Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,720)

Search Parameters:
Keywords = osteoblasts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 13327 KiB  
Article
Turning Portunus pelagicus Shells into Biocompatible Scaffolds for Bone Regeneration
by Louisa Candra Devi, Hendrik Satria Dwi Putra, Nyoman Bayu Wisnu Kencana, Ajiteru Olatunji and Agustina Setiawati
Biomedicines 2024, 12(8), 1796; https://doi.org/10.3390/biomedicines12081796 (registering DOI) - 7 Aug 2024
Abstract
Bone tissue engineering (BTE) provides an alternative for addressing bone defects by integrating cells, a scaffold, and bioactive growth factors to stimulate tissue regeneration and repair, resulting in effective bioengineered tissue. This study focuses on repurposing chitosan from blue swimming crab (Portunus [...] Read more.
Bone tissue engineering (BTE) provides an alternative for addressing bone defects by integrating cells, a scaffold, and bioactive growth factors to stimulate tissue regeneration and repair, resulting in effective bioengineered tissue. This study focuses on repurposing chitosan from blue swimming crab (Portunus pelagicus) shell waste as a composite scaffold combined with HAP and COL I to improve biocompatibility, porosity, swelling, and mechanical properties. The composite scaffold demonstrated nearly 60% porosity with diameters ranging from 100–200 μm with an interconnected network that structurally mimics the extracellular matrix. The swelling ratio of the scaffold was measured at 208.43 ± 14.05%, 248.93 ± 4.32%, 280.01 ± 1.26%, 305.44 ± 20.71%, and 310.03 ± 17.94% at 1, 3, 6, 12, and 24 h, respectively. Thus, the Portunus pelagicus scaffold showed significantly lower degradation ratios of 5.64 ± 1.89%, 14.34 ± 8.59%, 19.57 ± 14.23%, and 29.13 ± 9.87% for 1 to 4 weeks, respectively. The scaffold supports osteoblast attachment and proliferation for 7 days. Waste from Portunus pelagicus shells has emerged as a prospective source of chitosan with potential application in tissue engineering. Full article
(This article belongs to the Special Issue Advances in 3D Printing and Biomaterials in Tissue Engineering)
Show Figures

Figure 1

13 pages, 584 KiB  
Article
Pro-Osteogenic Effect of the Nutraceutical BlastiMin Complex® in Women with Osteoporosis or Osteopenia: An Open Intervention Clinical Trial
by Sofia Sabatelli, Emanuele-Salvatore Scarpa, Angelica Giuliani, Chiara Giordani, Jacopo Sabbatinelli, Maria Rita Rippo, Sara Cabodi, Barbara Petrini, Giancarlo Balercia and Gilberta Giacchetti
Int. J. Mol. Sci. 2024, 25(16), 8565; https://doi.org/10.3390/ijms25168565 - 6 Aug 2024
Viewed by 180
Abstract
Osteoporosis is a chronic disease that affects millions of patients worldwide and is characterized by low bone mineral density (BMD) and increased risk of fractures. Notably, natural molecules can increase BMD and exert pro-osteogenic effects. Noteworthily, the nutraceutical BlastiMin Complex® (Mivell, Italy, [...] Read more.
Osteoporosis is a chronic disease that affects millions of patients worldwide and is characterized by low bone mineral density (BMD) and increased risk of fractures. Notably, natural molecules can increase BMD and exert pro-osteogenic effects. Noteworthily, the nutraceutical BlastiMin Complex® (Mivell, Italy, European Patent Application EP4205733A1) can induce differentiation of human bone marrow mesenchymal stem cells (BM-MSCs) in osteoblasts and can exert in vitro pro-osteogenic and anti-inflammatory effects. Thus, the purpose of this study was to verify the effects of BlastiMin Complex® on bone turnover markers (BTMs) and BMD in patients with senile and postmenopausal osteopenia or osteoporosis. The efficacy of BlastiMin Complex® on BTMs in serum was evaluated through biochemical assays. BMD values were analyzed by dual-energy X-ray absorptiometry (DXA) and Radiofrequency Echographic Multi Spectrometry (R.E.M.S.) techniques, and the SNPs with a role in osteoporosis development were evaluated by PCR. Clinical data obtained after 12 months of treatment showed an increase in bone turnover index, a decrease in C-reactive protein levels, and a remarkable increase in P1NP levels, indicating the induction of osteoblast proliferation and activity in the cohort of 100% female patients recruited for the study. These findings show that the nutraceutical BlastiMin Complex® could be used as an adjuvant in combination with synthetic drugs for the treatment of osteoporosis pathology. Full article
(This article belongs to the Topic Bone as an Endocrine Organ)
Show Figures

Figure 1

19 pages, 4612 KiB  
Article
Tibial Damage Caused by T-2 Toxin in Goslings: Bone Dysplasia, Poor Bone Quality, Hindered Chondrocyte Differentiation, and Imbalanced Bone Metabolism
by Wang Gu, Lie Hou, Qiang Bao, Qi Xu and Guohong Chen
Animals 2024, 14(15), 2281; https://doi.org/10.3390/ani14152281 - 5 Aug 2024
Viewed by 245
Abstract
T-2 toxin, the most toxic type A trichothecene, is widely present in grain and animal feed, causing growth retardation and tissue damage in poultry. Geese are more sensitive to T-2 toxin than chickens and ducks. Although T-2 toxin has been reported to cause [...] Read more.
T-2 toxin, the most toxic type A trichothecene, is widely present in grain and animal feed, causing growth retardation and tissue damage in poultry. Geese are more sensitive to T-2 toxin than chickens and ducks. Although T-2 toxin has been reported to cause tibial growth plate (TGP) chondrodysplasia in chickens, tibial damage caused by T-2 toxin in geese has not been fully demonstrated. This study aims to investigate the adverse effects of T-2 toxin on tibial bone development, bone quality, chondrocyte differentiation, and bone metabolism. Here, forty-eight one-day-old male Yangzhou goslings were randomly divided into four groups and daily gavaged with T-2 toxin at concentrations of 0, 0.5, 1.0, and 2.0 mg/kg body weight for 21 days, respectively. The development of gosling body weight and size was determined by weighing and taking body measurements after exposure to different concentrations of T-2 toxin. Changes in tibial development and bone characteristics were determined by radiographic examination, phenotypic measurements, and bone quality and composition analyses. Chondrocyte differentiation in TGP and bone metabolism was characterized by cell morphology, tissue gene-specific expression, and serum marker levels. Results showed that T-2 toxin treatment resulted in a lower weight, volume, length, middle width, and middle circumference of the tibia in a dose-dependent manner (p < 0.05). Moreover, decreased bone-breaking strength, bone mineral density, and contents of ash, Ca, and P in the tibia were observed in T-2 toxin-challenged goslings (p < 0.05). In addition, T-2 toxin not only reduced TGP height (p < 0.05) but also induced TGP chondrocytes to be disorganized with reduced numbers and indistinct borders. As expected, the apoptosis-related genes (CASP9 and CASP3) were significantly up-regulated in chondrocytes challenged by T-2 toxin with a dose dependence, while cell differentiation and maturation-related genes (BMP6, BMP7, SOX9, and RUNX2) were down-regulated (p < 0.05). Considering bone metabolism, T-2 toxin dose-dependently and significantly induced a decreased number of osteoblasts and an increased number of osteoclasts in the tibia, with inhibited patterns of osteogenesis-related genes and enzymes and increased patterns of osteoclast-related genes and enzymes (p < 0.05). Similarly, the serum Ca and P concentrations and parathyroid hormone, calcitonin, and 1, 25-dihydroxycholecalciferol levels decreased under T-2 toxin exposure (p < 0.05). In summary, 2.0 mg/kg T-2 toxin significantly inhibited tibia weight, length, width, and circumference, as well as decreased bone-breaking strength, density, and composition (ash, calcium, and phosphorus) in 21-day-old goslings compared to the control and lower dose groups. Chondrocyte differentiation in TGP was delayed by 2.0 mg/kg T-2 toxin owing to cell apoptosis. In addition, 2.0 mg/kg T-2 toxin promoted bone resorption and inhibited osteogenesis in cellular morphology, gene expression, and hormonal modulation patterns. Thus, T-2 toxin significantly inhibited tibial growth and development with a dose dependence, accompanied by decreased bone geometry parameters and properties, hindered chondrocyte differentiation, and imbalanced bone metabolism. Full article
Show Figures

Figure 1

15 pages, 2997 KiB  
Article
Photothermal Antibacterial and Osteoinductive Polypyrrole@Cu Implants for Biological Tissue Replacement
by Tianyou Zhou, Zeyan Zhou and Yingbo Wang
Materials 2024, 17(15), 3882; https://doi.org/10.3390/ma17153882 - 5 Aug 2024
Viewed by 332
Abstract
The treatment of bone defects caused by disease or accidents through the use of implants presents significant clinical challenges. After clinical implantation, these materials attract and accumulate bacteria and hinder the integration of the implant with bone tissue due to the lack of [...] Read more.
The treatment of bone defects caused by disease or accidents through the use of implants presents significant clinical challenges. After clinical implantation, these materials attract and accumulate bacteria and hinder the integration of the implant with bone tissue due to the lack of osteoinductive properties, both of which can cause postoperative infection and even lead to the eventual failure of the operation. This work successfully prepared a novel biomaterial coating with multiple antibacterial mechanisms for potent and durable and osteoinductive biological tissue replacement by pulsed PED (electrochemical deposition). By effectively regulating PPy (polypyrrole), the uniform composite coating achieved sound physiological stability. Furthermore, the photothermal analysis showcased exceptional potent photothermal antibacterial activity. The antibacterial assessments revealed a bacterial eradication rate of 100% for the PPy@Cu/PD composite coating following a 24 h incubation. Upon the introduction of NIR (near-infrared) irradiation, the combined effects of multiple antibacterial mechanisms led to bacterial reduction rates of 99% for E. coli and 98% for S. aureus after a 6 h incubation. Additionally, the successful promotion of osteoblast proliferation was confirmed through the application of the osteoinductive drug PD (pamidronate disodium) on the composite coating’s surface. Therefore, the antimicrobial Ti-based coatings with osteoinductive properties and potent and durable antibacterial properties could serve as ideal bone implants. Full article
(This article belongs to the Special Issue Advanced Functional Nanomaterials for Biomedical Application)
Show Figures

Figure 1

14 pages, 3504 KiB  
Communication
Connexin 43 Modulation in Human Chondrocytes, Osteoblasts and Cartilage Explants: Implications for Inflammatory Joint Disorders
by Elena Della Morte, Chiara Giannasi, Alice Valenza, Francesca Cadelano, Alessandro Aldegheri, Luigi Zagra, Stefania Niada and Anna Teresa Brini
Int. J. Mol. Sci. 2024, 25(15), 8547; https://doi.org/10.3390/ijms25158547 - 5 Aug 2024
Viewed by 264
Abstract
Connexin 43 (Cx43) is crucial for the development and homeostasis of the musculoskeletal system, where it plays multifaceted roles, including intercellular communication, transcriptional regulation and influencing osteogenesis and chondrogenesis. Here, we investigated Cx43 modulation mediated by inflammatory stimuli involved in osteoarthritis, i.e., 10 [...] Read more.
Connexin 43 (Cx43) is crucial for the development and homeostasis of the musculoskeletal system, where it plays multifaceted roles, including intercellular communication, transcriptional regulation and influencing osteogenesis and chondrogenesis. Here, we investigated Cx43 modulation mediated by inflammatory stimuli involved in osteoarthritis, i.e., 10 ng/mL Tumor Necrosis Factor alpha (TNFα) and/or 1 ng/mL Interleukin-1 beta (IL-1β), in primary chondrocytes (CH) and osteoblasts (OB). Additionally, we explored the impact of synovial fluids from osteoarthritis patients in CH and cartilage explants, providing a more physio-pathological context. The effect of TNFα on Cx43 expression in cartilage explants was also assessed. TNFα downregulated Cx43 levels both in CH and OB (−73% and −32%, respectively), while IL-1β showed inconclusive effects. The reduction in Cx43 levels was associated with a significant downregulation of the coding gene GJA1 expression in OB only (−65%). The engagement of proteasome in TNFα-induced effects, already known in CH, was also observed in OB. TNFα treatment significantly decreased Cx43 expression also in cartilage explants. Of note, Cx43 expression was halved by synovial fluid in both CH and cartilage explants. This study unveils the regulation of Cx43 in diverse musculoskeletal cell types under various stimuli and in different contexts, providing insights into its modulation in inflammatory joint disorders. Full article
Show Figures

Figure 1

20 pages, 8416 KiB  
Article
In Vitro Biocompatibility Assessment of Bioengineered PLA-Hydrogel Core–Shell Scaffolds with Mesenchymal Stromal Cells for Bone Regeneration
by Federica Re, Luciana Sartore, Chiara Pasini, Matteo Ferroni, Elisa Borsani, Stefano Pandini, Andrea Bianchetti, Camillo Almici, Lorena Giugno, Roberto Bresciani, Silvia Mutti, Federica Trenta, Simona Bernardi, Mirko Farina and Domenico Russo
J. Funct. Biomater. 2024, 15(8), 217; https://doi.org/10.3390/jfb15080217 (registering DOI) - 31 Jul 2024
Viewed by 535
Abstract
Human mesenchymal stromal cells (hMSCs), whether used alone or together with three-dimensional scaffolds, are the best-studied postnatal stem cells in regenerative medicine. In this study, innovative composite scaffolds consisting of a core–shell architecture were seeded with bone-marrow-derived hMSCs (BM-hMSCs) and tested for their [...] Read more.
Human mesenchymal stromal cells (hMSCs), whether used alone or together with three-dimensional scaffolds, are the best-studied postnatal stem cells in regenerative medicine. In this study, innovative composite scaffolds consisting of a core–shell architecture were seeded with bone-marrow-derived hMSCs (BM-hMSCs) and tested for their biocompatibility and remarkable capacity to promote and support bone regeneration and mineralization. The scaffolds were prepared by grafting three different amounts of gelatin–chitosan (CH) hydrogel into a 3D-printed polylactic acid (PLA) core (PLA-CH), and the mechanical and degradation properties were analyzed. The BM-hMSCs were cultured in the scaffolds with the presence of growth medium (GM) or osteogenic medium (OM) with differentiation stimuli in combination with fetal bovine serum (FBS) or human platelet lysate (hPL). The primary objective was to determine the viability, proliferation, morphology, and spreading capacity of BM-hMSCs within the scaffolds, thereby confirming their biocompatibility. Secondly, the BM-hMSCs were shown to differentiate into osteoblasts and to facilitate scaffold mineralization. This was evinced by a positive Von Kossa result, the modulation of differentiation markers (osteocalcin and osteopontin), an expression of a marker of extracellular matrix remodeling (bone morphogenetic protein-2), and collagen I. The results of the energy-dispersive X-ray analysis (EDS) clearly demonstrate the presence of calcium and phosphorus in the samples that were incubated in OM, in the presence of FBS and hPL, but not in GM. The chemical distribution maps of calcium and phosphorus indicate that these elements are co-localized in the same areas of the sections, demonstrating the formation of hydroxyapatite. In conclusion, our findings show that the combination of BM-hMSCs and PLA-CH, regardless of the amount of hydrogel content, in the presence of differentiation stimuli, can provide a construct with enhanced osteogenicity for clinically relevant bone regeneration. Full article
(This article belongs to the Special Issue Feature Papers in Bone Biomaterials)
Show Figures

Figure 1

15 pages, 1991 KiB  
Article
Culture and Immunomodulation of Equine Muscle-Derived Mesenchymal Stromal Cells: A Comparative Study of Innovative 2D versus 3D Models Using Equine Platelet Lysate
by J. Duysens, H. Graide, A. Niesten, A. Mouithys-Mickalad, G. Deby-Dupont, T. Franck, J. Ceusters and D. Serteyn
Cells 2024, 13(15), 1290; https://doi.org/10.3390/cells13151290 - 31 Jul 2024
Viewed by 306
Abstract
Muscle-derived mesenchymal stromal cells (mdMSCs) hold great promise in regenerative medicine due to their immunomodulatory properties, multipotent differentiation capacity and ease of collection. However, traditional in vitro expansion methods use fetal bovine serum (FBS) and have numerous limitations including ethical concerns, batch-to-batch variability, [...] Read more.
Muscle-derived mesenchymal stromal cells (mdMSCs) hold great promise in regenerative medicine due to their immunomodulatory properties, multipotent differentiation capacity and ease of collection. However, traditional in vitro expansion methods use fetal bovine serum (FBS) and have numerous limitations including ethical concerns, batch-to-batch variability, immunogenicity, xenogenic contamination and regulatory compliance issues. This study investigates the use of 10% equine platelet lysate (ePL) obtained by plasmapheresis as a substitute for FBS in the culture of mdMSCs in innovative 2D and 3D models. Using muscle microbiopsies as the primary cell source in both models showed promising results. Initial investigations indicated that small variations in heparin concentration in 2D cultures strongly influenced medium coagulation with an optimal proliferation observed at final heparin concentrations of 1.44 IU/mL. The two novel models investigated showed that expansion of mdMSCs is achievable. At the end of expansion, the 3D model revealed a higher total number of cells harvested (64.60 ± 5.32 million) compared to the 2D culture (57.20 ± 7.66 million). Trilineage differentiation assays confirmed the multipotency (osteoblasts, chondroblasts and adipocytes) of the mdMSCs generated in both models with no significant difference observed. Immunophenotyping confirmed the expression of the mesenchymal stem cell (MSC) markers CD-90 and CD-44, with low expression of CD-45 and MHCII markers for mdMSCs derived from the two models. The generated mdMSCs also had great immunomodulatory properties. Specific immunological extraction followed by enzymatic detection (SIEFED) analysis demonstrated that mdMSCs from both models inhibited myeloperoxidase (MPO) activity in a strong dose-dependent manner. Moreover, they were also able to reduce reactive oxygen species (ROS) activity, with mdMSCs from the 3D model showing significantly higher dose-dependent inhibition compared to the 2D model. These results highlighted for the first time the feasibility and efficacy of using 10% ePL for mdMSC expansion in novel 2D and 3D approaches and also that mdMSCs have strong immunomodulatory properties that can be exploited to advance the field of regenerative medicine and cell therapy instead of using FBS with all its drawbacks. Full article
(This article belongs to the Collection Stem Cells in Tissue Engineering and Regeneration)
Show Figures

Figure 1

15 pages, 5592 KiB  
Article
Apoptosis and Inflammation Involved with Fluoride-Induced Bone Injuries
by Miao Wang, Kangting Luo, Tongtong Sha, Qian Li, Zaichao Dong, Yanjie Dou, Huanxia Zhang, Guoyu Zhou, Yue Ba and Fangfang Yu
Nutrients 2024, 16(15), 2500; https://doi.org/10.3390/nu16152500 - 31 Jul 2024
Viewed by 432
Abstract
Background: Excessive fluoride exposure induces skeletal fluorosis, but the specific mechanism responsible is still unclear. Therefore, this study aimed to identify the pathogenesis of fluoride-induced bone injuries. Methods: We systematically searched fluoride-induced bone injury-related genes from five databases. Then, these genes were subjected [...] Read more.
Background: Excessive fluoride exposure induces skeletal fluorosis, but the specific mechanism responsible is still unclear. Therefore, this study aimed to identify the pathogenesis of fluoride-induced bone injuries. Methods: We systematically searched fluoride-induced bone injury-related genes from five databases. Then, these genes were subjected to enrichment analyses. A TF (transcription factor)–mRNA–miRNA network and protein–protein interaction (PPI) network were constructed using Cytoscape, and the Human Protein Atlas (HPA) database was used to screen the expression of key proteins. The candidate pharmacological targets were predicted using the Drug Signature Database. Results: A total of 85 studies were included in this study, and 112 osteoblast-, 35 osteoclast-, and 41 chondrocyte-related differential expression genes (DEGs) were identified. Functional enrichment analyses showed that the Atf4, Bcl2, Col1a1, Fgf21, Fgfr1 and Il6 genes were significantly enriched in the PI3K-Akt signaling pathway of osteoblasts, Mmp9 and Mmp13 genes were enriched in the IL-17 signaling pathway of osteoclasts, and Bmp2 and Bmp7 genes were enriched in the TGF-beta signaling pathway of chondrocytes. With the use of the TF–mRNA–miRNA network, the Col1a1, Bcl2, Fgfr1, Mmp9, Mmp13, Bmp2, and Bmp7 genes were identified as the key regulatory factors. Selenium methyl cysteine, CGS-27023A, and calcium phosphate were predicted to be the potential drugs for skeletal fluorosis. Conclusions: These results suggested that the PI3K-Akt signaling pathway being involved in the apoptosis of osteoblasts, with the IL-17 and the TGF-beta signaling pathways being involved in the inflammation of osteoclasts and chondrocytes in fluoride-induced bone injuries. Full article
(This article belongs to the Special Issue Nutritional Supplements for Bone Health)
Show Figures

Figure 1

21 pages, 4224 KiB  
Article
Arid1a Loss Enhances Disease Progression in a Murine Model of Osteosarcoma
by Kaniz Fatema, Yanliang Wang, Adriene Pavek, Zachary Larson, Christopher Nartker, Shawn Plyler, Amanda Jeppesen, Breanna Mehling, Mario R. Capecchi, Kevin B. Jones and Jared J. Barrott
Cancers 2024, 16(15), 2725; https://doi.org/10.3390/cancers16152725 - 31 Jul 2024
Viewed by 420
Abstract
Osteosarcoma is an aggressive bone malignancy, molecularly characterized by acquired genome complexity and frequent loss of TP53 and RB1. Obtaining a molecular understanding of the initiating mutations of osteosarcomagenesis has been challenged by the difficulty of parsing between passenger and driver mutations [...] Read more.
Osteosarcoma is an aggressive bone malignancy, molecularly characterized by acquired genome complexity and frequent loss of TP53 and RB1. Obtaining a molecular understanding of the initiating mutations of osteosarcomagenesis has been challenged by the difficulty of parsing between passenger and driver mutations in genes. Here, a forward genetic screen in a genetic mouse model of osteosarcomagenesis initiated by Trp53 and Rb1 conditional loss in pre-osteoblasts identified that Arid1a loss contributes to OS progression. Arid1a is a member of the canonical BAF (SWI/SNF) complex and a known tumor suppressor gene in other cancers. We hypothesized that the loss of Arid1a increases the rate of tumor progression and metastasis. Phenotypic evaluation upon in vitro and in vivo deletion of Arid1a validated this hypothesis. Gene expression and pathway analysis revealed a correlation between Arid1a loss and genomic instability, and the subsequent dysregulation of genes involved in DNA DSB or SSB repair pathways. The most significant of these transcriptional changes was a concomitant decrease in DCLRE1C. Our findings suggest that Arid1a plays a role in genomic instability in aggressive osteosarcoma and a better understanding of this correlation can help with clinical prognoses and personalized patient care. Full article
(This article belongs to the Special Issue Multimodality Management of Sarcomas)
Show Figures

Figure 1

12 pages, 6629 KiB  
Communication
Osteoclast-Driven Polydopamine-to-Dopamine Release: An Upgrade Patch for Polydopamine-Functionalized Tissue Engineering Scaffolds
by Lufei Wang, Huamin Hu and Ching-Chang Ko
J. Funct. Biomater. 2024, 15(8), 211; https://doi.org/10.3390/jfb15080211 - 29 Jul 2024
Viewed by 543
Abstract
Polydopamine, a mussel-inspired self-adherent polymer of dopamine, has impressive adhesive properties and thus is one of the most versatile approaches to functionalize tissue engineering scaffolds. To date, many types of polydopamine-functionalized scaffolds have been manufactured and extensively applied in bone tissue engineering at [...] Read more.
Polydopamine, a mussel-inspired self-adherent polymer of dopamine, has impressive adhesive properties and thus is one of the most versatile approaches to functionalize tissue engineering scaffolds. To date, many types of polydopamine-functionalized scaffolds have been manufactured and extensively applied in bone tissue engineering at the preclinical stage. However, how polydopamine is biodegraded and metabolized during the bone healing process and the side effects of its metabolite remain largely unknown. These issues are often neglected in the modern manufacture of polydopamine-functionalized materials and restrict them from stepping forward to clinical applications. In this study, using our bioinspired polydopamine-laced hydroxyapatite collagen calcium silicate material as a representative of polydopamine-functionalized tissue engineering scaffolds, we discovered that polydopamine can be metabolized to dopamine specifically by osteoclasts, which we termed “osteoclast-driven polydopamine-to-dopamine release”. The released dopamine showed an osteoinductive effect in vitro and promoted bone regeneration in calvarial critical-sized defects. The concept of “osteoclast-driven polydopamine-to-dopamine release” has considerable application potential. It could be easily adopted by other existing polydopamine-functionalized scaffolds: just by recruiting osteoclasts. Once adopted, scaffolds will obtain a dopamine-releasing function, which enables their modulation of osteoblast activity and hence elevates the osteoinductive effect. Thus, “osteoclast-driven polydopamine-to-dopamine release” serves as an upgrade patch, which is useful for many existing polydopamine-functionalized materials. Full article
Show Figures

Figure 1

19 pages, 4260 KiB  
Article
Mangiferin Induces Post-Implant Osteointegration in Male Diabetic Rats
by Bünyamin Ongan, Ömer Ekici, Gökhan Sadi, Esra Aslan and Mehmet Bilgehan Pektaş
Medicina 2024, 60(8), 1224; https://doi.org/10.3390/medicina60081224 - 28 Jul 2024
Viewed by 409
Abstract
Background and Objectives: Hyperglycemia is known to undermine the osteointegration process of implants. In this study, the effects of mangiferin (MF) on the post-implant osteointegration process in a type-II diabetes model were investigated molecularly and morphologically. Materials and Methods: Sprague Dawley male rats [...] Read more.
Background and Objectives: Hyperglycemia is known to undermine the osteointegration process of implants. In this study, the effects of mangiferin (MF) on the post-implant osteointegration process in a type-II diabetes model were investigated molecularly and morphologically. Materials and Methods: Sprague Dawley male rats were divided into three groups: control, diabetes, and diabetes + MF. All animals were implanted in their tibia bones on day 0. At the end of the 3-month experimental period, the animals’ blood and the implant area were isolated. Biochemical measurements were performed on blood samples and micro-CT, qRT-PCR, histological, and immunohistochemical measurements were performed on tibia samples. Results: MF significantly improved the increased glucose, triglyceride-VLDL levels, and liver enzymes due to diabetes. By administering MF to diabetic rats, the osteointegration percentage and bone volume increased while porosity decreased. DKK1 and BMP-2 mRNA expressions and OPN, OCN, and OSN mRNA–protein expressions increased by MF administration in diabetic rats. Additionally, while osteoblast and osteoid surface areas increased with MF, osteoclast and eroded surface areas decreased. Conclusions: The findings of our study indicate that MF will be beneficial to the bone-repairing process and osteointegration, which are impaired by type-II diabetes. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

17 pages, 18198 KiB  
Article
Combined Effects of Fibroblast Growth Factor-2 and Carbonate Apatite Granules on Periodontal Healing: An In Vivo and In Vitro Study
by Naoki Miyata, Shinta Mori, Tasuku Murakami, Takahiro Bizenjima, Fumi Seshima, Kentaro Imamura and Atsushi Saito
Biomedicines 2024, 12(8), 1664; https://doi.org/10.3390/biomedicines12081664 - 25 Jul 2024
Viewed by 410
Abstract
The aim of this study was to investigate in vivo and in vitro the effectiveness of the use of fibroblast growth factor (FGF)-2 with carbonate apatite (CO3Ap) on periodontal healing. Periodontal defects created in the maxillary first molars in rats were [...] Read more.
The aim of this study was to investigate in vivo and in vitro the effectiveness of the use of fibroblast growth factor (FGF)-2 with carbonate apatite (CO3Ap) on periodontal healing. Periodontal defects created in the maxillary first molars in rats were treated with FGF-2, CO3Ap, FGF-2 + CO3Ap or left unfilled. Healing was evaluated using microcomputed tomography, histological, and immunohistochemical analyses. In vitro experiments were performed to assess cellular behaviors and the expression of osteoblastic differentiation markers in MC3T3-E1 cells. At 4 weeks, the bone volume fraction in the FGF-2 + CO3Ap group was significantly greater than that in the CO3Ap group, but there was no significant difference from the FGF-2 group. The FGF-2 + CO3Ap group demonstrated greater new bone compared with the FGF-2 or CO3Ap group. The FGF-2 + CO3Ap group showed greater levels of osteocalcin-positive cells compared with the CO3Ap group, but there was no significant difference from the FGF-2 group. In vitro, the FGF-2 + CO3Ap group exhibited a greater extent of cell attachment and more elongated cells compared with the CO3Ap group. Compared with the CO3Ap group, the FGF-2 + CO3Ap group showed significantly higher viability/proliferation, but the expressions of Runx2 and Sp7 were reduced. The results indicated that the use of FGF-2 with CO3Ap enhanced healing in the periodontal defects. FGF-2 promoted cell attachment to and proliferation on CO3Ap and regulated osteoblastic differentiation, thereby contributing to novel bone formation. Full article
(This article belongs to the Special Issue Periodontal Disease and Periodontal Tissue Regeneration)
Show Figures

Graphical abstract

21 pages, 10821 KiB  
Article
Therapeutic Potential of Olfactory Ensheathing Cells and Adipose-Derived Stem Cells in Osteoarthritis: Insights from Preclinical Studies
by Yu-Hsun Chang, Kun-Chi Wu, Chih-Jung Hsu, Tsui-Chin Tu, Mei-Chun Liu, Raymond Yuh-Shyan Chiang and Dah-Ching Ding
Cells 2024, 13(15), 1250; https://doi.org/10.3390/cells13151250 - 25 Jul 2024
Viewed by 321
Abstract
Olfactory-ensheathing cells (OECs) are known for their role in neuronal regeneration and potential to promote tissue repair. Adipose-derived stem cells (ADSCs), characterized by mesenchymal stem cell (MSC) traits, display a fibroblast-like morphology and express MSC surface markers, making them suitable for regenerative therapies [...] Read more.
Olfactory-ensheathing cells (OECs) are known for their role in neuronal regeneration and potential to promote tissue repair. Adipose-derived stem cells (ADSCs), characterized by mesenchymal stem cell (MSC) traits, display a fibroblast-like morphology and express MSC surface markers, making them suitable for regenerative therapies for osteoarthritis (OA). In this study, OECs and ADSCs were derived from tissues and characterized for their morphology, surface marker expression, and differentiation capabilities. Collagenase-induced OA was created in 10-week-old C57BL/6 mice, followed by intra-articular injections of ADSCs (1 × 105), OECs (1 × 105), or a higher dose of OECs (5 × 105). Therapeutic efficacy was evaluated using rotarod performance tests, MRI, histology, and immunohistochemistry. Both cell types exhibited typical MSC characteristics and successfully differentiated into adipocytes, osteoblasts, and chondrocytes, confirmed by gene expression and staining. Transplantation significantly improved rotarod performance and preserved cartilage integrity, as seen in MRI and histology, with reduced cartilage destruction and increased chondrocytes. Immunohistochemistry showed elevated type II collagen and aggrecan in treated joints, indicating hyaline cartilage formation, and reduced MMP13 and IL-1β expression, suggesting decreased inflammation and catabolic activity. These findings highlight the regenerative potential of OECs and ADSCs in treating OA by preserving cartilage, promoting chondrocyte proliferation, and reducing inflammation. Further research is needed to optimize delivery methods and evaluate long-term clinical outcomes. Full article
Show Figures

Figure 1

23 pages, 1399 KiB  
Review
Emerging Roles of Natural Compounds in Osteoporosis: Regulation, Molecular Mechanisms and Bone Regeneration
by Sidra Ilyas, Juni Lee and Donghun Lee
Pharmaceuticals 2024, 17(8), 984; https://doi.org/10.3390/ph17080984 - 25 Jul 2024
Viewed by 401
Abstract
Bone health is a critical aspect of overall well-being, and disorders such as osteoporosis pose significant challenges worldwide. East Asian Herbal Medicine (EAHM), with its rich history and holistic approach, offers promising avenues for enhancing bone regeneration. In this critical review article, we [...] Read more.
Bone health is a critical aspect of overall well-being, and disorders such as osteoporosis pose significant challenges worldwide. East Asian Herbal Medicine (EAHM), with its rich history and holistic approach, offers promising avenues for enhancing bone regeneration. In this critical review article, we analyze the intricate mechanisms through which EAHM compounds modulate bone health. We explore the interplay between osteogenesis and osteoclastogenesis, dissect signaling pathways crucial for bone remodeling and highlight EAHM anti-inflammatory effects within the bone microenvironment. Additionally, we emphasize the promotion of osteoblast viability and regulation of bone turnover markers by EAHM compounds. Epigenetic modifications emerge as a fascinating frontier where EAHM influences DNA methylation and histone modifications to orchestrate bone regeneration. Furthermore, we highlight EAHM effects on osteocytes, mesenchymal stem cells and immune cells, unraveling the holistic impact in bone tissue. Finally, we discuss future directions, including personalized medicine, combinatorial approaches with modern therapies and the integration of EAHM into evidence-based practice. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

16 pages, 10571 KiB  
Article
Activation of Nuclear Factor Erythroid 2-Related Factor 2 Transcriptionally Upregulates Ectonucleotide Pyrophosphatase/Phosphodiesterase 1 Expression and Inhibits Ectopic Calcification in Mice
by Ida Tomomi, Hiroyuki Kanzaki, Miho Shimoyama, Syunnosuke Tohyama, Misao Ishikawa, Yuta Katsumata, Chihiro Arai, Satoshi Wada, Shugo Manase and Hiroshi Tomonari
Antioxidants 2024, 13(8), 896; https://doi.org/10.3390/antiox13080896 - 24 Jul 2024
Viewed by 399
Abstract
Calcification plays a key role in biological processes, and breakdown of the regulatory mechanism results in a pathological state such as ectopic calcification. We hypothesized that ENPP1, the enzyme that produces the calcification inhibitor pyrophosphate, is transcriptionally regulated by Nrf2, and that Nrf2 [...] Read more.
Calcification plays a key role in biological processes, and breakdown of the regulatory mechanism results in a pathological state such as ectopic calcification. We hypothesized that ENPP1, the enzyme that produces the calcification inhibitor pyrophosphate, is transcriptionally regulated by Nrf2, and that Nrf2 activation augments ENPP1 expression to inhibit ectopic calcification. Cell culture experiments were performed using mouse osteoblastic cell line MC3T3-E1. Nrf2 was activated by 5-aminolevulinic acid and sodium ferrous citrate. Nrf2 overexpression was induced by the transient transfection of an Nrf2 expression plasmid. ENPP1 expression was monitored by real-time RT-PCR. Because the promoter region of ENPP1 contains several Nrf2-binding sites, chromatin immunoprecipitation using an anti-Nrf2 antibody followed by real-time PCR (ChIP-qPCR) was performed. The relationship between Nrf2 activation and osteoblastic differentiation was examined by alkaline phosphatase (ALP) and Alizarin red staining. We used mice with a hypomorphic mutation in ENPP1 (ttw mice) to analyze whether Nrf2 activation inhibits ectopic calcification. Nrf2 and Nrf2 overexpression augmented ENPP1 expression and inhibited osteoblastic differentiation, as indicated by ALP expression and calcium deposits. ChIP-qPCR showed that some putative Nrf2-binding sites in the ENPP1 promoter region were bound by Nrf2. Nrf2 activation inhibited ectopic calcification in mice. ENPP1 gene expression was transcriptionally regulated by Nrf2, and Nrf2 activation augmented ENPP1 expression, leading to the attenuation of osteoblastic differentiation and ectopic calcification in vitro and in vivo. Nrf2 activation has a therapeutic potential for preventing ectopic calcification. Full article
(This article belongs to the Special Issue Role of Nrf2 and ROS in Bone Metabolism)
Show Figures

Graphical abstract

Back to TopTop