. Targeting Ang II signaling and oxidative stress simultaneously could represent a promising therapeutic approach. Continued research is necessary to validate these strategies and explore their efficacy in preventing or reversing RIC development. Full article
Show Figures

Figure 1

34 pages, 4961 KiB  
Article
Impact of Lyophilized Milk Kefir-Based Self-Nanoemulsifying System on Cognitive Enhancement via the Microbiota–Gut–Brain Axis
by Mai M. Anwar, Amira A. Boseila, Abeer A. Mabrouk, Abdelfattah A. Abdelkhalek and Amr Amin
Antioxidants 2024, 13(10), 1205; https://doi.org/10.3390/antiox13101205 (registering DOI) - 7 Oct 2024
Viewed by 147
Abstract
Chronic inflammatory bowel disorders (IBDs) are characterized by altered intestinal permeability, prompting inflammatory, oxidative stress, and immunological factors. Gut microbiota disorders impact brain function via the bidirectional gut–brain axis, influencing behavior through inflammatory cascades, oxidative stress, and neurotransmitter levels. This study highlights the [...] Read more.
Chronic inflammatory bowel disorders (IBDs) are characterized by altered intestinal permeability, prompting inflammatory, oxidative stress, and immunological factors. Gut microbiota disorders impact brain function via the bidirectional gut–brain axis, influencing behavior through inflammatory cascades, oxidative stress, and neurotransmitter levels. This study highlights the potential effect of integrating lyophilized milk kefir alone and lyophilized milk kefir as solid carriers loaded with a self-nanoemulsifying self-nanosuspension (SNESNS) of licorice extract on an induced chronic IBD-like model in rats. Licorice-SNESNS was prepared by the homogenization of 30 mg of licorice extract in 1 g of the selected SNEDDS (30% Caraway oil, 60% Tween 20, and 10% propylene glycol (w/w)). Licorice-SNESNS was mixed with milk kefir and then freeze-dried. Dynamic TEM images and the bimodal particle size curve confirmed the formation of the biphasic nanosystems after dilution (nanoemulsion and nanosuspension). Daily oral administration of lyophilized milk kefir (100 mg/kg) loaded with SNESNS (10 mg/kg Caraway oil and 1 mg/kg licorice) restored normal body weight and intestinal mucosa while significantly reducing submucosal inflammatory cell infiltration in induced rats. Importantly, this treatment demonstrated superior efficacy compared to lyophilized milk kefir alone by leading to a more significant alleviation of neurotransmitter levels and improved memory functions, thereby addressing gut–brain axis disorders. Additionally, it normalized fecal microbiome constituents, inflammatory cytokine levels, and oxidative stress in examined tissues and serum. Moreover, daily administration of kefir-loaded SNESNS normalized the disease activity index, alleviated histopathological changes induced by IBD induction, and partially restored the normal gut microbiota. These alterations are associated with improved cognitive functions, attributed to the maintenance of normal neurotransmitter levels and the alleviation of triggered inflammatory factors and oxidative stress levels. Full article
12 pages, 4071 KiB  
Article
Corrosion Evaluation and Mechanism Research of AISI 8630 Steel in Offshore Oil and Gas Environments
by Zhao Zhang, Liang Wen, Que Huang, Li Guo, Zhizhong Dong and Lin Zhu
Materials 2024, 17(19), 4907; https://doi.org/10.3390/ma17194907 - 7 Oct 2024
Viewed by 200
Abstract
In this study, we optimized the traditional composition of AISI 8630 steel and evaluated its corrosion resistance through a series of tests. We conducted corrosion tests in a 3.5% NaCl solution and performed a 720 h fixed-load tensile test in accordance with the [...] Read more.
In this study, we optimized the traditional composition of AISI 8630 steel and evaluated its corrosion resistance through a series of tests. We conducted corrosion tests in a 3.5% NaCl solution and performed a 720 h fixed-load tensile test in accordance with the NACE TM-0177-2016 standard to assess sulfide stress corrosion cracking (SSCC). To analyze the corrosion products and the structure of the corrosion film, we employed X-ray diffraction and transmission electron microscopy. The corrosion rate, characteristics of the corrosion products, structure of the corrosion film, and corrosion resistance mechanism of the material were investigated. The results indicate that the optimized AISI 8630 material demonstrates excellent corrosion resistance. After 720 h of exposure, the primary corrosion products were identified as chromium oxide, copper sulfide, iron oxide, and iron–nickel sulfide. The corrosion film exhibited a three-layer structure: the innermost layer with a thickness of 200–300 nm contained higher concentrations of alloying elements and formed a dense, cohesive rust layer that hindered the diffusion of oxygen and chloride ions, thus enhancing corrosion resistance. The middle layer was thicker and less rich in alloying elements, while the outer layer, approximately 300–400 nm thick, was relatively loose. Full article
(This article belongs to the Special Issue Future Trend of Marine Corrosion and Protection)
Show Figures

Figure 1

16 pages, 941 KiB  
Article
Exploring Nutritional Status and Metabolic Imbalances in Children with FASD: A Cross-Sectional Study
by Katarzyna Anna Dylag, Wiktoria Wieczorek-Stawinska, Katarzyna Burkot, Lukasz Drzewiecki, Katarzyna Przybyszewska, Aleksandra Tokarz and Paulina Dumnicka
Nutrients 2024, 16(19), 3401; https://doi.org/10.3390/nu16193401 - 7 Oct 2024
Viewed by 417
Abstract
Background/Objectives: Malnutrition is a significant concern in paediatric populations, particularly among children with neurodevelopmental disorders such as foetal alcohol spectrum disorder (FASD). This study aimed to examine macronutrient and micronutrient imbalances and assess the nutritional status of a group of patients with FASD. [...] Read more.
Background/Objectives: Malnutrition is a significant concern in paediatric populations, particularly among children with neurodevelopmental disorders such as foetal alcohol spectrum disorder (FASD). This study aimed to examine macronutrient and micronutrient imbalances and assess the nutritional status of a group of patients with FASD. Methods: This study involved an analysis of the serum levels of key nutrients in a group of children diagnosed with FASD. Macronutrients and micronutrients were measured to identify any imbalances, including vitamin D, B12, E, A, albumin, and serum protein, among others. Results: The study found a high prevalence of vitamin D deficiency among the patients. Additionally, elevated serum concentrations of micronutrients such as vitamin B12, E, and A were observed in 8%, 7%, and 19% of patients, respectively. Macronutrient imbalances were noted, including high levels of albumin and serum protein, indicating a possible metabolic disturbance. Unexpectedly, high rates of hypercholesterolemia were observed, raising concerns about an increased risk of metabolic syndrome in this population. Conclusions: These findings suggest that the principal issue among patients with FASD is an altered metabolism rather than nutritional deficiencies. Potential causes of these abnormalities could include oxidative stress and changes in body composition. The results underline the need for further research to better understand the unique nutritional challenges in children with FASD and to guide the development of targeted therapeutic strategies. Full article
(This article belongs to the Section Pediatric Nutrition)
Show Figures

Figure 1

14 pages, 1061 KiB  
Article
OXY-SCORE and Volatile Anesthetics: A New Perspective of Oxidative Stress in EndoVascular Aneurysm Repair—A Randomized Clinical Trial
by Alba Burgos-Santamaría, Pilar Rodríguez-Rodríguez, Ana Arnalich-Montiel, Silvia M. Arribas, Carmen Fernández-Riveira, I. María Barrio-Pérez, Javier Río, José Manuel Ligero and Begoña Quintana-Villamandos
Int. J. Mol. Sci. 2024, 25(19), 10770; https://doi.org/10.3390/ijms251910770 - 7 Oct 2024
Viewed by 290
Abstract
An aortic aneurysm (AA) is a life-threatening condition. Oxidative stress may be a common pathway linking multiple mechanisms of an AA, including vascular inflammation and metalloproteinase activity. Endovascular aneurysm repair (EVAR) is the preferred surgical approach for AA treatment. During surgery, inflammation and [...] Read more.
An aortic aneurysm (AA) is a life-threatening condition. Oxidative stress may be a common pathway linking multiple mechanisms of an AA, including vascular inflammation and metalloproteinase activity. Endovascular aneurysm repair (EVAR) is the preferred surgical approach for AA treatment. During surgery, inflammation and ischemia–reperfusion injury occur, and reactive oxygen species (ROS) play a key role in their modulation. Increased perioperative oxidative stress is associated with higher postoperative complications. The use of volatile anesthetics during surgery has been shown to reduce oxidative stress. Individual biomarkers only partially reflect the oxidative status of the patients. A global indicator of oxidative stress (OXY-SCORE) has been validated in various pathologies. This study aimed to compare the effects of the main volatile anesthetics, sevoflurane and desflurane, on oxidative status during EVAR. Eighty consecutive patients undergoing EVAR were randomized into two groups: sevoflurane and desflurane. Plasma biomarkers of oxidative damage (protein carbonylation and malondialdehyde) and antioxidant defense (total thiols, glutathione, nitrates, superoxide dismutase, and catalase activity) were measured before surgery and 24 h after EVAR. The analysis of individual biomarkers showed no significant differences between the groups. However, the OXY-SCORE was positive in the desflurane group (indicating a shift towards antioxidants) and negative in the sevoflurane group (favoring oxidants) (p < 0.044). Compared to sevoflurane, desflurane had a positive effect on oxidative stress during EVAR. The OXY-SCORE could provide a more comprehensive perspective on oxidative stress in this patient population. Full article
(This article belongs to the Special Issue Cellular and Molecular Progression of Cardiovascular Diseases)
Show Figures

Figure 1

14 pages, 3010 KiB  
Article
3′,4′-Dihydroxyflavonol Inhibits Fibrotic Response in a Rabbit Model of Glaucoma Filtration Surgery
by Zoe Pasvanis, Roy C. K. Kong, Manisha H. Shah, Elsa C. Chan and Jennifer C. Fan Gaskin
Int. J. Mol. Sci. 2024, 25(19), 10767; https://doi.org/10.3390/ijms251910767 - 7 Oct 2024
Viewed by 263
Abstract
Post-operative fibrosis of the filtering bleb limits the success of glaucoma filtration surgery (GFS). To minimise subconjunctival scarring following GFS, treatment with antimetabolites such as Mitomycin C (MMC) has become standard practice; however, their use is associated with considerable side effects. This study [...] Read more.
Post-operative fibrosis of the filtering bleb limits the success of glaucoma filtration surgery (GFS). To minimise subconjunctival scarring following GFS, treatment with antimetabolites such as Mitomycin C (MMC) has become standard practice; however, their use is associated with considerable side effects. This study aimed to investigate the anti-scarring properties of 3′,4′-dihydroxyflavonol (DiOHF). GFS was performed in New Zealand white rabbits who received eye drops of DiOHF three times daily and vehicle eye drops after surgery (n = 5) or a single intraoperative treatment of MMC (n = 5). Blebs were imaged immediately following surgery and on days 7, 15, 21, and 28 for clinical examination. On day 28, eyes were harvested to assess collagen deposition, expression of α-SMA, oxidative stress, angiogenesis, fibroblast activity, and inflammation in the conjunctiva/Tenon’s layer. At 7 and 28 days post-GFS, MMC-treated blebs were more ischaemic than DiOHF- or vehicle-treated blebs. On day 28, DiOHF treatment significantly suppressed collagen accumulation, CD31 expression, Vimentin expression, and CD45 expression compared to the vehicle control. No difference was observed in 3-Nitrotyrosine or αSMA expression between treatment groups. Treatment with DiOHF reduced conjunctival scarring and angiogenesis in rabbits with GFS, which was comparable to MMC. DiOHF may be a safer and more effective wound-modulating agent than conventional antifibrotic therapy in GFS. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

25 pages, 946 KiB  
Review
Structure–Function Relationships and Health-Promoting Properties of the Main Nutraceuticals of the Cactus Pear (Opuntia spp.) Cladodes: A Review
by Meriyem Koufan, Basma Choukrane and Mouaad Amine Mazri
Molecules 2024, 29(19), 4732; https://doi.org/10.3390/molecules29194732 - 7 Oct 2024
Viewed by 373
Abstract
Over the past decade, several studies have established a direct link between functional foods, nutraceuticals, and a reduced risk of oxidative-stress-related diseases. Nutraceuticals, which encompass a variety of bioactive molecules, exhibit both nutritional and therapeutic properties. The cactus pear (Opuntia spp.) is [...] Read more.
Over the past decade, several studies have established a direct link between functional foods, nutraceuticals, and a reduced risk of oxidative-stress-related diseases. Nutraceuticals, which encompass a variety of bioactive molecules, exhibit both nutritional and therapeutic properties. The cactus pear (Opuntia spp.) is a plant genus with many species recognized as functional foods, largely attributed to their high content of nutraceuticals, including polyphenols, fatty acids, vitamins, amino acids, pigments, and phytosterols. These compounds of different structures and functions possess different biological activities, contributing to the health-promoting properties of cactus pear. This makes cactus pears a valuable plant for the food, cosmetic, and pharmaceutical industries. While extensive research has focused on the nutritional profile of cactus pear fruits, the cladodes have received comparatively limited attention. Notably, the nutritional composition of cladodes can exhibit considerable variability, influenced by species and growing conditions. Furthermore, although various bioactive compounds have been identified in cladodes, studies elucidating their mechanisms of action, health benefits, and potential therapeutic applications remain insufficient. Addressing these gaps is crucial for enhancing the understanding and utilization of cactus pear cladodes. This paper provides a comprehensive overview of the structure–function relationships of the main nutraceuticals found in cactus pear cladodes. It synthesizes data from recent and relevant literature to elucidate the content of these compounds in relation to species and geographical origin, while also detailing the main biological activities and health-promoting benefits associated with cactus pear cladodes. Full article
Show Figures

Figure 1

20 pages, 662 KiB  
Review
Hydrogen-Rich Water to Enhance Exercise Performance: A Review of Effects and Mechanisms
by Qiaorui Zhou, Huixin Li, Ye Zhang, Yirui Zhao, Can Wang and Chang Liu
Metabolites 2024, 14(10), 537; https://doi.org/10.3390/metabo14100537 - 7 Oct 2024
Viewed by 298
Abstract
Background: Hydrogen-rich water (HRW) has garnered significant interest within the sports and exercise science community due to its selective antioxidant properties. Despite its potential benefits, comprehensive reviews specifically addressing its effects on athletic performance are limited. This review aims to assess the [...] Read more.
Background: Hydrogen-rich water (HRW) has garnered significant interest within the sports and exercise science community due to its selective antioxidant properties. Despite its potential benefits, comprehensive reviews specifically addressing its effects on athletic performance are limited. This review aims to assess the impact of HRW on sports performance and explore the underlying molecular biological mechanisms, with the goal of elucidating how HRW might enhance athletic performance. Methods: This review synthesizes research on HRW by examining articles published between 1980 and April 2024 in databases such as PubMed, the Cochrane Library, Embase, Scopus, and Web of Science. Results: It highlights HRW’s effects on various aspects of athletic performance, including endurance, strength, sprint times, lunge movements, countermovement jump height, and time to exhaustion. While the precise mechanisms by which HRW affects athletic performance remain unclear, this review investigates its general molecular biological mechanisms beyond the specific context of sports. This provides a theoretical foundation for future research aimed at understanding how HRW can enhance athletic performance. HRW targets the harmful reactive oxygen and nitrogen species produced during intense exercise, thereby reducing oxidative stress—a critical factor in muscle fatigue, inflammation, and diminished athletic performance. HRW helps to scavenge hydroxyl radicals and peroxynitrite, regulate antioxidant enzymes, mitigate lipid peroxidation, reduce inflammation, protect against mitochondrial dysfunction, and modulate cellular signaling pathways. Conclusions: In summary, while a few studies have indicated that HRW may not produce significant beneficial effects, the majority of research supports the conclusion that HRW may enhance athletic performance across various sports. The potential mechanisms underlying these benefits are thought to involve HRW’s role as a selective antioxidant, its impact on oxidative stress, and its regulation of redox homeostasis. However, the specific molecular biological mechanisms through which HRW improves athletic performance remain to be fully elucidated. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

19 pages, 1048 KiB  
Review
Aged Microplastics and Antibiotic Resistance Genes: A Review of Aging Effects on Their Interactions
by Kuok Ho Daniel Tang and Ronghua Li
Antibiotics 2024, 13(10), 941; https://doi.org/10.3390/antibiotics13100941 - 6 Oct 2024
Viewed by 611
Abstract
Background: Microplastic aging affects the dynamics of antibiotic resistance genes (ARGs) on microplastics, yet no review presents the effects of microplastic aging on the associated ARGs. Objectives: This review, therefore, aims to discuss the effects of different types of microplastic aging, as well [...] Read more.
Background: Microplastic aging affects the dynamics of antibiotic resistance genes (ARGs) on microplastics, yet no review presents the effects of microplastic aging on the associated ARGs. Objectives: This review, therefore, aims to discuss the effects of different types of microplastic aging, as well as the other pollutants on or around microplastics and the chemicals leached from microplastics, on the associated ARGs. Results: It highlights that microplastic photoaging generally results in higher sorption of antibiotics and ARGs due to increased microplastic surface area and functional group changes. Photoaging produces reactive oxygen species, facilitating ARG transfer by increasing bacterial cell membrane permeability. Reactive oxygen species can interact with biofilms, suggesting combined effects of microplastic aging on ARGs. The effects of mechanical aging were deduced from studies showing larger microplastics anchoring more ARGs due to rough surfaces. Smaller microplastics from aging penetrate deeper and smaller places and transport ARGs to these places. High temperatures are likely to reduce biofilm mass and ARGs, but the variation of ARGs on microplastics subjected to thermal aging remains unknown due to limited studies. Biotic aging results in biofilm formation on microplastics, and biofilms, often with unique microbial structures, invariably enrich ARGs. Higher oxidative stress promotes ARG transfer in the biofilms due to higher cell membrane permeability. Other environmental pollutants, particularly heavy metals, antibacterial, chlorination by-products, and other functional genes, could increase microplastic-associated ARGs, as do microplastic additives like phthalates and bisphenols. Conclusions: This review provides insights into the environmental fate of co-existing microplastics and ARGs under the influences of aging. Further studies could examine the effects of mechanical and thermal MP aging on their interactions with ARGs. Full article
Show Figures

Figure 1

20 pages, 1927 KiB  
Review
Antioxidant Function and Application of Plant-Derived Peptides
by Zhengqing Zhu, Ziwu Xu, Yuhang Li, Yutong Fan, Yingqian Zhou, Kaixin Song and Lei Meng
Antioxidants 2024, 13(10), 1203; https://doi.org/10.3390/antiox13101203 (registering DOI) - 6 Oct 2024
Viewed by 363
Abstract
With the development of society and the improvement of people’s health consciousness, the demand for antioxidants is increasing. As a natural antioxidant with no toxic side effects, antioxidant peptides are widely used in food, cosmetics, medicine, and other fields because of their strong [...] Read more.
With the development of society and the improvement of people’s health consciousness, the demand for antioxidants is increasing. As a natural antioxidant with no toxic side effects, antioxidant peptides are widely used in food, cosmetics, medicine, and other fields because of their strong antioxidant capacity and easy absorption by the human body. Plant-derived antioxidant peptides have attracted more attention than animal-derived antioxidant peptides because plants are more diverse than animals and produce a large number of protein-rich by-products during the processing of their products, which are the main source of antioxidant peptides. In this review, we summarize the source, structure and activity, other biological functions, mechanism of action, and comprehensive applications of plant antioxidant peptides, and look forward to their future development trends, which will provide a reference for further research and development of plant antioxidant peptides. Full article
Show Figures

Figure 1

27 pages, 1129 KiB  
Review
Influence of Mediterranean Diet on Sexual Function in People with Metabolic Syndrome: A Narrative Review
by Vittorio Oteri, Francesco Galeano, Stefania Panebianco, Tommaso Piticchio, Rosario Le Moli, Lucia Frittitta, Veronica Vella, Roberto Baratta, Damiano Gullo, Francesco Frasca and Andrea Tumminia
Nutrients 2024, 16(19), 3397; https://doi.org/10.3390/nu16193397 - 6 Oct 2024
Viewed by 716
Abstract
Metabolic syndrome (MS), a cluster of cardiometabolic disorders, and sexual dysfunction are two conditions that impact a large proportion of the general population. Although they can occur independently, they are frequently linked and significantly affect people’s quality of life. In recent years, research [...] Read more.
Metabolic syndrome (MS), a cluster of cardiometabolic disorders, and sexual dysfunction are two conditions that impact a large proportion of the general population. Although they can occur independently, they are frequently linked and significantly affect people’s quality of life. In recent years, research has increasingly focused on the importance of diet, particularly the Mediterranean diet (MD), in modulating sexual function due to its anti-inflammatory, antioxidant, and vasodilatory properties. In this narrative review, we examined the relationship between MS and sexual function in both men and women, with a special emphasis on the MD’s therapeutic efficacy in improving sexual dysfunction. In men, MD has been shown to ameliorate erectile dysfunction, as well as several sperm parameters, perhaps leading to improved fertility. On the other hand, adherence to MD has been demonstrated to partially recover several sexual dysfunctions in women, such as those related to their menstrual cycle, menopause, endometriosis, and polycystic ovary syndrome. These favorable effects of MD have been demonstrated in both sexes also among people affected by MS. However, more targeted studies are needed to validate these data for different dietary approaches as well. Full article
(This article belongs to the Special Issue Mediterranean Diet and Metabolic Syndrome)
Show Figures

Figure 1

29 pages, 1924 KiB  
Review
The Hidden Dangers of Sedentary Living: Insights into Molecular, Cellular, and Systemic Mechanisms
by Daniel Guerreiro Diniz, João Bento-Torres, Victor Oliveira da Costa, Josilayne Patricia Ramos Carvalho, Alessandra Mendonça Tomás, Thaís Cristina Galdino de Oliveira, Fernanda Cabral Soares, Liliane Dias e Dias de Macedo, Naina Yuki Vieira Jardim, Natáli Valim Oliver Bento-Torres, Daniel Clive Anthony, Dora Brites and Cristovam Wanderley Picanço Diniz
Int. J. Mol. Sci. 2024, 25(19), 10757; https://doi.org/10.3390/ijms251910757 (registering DOI) - 6 Oct 2024
Viewed by 528
Abstract
With the aging of the global population, neurodegenerative diseases are emerging as a major public health issue. The adoption of a less sedentary lifestyle has been shown to have a beneficial effect on cognitive decline, but the molecular mechanisms responsible are less clear. [...] Read more.
With the aging of the global population, neurodegenerative diseases are emerging as a major public health issue. The adoption of a less sedentary lifestyle has been shown to have a beneficial effect on cognitive decline, but the molecular mechanisms responsible are less clear. Here we provide a detailed analysis of the complex molecular, cellular, and systemic mechanisms underlying age-related cognitive decline and how lifestyle choices influence these processes. A review of the evidence from animal models, human studies, and postmortem analyses emphasizes the importance of integrating physical exercise with cognitive, multisensory, and motor stimulation as part of a multifaceted approach to mitigating cognitive decline. We highlight the potential of these non-pharmacological interventions to address key aging hallmarks, such as genomic instability, telomere attrition, and neuroinflammation, and underscore the need for comprehensive and personalized strategies to promote cognitive resilience and healthy aging. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

Back to TopTop