Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = optical fiber salinity sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 9833 KiB  
Communication
Real-Time Optical Fiber Salinity Interrogator Based on Time-Domain Demodulation and TPMF Incorporated Sagnac Interferometer
by Weihao Lin, Fang Zhao, Jie Hu, Yuhui Liu, Renan Xu, Xingwei Chen and Liyang Shao
Sensors 2024, 24(16), 5339; https://doi.org/10.3390/s24165339 - 18 Aug 2024
Viewed by 557
Abstract
A novel demodulation scheme for a point-type fiber sensor is designed for salinity concentration monitoring based on a Sagnac interferometer (SI) composed of a tapered polarization-maintaining fiber (TPMF) and optical time stretching technology. The SI, constructed using a PMF with a taper region [...] Read more.
A novel demodulation scheme for a point-type fiber sensor is designed for salinity concentration monitoring based on a Sagnac interferometer (SI) composed of a tapered polarization-maintaining fiber (TPMF) and optical time stretching technology. The SI, constructed using a PMF with a taper region of 5.92 μm and an overall length of 30 cm, demonstrated a notable enhancement in the evanescent field, which intensifies the interaction between the light field and external salinity. This enhancement allows for a direct assessment of salinity concentration changes by analyzing the variations in the SI reflection spectra and the experimental results indicate that the sensitivity of the sensor is 0.151 nm/‰. In contrast to traditional fiber optic sensors that depend on spectral demodulation with slower response rates, this work introduces a new approach where the spectral shift is translated to the time domain, utilizing a dispersion compensation fiber (DCF) with the demodulation rate reaching up to 50 MHz. The experimental outcomes reveal that the sensor exhibits a sensitivity of −0.15 ns/‰ in the time domain. The designed sensor is anticipated to play a pivotal role in remote, real-time monitoring of ocean salinity. Full article
(This article belongs to the Section State-of-the-Art Sensors Technologies)
Show Figures

Figure 1

18 pages, 4241 KiB  
Article
Salinity Measurement with a Plasmonic Sensor Based on Doubly Deposited Tapered Optical Fibers
by María-Cruz Navarrete, Natalia Díaz-Herrera and Agustín González-Cano
Sensors 2024, 24(15), 4957; https://doi.org/10.3390/s24154957 - 31 Jul 2024
Viewed by 375
Abstract
Salinity is a very important parameter from an environmental perspective, and therefore, efficient and accurate systems are required for marine environmental monitoring and productive industries. A plasmonic sensor based on doubly deposited tapered optical fibers (DLUWTs—double-layer uniform-waist tapers) for the measurement of salinity [...] Read more.
Salinity is a very important parameter from an environmental perspective, and therefore, efficient and accurate systems are required for marine environmental monitoring and productive industries. A plasmonic sensor based on doubly deposited tapered optical fibers (DLUWTs—double-layer uniform-waist tapers) for the measurement of salinity is presented. The physical principle of the sensor, as well as its structure, is discussed, and its performance is experimentally demonstrated, obtaining very good sensitivities. The possibility of shifting towards higher wavelength measuring ranges associated with DLUWTs is also exploited. At the same time, we have considered the necessity of an extensive characterization of the behavior of the refractive index of salty water, both with variations in temperature and the composition of the salts dissolved. This is important due to the somehow changing reality of salinity measurements and the possibility of establishing new approaches for the determination of absolute salinity as opposed to practical salinity based on electrical conductivity measurements. The results obtained, which show high sensitivity and a good performance in general without the need for the use of semi-empirical algorithms, permit, in our opinion, an advance in the tendency towards refractometric determination of salinity with optical sensors apt for in situ, real-time, accurate measurements in realistic measuring conditions. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Graphical abstract

12 pages, 2991 KiB  
Article
An Efficient Bio-Receptor Layer Combined with a Plasmonic Plastic Optical Fiber Probe for Cortisol Detection in Saliva
by Francesco Arcadio, Mimimorena Seggio, Rosalba Pitruzzella, Luigi Zeni, Alessandra Maria Bossi and Nunzio Cennamo
Biosensors 2024, 14(7), 351; https://doi.org/10.3390/bios14070351 - 19 Jul 2024
Viewed by 827
Abstract
Cortisol is a clinically validated stress biomarker that takes part in many physiological and psychological functions related to the body’s response to stress factors. In particular, it has emerged as a pivotal tool for understanding stress levels and overall well-being. Usually, in clinics, [...] Read more.
Cortisol is a clinically validated stress biomarker that takes part in many physiological and psychological functions related to the body’s response to stress factors. In particular, it has emerged as a pivotal tool for understanding stress levels and overall well-being. Usually, in clinics, cortisol levels are monitored in blood or urine, but significant changes are also registered in sweat and saliva. In this work, a surface plasmon resonance probe based on a D-shaped plastic optical fiber was functionalized with a glucocorticoid receptor exploited as a highly efficient bioreceptor specific to cortisol. The developed plastic optical fiber biosensor was tested for cortisol detection in buffer and artificial saliva. The biosensor response showed very good selectivity towards other hormones and a detection limit of about 59 fM and 96 fM in phosphate saline buffer and artificial saliva, respectively. The obtained detection limit, with a rapid detection time (about 5 min) and a low-cost sensor system, paved the way for determining the cortisol concentration in saliva samples without any extraction process or sample pretreatment via a point-of-care test. Full article
(This article belongs to the Special Issue Plasmonic Biosensors for Biomedical Applications)
Show Figures

Figure 1

14 pages, 3549 KiB  
Article
Probe-Type Multi-Core Fiber Optic Sensor for Simultaneous Measurement of Seawater Salinity, Pressure, and Temperature
by Chengcheng Feng, Hao Niu, Hongye Wang, Donghui Wang, Liuxia Wei, Tao Ju and Libo Yuan
Sensors 2024, 24(6), 1766; https://doi.org/10.3390/s24061766 - 8 Mar 2024
Viewed by 1031
Abstract
In this article, we propose and demonstrate a probe-type multi-core fiber (MCF) sensor for the multi-parameter measurement of seawater. The sensor comprises an MCF and two capillary optical fibers (COFs) with distinct inner diameters, in which a 45° symmetric core reflection (SCR) structure [...] Read more.
In this article, we propose and demonstrate a probe-type multi-core fiber (MCF) sensor for the multi-parameter measurement of seawater. The sensor comprises an MCF and two capillary optical fibers (COFs) with distinct inner diameters, in which a 45° symmetric core reflection (SCR) structure and a step-like inner diameter capillary (SIDC) structure filled with polydimethylsiloxane (PDMS) are fabricated at the fiber end. The sensor is equipped with three channels for different measurements. The surface plasmon resonance (SPR) channel (CHSPR) based on the side-polished MCF is utilized for salinity measurement. The fiber end air cavity, forming the Fabry–Pérot interference (FPI) channel (CHFPI), is utilized for pressure and temperature measurement. Additionally, the fiber Bragg grating (FBG) channel (CHFBG), which is inscribed in the central core, serves as temperature compensation for the measurement results. By combining three sensing principles with space division multiplexing (SDM) technology, the sensor overcomes the common challenges faced by multi-parameter sensors, such as channel crosstalk and signal demodulation difficulties. The experimental results indicate that the sensor has sensitivities of 0.36 nm/‰, −10.62 nm/MPa, and −0.19 nm/°C for salinity, pressure, and temperature, respectively. As a highly integrated and easily demodulated probe-type optical fiber sensor, it can serve as a valuable reference for the development of multi-parameter fiber optic sensors. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

13 pages, 5542 KiB  
Article
Fiber Bragg Grating Salinity Sensor Array Based on Fiber Tapering and HF Etching
by Gaochao Li, Yongjie Wang, Mengchao Yan, Tuanwei Xu, Ancun Shi, Yuanhui Liu, Xuechun Li and Fang Li
Photonics 2023, 10(12), 1315; https://doi.org/10.3390/photonics10121315 - 29 Nov 2023
Cited by 3 | Viewed by 1294
Abstract
We propose a seawater salinity sensor array based on a micro/nanofiber Bragg grating structures, which allows for the simultaneous measurement of temperature and salinity. The proposed sensing structure is fabricated through a process involving optical fiber tapering, femtosecond laser inscription, and chemical etching. [...] Read more.
We propose a seawater salinity sensor array based on a micro/nanofiber Bragg grating structures, which allows for the simultaneous measurement of temperature and salinity. The proposed sensing structure is fabricated through a process involving optical fiber tapering, femtosecond laser inscription, and chemical etching. The equivalent refractive index (RI) of this sensor structure is influenced by the surrounding RI, resulting in a Bragg characteristic wavelength shift that can be used for salinity sensing. The experimental results show that the salinity sensitivity for two cascaded sensor arrays is 8.39 pm/‰ and 7.71 pm/‰, while the temperature sensitivity is 8.28 pm/°C and 8.03 pm/°C, respectively. This sensor structure is compact, exhibits excellent linearity, and offers good repeatability. It holds great potential for applications in seawater environmental monitoring and quantitative studies of seawater dispersion characteristics. Full article
(This article belongs to the Special Issue Progress and Prospects in Optical Fiber Sensing)
Show Figures

Figure 1

20 pages, 2901 KiB  
Article
Dual-Lifetime Referencing (t-DLR) Optical Fiber Fluorescent pH Sensor for Microenvironments
by Wan-Har Chen, Evelyn Armstrong, Peter W. Dillingham, Stephen C. Moratti, Courtney Ennis and Christina M. McGraw
Sensors 2023, 23(21), 8865; https://doi.org/10.3390/s23218865 - 31 Oct 2023
Viewed by 1390
Abstract
The pH behavior in the μm to cm thick diffusion boundary layer (DBL) surrounding many aquatic species is dependent on light-controlled metabolic activities. This DBL microenvironment exhibits different pH behavior to bulk seawater, which can reduce the exposure of calcifying species to ocean [...] Read more.
The pH behavior in the μm to cm thick diffusion boundary layer (DBL) surrounding many aquatic species is dependent on light-controlled metabolic activities. This DBL microenvironment exhibits different pH behavior to bulk seawater, which can reduce the exposure of calcifying species to ocean acidification conditions. A low-cost time-domain dual-lifetime referencing (t-DLR) interrogation system and an optical fiber fluorescent pH sensor were developed for pH measurements in the DBL interface. The pH sensor utilized dual-layer sol-gel coatings of pH-sensitive iminocoumarin and pH-insensitive Ru(dpp)3-PAN. The sensor has a dynamic range of 7.41 (±0.20) to 9.42 ± 0.23 pH units (95% CI, T = 20 °C, S = 35), a response time (t90) of 29 to 100 s, and minimal salinity dependency. The pH sensor has a precision of approximately 0.02 pHT units, which meets the Global Ocean Acidification Observing Network (GOA-ON) “weather” measurement quality guideline. The suitability of the t-DLR optical fiber pH sensor was demonstrated through real-time measurements in the DBL of green seaweed Ulva sp. This research highlights the practicability of optical fiber pH sensors by demonstrating real-time pH measurements of metabolic-induced pH changes. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

13 pages, 4985 KiB  
Communication
Adaptive Fiber Ring Laser Based on Tapered Polarization Maintaining Fiber in Sagnac Loop for Temperature and Salinity Sensing
by Yuhui Liu, Weihao Lin, Fang Zhao, Jie Hu, Jinna Chen, Huanhuan Liu, Perry Ping Shum, Xuming Zhang and Li-Yang Shao
Photonics 2023, 10(5), 599; https://doi.org/10.3390/photonics10050599 - 22 May 2023
Cited by 5 | Viewed by 1761
Abstract
An optical fiber ring laser (FRL) cavity-based sensitive temperature and salinity sensor is proposed and experimentally demonstrated. The sensor consists of a Sagnac loop with a waist of 15 µm and a total length of 30 cm made of tapered polarization-maintaining fiber (PMF). [...] Read more.
An optical fiber ring laser (FRL) cavity-based sensitive temperature and salinity sensor is proposed and experimentally demonstrated. The sensor consists of a Sagnac loop with a waist of 15 µm and a total length of 30 cm made of tapered polarization-maintaining fiber (PMF). Sagnac loop dual parameter sensing was theoretically modeled and presented. The salinity sensitivity of 0.173 nm/‰ was made possible by the efficient interaction between the tapered PMF cladding mode and the external refractive index. In addition, temperature sensitivity of 0.306 nm/°C was achieved through ultrahigh birefringence of PMF. Apart from that, the previous sensing system used a broadband light source (BBS) as the input light, resulting in a wide bandwidth and a poor signal-to-noise ratio (SNR). The Sagnac loop integrated into the FRL system can achieve a high SNR of approximately 50 dB and a narrow bandwidth of 0.15 nm while serving as the filter and sensor head. Additionally, the developed sensor has the advantages of simple design, low cost, and easy fabrication. It can also extend sensing distance indefinitely within a given range, which is anticipated to have positive effects on the testing of marine environments in laboratories. Full article
(This article belongs to the Special Issue Advanced Photonic Sensing and Measurement)
Show Figures

Figure 1

27 pages, 7318 KiB  
Review
Review of Seawater Fiber Optic Salinity Sensors Based on the Refractive Index Detection Principle
by Gaochao Li, Yongjie Wang, Ancun Shi, Yuanhui Liu and Fang Li
Sensors 2023, 23(4), 2187; https://doi.org/10.3390/s23042187 - 15 Feb 2023
Cited by 17 | Viewed by 3568
Abstract
This paper presents a systematic review of the research available on salinity optic fiber sensors (OFSs) for seawater based on the refractive index (RI) measurement principle for the actual measurement demand of seawater salinity in marine environmental monitoring, the definition of seawater salinity [...] Read more.
This paper presents a systematic review of the research available on salinity optic fiber sensors (OFSs) for seawater based on the refractive index (RI) measurement principle for the actual measurement demand of seawater salinity in marine environmental monitoring, the definition of seawater salinity and the correspondence between the seawater RI and salinity. To further investigate the progress of in situ measurements of absolute salinity by OFSs, the sensing mechanisms, research progress and measurement performance indices of various existing fiber optic salinity sensors are summarized. According to the Thermodynamic Equation of Seawater-2010 (TEOS-10), absolute salinity is recommended for sensor calibration and measurement. Comprehensive domestic and international research progress shows that fiber-optic RI sensors are ideal for real-time, in situ measurement of the absolute salinity of seawater and have excellent potential for application in long-term in situ measurements in the deep ocean. Finally, based on marine environmental monitoring applications, a development plan and the technical requirements of salinity OFSs are proposed to provide references for researchers engaged in related industries. Full article
(This article belongs to the Special Issue Optic Fiber Sensing Technology for Marine Environment)
Show Figures

Figure 1

24 pages, 4172 KiB  
Review
Advances in the Technologies for Marine Salinity Measurement
by Lijuan Gu, Xiangge He, Min Zhang and Hailong Lu
J. Mar. Sci. Eng. 2022, 10(12), 2024; https://doi.org/10.3390/jmse10122024 - 18 Dec 2022
Cited by 14 | Viewed by 3679
Abstract
As one of the most important physical parameters of seawater, salinity is essential to study climatological change, to trace seawater masses and to model ocean dynamics. The traditional way to conduct salinity measurement in hydrographical observation is to use a standard conductivity-temperature-depth (CTD) [...] Read more.
As one of the most important physical parameters of seawater, salinity is essential to study climatological change, to trace seawater masses and to model ocean dynamics. The traditional way to conduct salinity measurement in hydrographical observation is to use a standard conductivity-temperature-depth (CTD) probe where the salinity determination is based on a measurement of electrical conductivity. This article describes some developments of recent years that could lead to a new generation of instruments for the determination of salinity in seawater. Salinity determination with optical salinity sensor based on the refractive index measurement have been extensively studied. Different ways to conduct refractive index measurements are summarized, including measurements based on beam deviation, light wave mode coupling and swelling of surface coating material, among which the optical fiber sensors are promising candidates for further commercialization. Complementary to the above-mentioned direct measurement salinity point sensors, seismic observation takes advantages of large scale multichannel seismic data to retrieve the ocean salinity with high lateral resolution of ∼10 m. This work provide comprehensive information in the techniques related to the marine salinity measurement. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

12 pages, 2297 KiB  
Article
Evaluation of Physiological State of Pen Shell Pinna nobilis (Linnaeus, 1758) by a Non-Invasive Heart Rate Recording under Short-Term Hyposalinity Test
by Rajko Martinović, Danijela Joksimović, José Rafael García-March, Nardo Vicente and Zoran Gačić
Micromachines 2022, 13(9), 1549; https://doi.org/10.3390/mi13091549 - 18 Sep 2022
Cited by 2 | Viewed by 1949
Abstract
A non-invasive laser fiber-optic method based on infrared sensors for heart rate (Hr) recording was applied to assess the physiological condition of Pinna nobilis. During 2017, the specimens of P. nobilis were sampled at three sites within the Boka Kotorska Bay, Montenegro [...] Read more.
A non-invasive laser fiber-optic method based on infrared sensors for heart rate (Hr) recording was applied to assess the physiological condition of Pinna nobilis. During 2017, the specimens of P. nobilis were sampled at three sites within the Boka Kotorska Bay, Montenegro and used for ex situ experiments with short-term reduction/restoration of ambient salinity to evaluate their physiological adaptive capacity based on heart rate recovery time (Trec). Mean Trec for specimens from Sv. Nedjelja (reference site), Dobrota and Sv. Stasije were 72 ± 3, 91 ± 7 and 117 ± 15 min, while the coefficients of variation (CV) were 0.12, 0.13 and 0.17, respectively. Resting heart rate (Hrrest) and Trec showed statistically significant differences between the groups of mussels from Dobrota and Sv. Stasije in comparison to the reference site. Statistically significant correlations were observed between Trec and shell length/width, which was not the case in comparison between Hrrest and shell length/width. The lower adaptive capacity within the P. nobilis specimens from Dobrota and Sv. Stasije in comparison to the reference site could occur due to stress induced by deterioration of environmental conditions, which could have led to impairment of the physiological state of the mussels evaluated by Hr. All the specimens of P. nobilis survived the experimental treatments; afterwards, they were successfully transplanted at the Dobrota site. The experimental unit with sensor technology applied in this study can provide Hr recording in real time and could have an application in monitoring the physiological/health state of P. nobilis individuals maintained in aquaria. Full article
(This article belongs to the Special Issue Biosensors for Biomedical and Environmental Applications)
Show Figures

Figure 1

24 pages, 4205 KiB  
Review
Review of Optical Fiber Sensors for Temperature, Salinity, and Pressure Sensing and Measurement in Seawater
by Honglin Liang, Jing Wang, Lihui Zhang, Jichao Liu and Shanshan Wang
Sensors 2022, 22(14), 5363; https://doi.org/10.3390/s22145363 - 18 Jul 2022
Cited by 35 | Viewed by 4993
Abstract
Temperature, salinity, and pressure (TSP) are essential parameters for the ocean. Optical fiber sensors (OFSs) have rapidly come into focus as an ocean detection technology in recent years due to their advantages of electromagnetic interference, light weight, low cost, and no waterproof requirement. [...] Read more.
Temperature, salinity, and pressure (TSP) are essential parameters for the ocean. Optical fiber sensors (OFSs) have rapidly come into focus as an ocean detection technology in recent years due to their advantages of electromagnetic interference, light weight, low cost, and no waterproof requirement. In this paper, the most recently developed TSP sensors for single parameter and multi-parameter TSP sensing and measurement based on different OFSs are reviewed. In addition, from the practical point of view, encapsulation methods that protect fibers and maintain the normal operation of OFSs in seawater, and the response time of the OFS, are addressed. Finally, we discuss the prospects and challenges of OFSs used in marine environments and provide some clues for future work. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

13 pages, 5977 KiB  
Article
Ratiometric Optical Fiber Dissolved Oxygen Sensor Based on Fluorescence Quenching Principle
by Yongkun Zhao, Hongxia Zhang, Qingwen Jin, Dagong Jia and Tiegen Liu
Sensors 2022, 22(13), 4811; https://doi.org/10.3390/s22134811 - 25 Jun 2022
Cited by 11 | Viewed by 5115
Abstract
In this study, a ratiometric optical fiber dissolved oxygen sensor based on dynamic quenching of fluorescence from a ruthenium complex is reported. Tris(4,7-diphenyl-1,10-phenanthrolin) ruthenium(II) dichloride complex (Ru(dpp)32+) is used as an oxygen-sensitive dye, and semiconductor nanomaterial CdSe/ZnS quantum dots (QDs) [...] Read more.
In this study, a ratiometric optical fiber dissolved oxygen sensor based on dynamic quenching of fluorescence from a ruthenium complex is reported. Tris(4,7-diphenyl-1,10-phenanthrolin) ruthenium(II) dichloride complex (Ru(dpp)32+) is used as an oxygen-sensitive dye, and semiconductor nanomaterial CdSe/ZnS quantum dots (QDs) are used as a reference dye by mixing the two substances and coating it on the plastic optical fiber end to form a composite sensitive film. The linear relationship between the relative fluorescence intensity of the ruthenium complex and the oxygen concentration is described using the Stern–Volmer equation, and the ruthenium complex doping concentration in the sol-gel film is tuned. The sensor is tested in gaseous oxygen and aqueous solution. The experimental results indicate that the measurement of dissolved oxygen has a lower sensitivity in an aqueous environment than in a gaseous environment. This is due to the uneven distribution of oxygen in aqueous solution and the low solubility of oxygen in water, which results in a small contact area between the ruthenium complex and oxygen in solution, leading to a less-severe fluorescence quenching effect than that in gaseous oxygen. In detecting dissolved oxygen, the sensor has a good linear Stern–Volmer calibration plot from 0 to 18.25 mg/L, the linearity can reach 99.62%, and the sensitivity can reach 0.0310/[O2] unit. The salinity stability, repeatability, and temperature characteristics of the sensor are characterized. The dissolved oxygen sensor investigated in this research could be used in various marine monitoring and environmental protection applications. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

12 pages, 3036 KiB  
Article
Double-Antibody Sandwich Immunoassay and Plasmonic Coupling Synergistically Improved Long-Range SPR Biosensor with Low Detection Limit
by Jianying Jing, Kun Liu, Junfeng Jiang, Tianhua Xu, Shuang Wang, Jinying Ma, Zhao Zhang, Wenlin Zhang and Tiegen Liu
Nanomaterials 2021, 11(8), 2137; https://doi.org/10.3390/nano11082137 - 22 Aug 2021
Cited by 7 | Viewed by 2594
Abstract
A long-range surface plasmonic resonance (LR-SPR) biosensor modified with double-antibody sandwich immunoassay and plasmonic coupling is demonstrated for human-immunoglobulin G detection with a low limit of detection (LOD). The double-antibody sandwich immunoassay dramatically changes the average refractive index of the medium layer on [...] Read more.
A long-range surface plasmonic resonance (LR-SPR) biosensor modified with double-antibody sandwich immunoassay and plasmonic coupling is demonstrated for human-immunoglobulin G detection with a low limit of detection (LOD). The double-antibody sandwich immunoassay dramatically changes the average refractive index of the medium layer on the sensor surface. The near-field electron coupling between the localized surface plasmon and the long-range surface plasmon leads to a significant perturbation of the evanescent field. The large penetration depth and the long propagation distance of the long-range surface plasmonic waves facilitate the LR-SPR sensor in the detection of biological macromolecules. The unique light absorption characteristic of the nanocomposite material in the sensor provides the in situ self-compensation for the disturbance. Therefore, besides the inherent advantages of optical fiber sensors, the developed biosensor can realize the detection of biomolecules with high sensitivity, low LOD and high accuracy and reliability. Experimental results demonstrate that the LOD of the biosensor is as low as 0.11 μg/mL in the detection of the phosphate-buffered saline sample, and the spike-and-repetition rate is 105.56% in the detection of the real serum sample, which partly shows the practicability of the biosensor. This indicates that the LR-SPR biosensor provides better response compared with existing similar sensors and can be regarded as a valuable method for biochemical analysis and disease detection. Full article
Show Figures

Figure 1

21 pages, 4258 KiB  
Article
An Improved Algorithm for Measuring Nitrate Concentrations in Seawater Based on Deep-Ultraviolet Spectrophotometry: A Case Study of the Aoshan Bay Seawater and Western Pacific Seawater
by Xingyue Zhu, Kaixiong Yu, Xiaofan Zhu, Juan Su and Chi Wu
Sensors 2021, 21(3), 965; https://doi.org/10.3390/s21030965 - 1 Feb 2021
Cited by 6 | Viewed by 3170
Abstract
Nowadays, it is still a challenge for commercial nitrate sensors to meet the requirement of high accuracy in a complex water. Based on deep-ultraviolet spectral analysis and a regression algorithm, a different measuring method for obtaining the concentration of nitrate in seawater is [...] Read more.
Nowadays, it is still a challenge for commercial nitrate sensors to meet the requirement of high accuracy in a complex water. Based on deep-ultraviolet spectral analysis and a regression algorithm, a different measuring method for obtaining the concentration of nitrate in seawater is proposed in this paper. The system consists of a deuterium lamp, an optical fiber splitter module, a reflection probe, temperature and salinity sensors, and a deep-ultraviolet spectrometer. The regression model based on weighted average kernel partial least squares (WA-KPLS) algorithm together with corrections for temperature and salinity (TSC) is established. After that, the seawater samples from Western Pacific and Aoshan Bay in Qingdao, China with the addition of various nitrate concentrations are studied to verify the reliability and accuracy of the method. The results show that the TSC-WA-KPLS algorithm shows the best results when compared against the multiple linear regression (MLR) and ISUS (in situ ultraviolet spectrophotometer) algorithms in the temperatures range of 4–25 °C, with RMSEP of 0.67 µmol/L for Aoshan Bay seawater and 1.08 µmol/L for Western Pacific seawater. The method proposed in this paper is suitable for measuring the nitrate concentration in seawater with higher accuracy, which could find application in the development of in-situ and real-time nitrate sensors. Full article
Show Figures

Figure 1

23 pages, 1602 KiB  
Review
Review of Novel and Emerging Proximal Soil Moisture Sensors for Use in Agriculture
by Marcus Hardie
Sensors 2020, 20(23), 6934; https://doi.org/10.3390/s20236934 - 4 Dec 2020
Cited by 61 | Viewed by 10097
Abstract
The measurement of soil moisture in agriculture is currently dominated by a small number of sensors, the use of which is greatly limited by their small sampling volume, high cost, need for close soil–sensor contact, and poor performance in saline, vertic and stony [...] Read more.
The measurement of soil moisture in agriculture is currently dominated by a small number of sensors, the use of which is greatly limited by their small sampling volume, high cost, need for close soil–sensor contact, and poor performance in saline, vertic and stony soils. This review was undertaken to explore the plethora of novel and emerging soil moisture sensors, and evaluate their potential use in agriculture. The review found that improvements to existing techniques over the last two decades are limited, and largely restricted to frequency domain reflectometry approaches. However, a broad range of new, novel and emerging means of measuring soil moisture were identified including, actively heated fiber optics (AHFO), high capacity tensiometers, paired acoustic / radio / seismic transceiver approaches, microwave-based approaches, radio frequency identification (RFID), hydrogels and seismoelectric approaches. Excitement over this range of potential new technologies is however tempered by the observation that most of these technologies are at early stages of development, and that few of these techniques have been adequately evaluated in situ agricultural soils. Full article
(This article belongs to the Collection Sensors in Agriculture and Forestry)
Show Figures

Figure 1

Back to TopTop