Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (301)

Search Parameters:
Keywords = optical MEMS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 9841 KiB  
Article
MEMS Smart Glass with Larger Angular Tuning Range and 2D Actuation
by Md Kamrul Hasan, Mustaqim Siddi Que Iskhandar, Steffen Liebermann, Shilby Baby, Jiahao Chen, Muhammad Hasnain Qasim, Dennis Löber, Roland Donatiello, Guilin Xu and Hartmut Hillmer
Micromachines 2025, 16(1), 56; https://doi.org/10.3390/mi16010056 - 31 Dec 2024
Viewed by 573
Abstract
Millions of electrostatically actuatable micromirror arrays have been arranged in between windowpanes in inert gas environments, enabling active daylighting in buildings for illumination and climatization. MEMS smart windows can reduce energy consumption significantly. However, to allow personalized light steering for arbitrary user positions [...] Read more.
Millions of electrostatically actuatable micromirror arrays have been arranged in between windowpanes in inert gas environments, enabling active daylighting in buildings for illumination and climatization. MEMS smart windows can reduce energy consumption significantly. However, to allow personalized light steering for arbitrary user positions with high flexibility, two main limitations must be overcome: first, limited tuning angle spans by MEMS pull-in effects; and second, the lack of a second orthogonal tuning angle, which is highly required. Firstly, design improvements of electrostatically actuatable micromirror arrays are reported by utilizing tailored bottom electrode structures for enlarging the tilt angle (Φ). Considerably larger tuning ranges are presented, significantly improving daylight steering into buildings. Secondly, 2D actuation means free movement of micromirrors via two angles—tilt (Φ) and torsion angle (θ)—while applying two corresponding voltages between the metallic micromirrors and corresponding FTO (fluorine-doped tin oxide) counters bottom electrode pads. In addition, a solution for a notorious problem in MEMS actuation is presented. Micromirror design modifications are necessary to eliminate possible crack formation on metallic structure due to stress concentration during the free movement of 2D actuatable micromirror arrays. The concept, design of micromirror arrays and bottom electrodes, as well as technological fabrication and experimental results are presented and discussed. Full article
Show Figures

Figure 1

12 pages, 7530 KiB  
Article
Wavefront Correction for Extended Sources Imaging Based on a 97-Element MEMS Deformable Mirror
by Huizhen Yang, Lingzhe Tang, Zhaojun Yan, Peng Chen, Wenjie Yang, Xianshuo Li and Yongqi Ge
Micromachines 2025, 16(1), 50; https://doi.org/10.3390/mi16010050 - 31 Dec 2024
Viewed by 538
Abstract
Adaptive optics (AO) systems are capable of correcting wavefront aberrations caused by transmission media or defects in optical systems. The deformable mirror (DM) plays a crucial role as a component of the adaptive optics system. In this study, our focus is on analyzing [...] Read more.
Adaptive optics (AO) systems are capable of correcting wavefront aberrations caused by transmission media or defects in optical systems. The deformable mirror (DM) plays a crucial role as a component of the adaptive optics system. In this study, our focus is on analyzing the ability of a 97-element MEMS (Micro-Electro-Mechanical System) DM to correct blurred images of extended sources affected by atmospheric turbulence. The RUN optimizer is employed as the control method to evaluate the correction capability of the DM through simulations and physical experiments. Simulation results demonstrate that within 100 iterations, both the normalized gray variance and Strehl Ratio can converge, leading to an improvement in image quality by approximately 30%. In physics experiments, we observe an increase in normalized gray variance (NGV) from 0.53 to 0.97 and the natural image quality evaluation (NIQE) from 15.35 to 19.73, representing an overall improvement in image quality of about 28%. These findings can offer theoretical and technical support for applying MEMS DMs in correcting imaging issues related to extended sources degraded by wavefront aberrations. Full article
(This article belongs to the Special Issue Integrated Photonics and Optoelectronics, 2nd Edition)
Show Figures

Figure 1

35 pages, 15971 KiB  
Review
MEMS Acoustic Sensors: Charting the Path from Research to Real-World Applications
by Qingyi Wang, Yang Zhang, Sizhe Cheng, Xianyang Wang, Shengjun Wu and Xufeng Liu
Micromachines 2025, 16(1), 43; https://doi.org/10.3390/mi16010043 - 30 Dec 2024
Viewed by 579
Abstract
MEMS acoustic sensors are a type of physical quantity sensor based on MEMS manufacturing technology for detecting sound waves. They utilize various sensitive structures such as thin films, cantilever beams, or cilia to collect acoustic energy, and use certain transduction principles to read [...] Read more.
MEMS acoustic sensors are a type of physical quantity sensor based on MEMS manufacturing technology for detecting sound waves. They utilize various sensitive structures such as thin films, cantilever beams, or cilia to collect acoustic energy, and use certain transduction principles to read out the generated strain, thereby obtaining the targeted acoustic signal’s information, such as its intensity, direction, and distribution. Due to their advantages in miniaturization, low power consumption, high precision, high consistency, high repeatability, high reliability, and ease of integration, MEMS acoustic sensors are widely applied in many areas, such as consumer electronics, industrial perception, military equipment, and health monitoring. Through different sensing mechanisms, they can be used to detect sound energy density, acoustic pressure distribution, and sound wave direction. This article focuses on piezoelectric, piezoresistive, capacitive, and optical MEMS acoustic sensors, showcasing their development in recent years, as well as innovations in their structure, process, and design methods. Then, this review compares the performance of devices with similar working principles. MEMS acoustic sensors have been increasingly widely applied in various fields, including traditional advantage areas such as microphones, stethoscopes, hydrophones, and ultrasound imaging, and cutting-edge fields such as biomedical wearable and implantable devices. Full article
(This article belongs to the Special Issue Recent Advances in Silicon-Based MEMS Sensors and Actuators)
Show Figures

Figure 1

31 pages, 6215 KiB  
Review
Emerging Trends in the Integration of Smart Sensor Technologies in Structural Health Monitoring: A Contemporary Perspective
by Arvindan Sivasuriyan, Dhanasingh Sivalinga Vijayan, Parthiban Devarajan, Anna Stefańska, Saurav Dixit, Anna Podlasek, Wiktor Sitek and Eugeniusz Koda
Sensors 2024, 24(24), 8161; https://doi.org/10.3390/s24248161 - 21 Dec 2024
Viewed by 1505
Abstract
In recent years, civil engineering has increasingly embraced communication tools for automation, with sensors playing a pivotal role, especially in structural health monitoring (SHM). These sensors enable precise data acquisition, measuring parameters like force, displacement, and temperature and transmit data for timely interventions [...] Read more.
In recent years, civil engineering has increasingly embraced communication tools for automation, with sensors playing a pivotal role, especially in structural health monitoring (SHM). These sensors enable precise data acquisition, measuring parameters like force, displacement, and temperature and transmit data for timely interventions to prevent failures. This approach reduces reliance on manual inspections, offering more accurate outcomes. This review explores various sensor technologies in SHM, such as piezoelectric, fibre optic, force, MEMS devices, GPS, LVDT, electromechanical impedance techniques, Doppler effect, and piezoceramic sensors, focusing on advancements from 2019 to 2024. A bibliometric analysis of 1468 research articles from WOS and Scopus databases shows a significant increase in publications, from 15 in 2019 to 359 in 2023 and 52 in 2024 (and still counting). This analysis identifies emerging trends and applications in smart sensor integration in civil and structural health monitoring, enhancing safety and efficiency in infrastructure management. Full article
(This article belongs to the Special Issue Recent Advances in Structural Health Monitoring and Damage Detection)
Show Figures

Figure 1

16 pages, 6182 KiB  
Article
Electrostatic MEMS Two-Dimensional Scanning Micromirrors Integrated with Piezoresistive Sensors
by Yameng Shan, Lei Qian, Kaixuan He, Bo Chen, Kewei Wang, Wenchao Li and Wenjiang Shen
Micromachines 2024, 15(12), 1421; https://doi.org/10.3390/mi15121421 - 26 Nov 2024
Viewed by 2885
Abstract
The MEMS scanning micromirror requires angle sensors to provide real-time angle feedback during operation, ensuring a stable and accurate deflection of the micromirror. This paper proposes a method for integrating piezoresistive sensors on the torsion axis of electrostatic MEMS micromirrors to detect the [...] Read more.
The MEMS scanning micromirror requires angle sensors to provide real-time angle feedback during operation, ensuring a stable and accurate deflection of the micromirror. This paper proposes a method for integrating piezoresistive sensors on the torsion axis of electrostatic MEMS micromirrors to detect the deflection angle. The design uses a multi-layer bonding process to realize a vertical comb-driven structure. The device structure is designed as a double-layer structure, in which the top layer is the ground layer and integrates with piezoresistive sensor. This approach avoids crosstalk between the applied drive voltage and the piezoresistive sensor. This design also optimizes the sensor’s size, improving sensitivity. A MEMS two-dimensional (2D) scanning micromirror with a 1 mm mirror diameter was designed and fabricated. The test results indicated that, in a vacuum environment, the torsional resonance frequencies of the micromirror’s fast axis and slow axis were 17.68 kHz and 2.225 kHz, respectively. When driving voltages of 33 V and 40 V were applied to the fast axis and slow axis of the micromirror, the corresponding optical scanning angles were 55° and 45°, respectively. The piezoresistive sensor effectively detects the micromirror’s deflection state, and optimizing the sensor’s size achieved a sensitivity of 13.87 mV/V/°. The output voltage of the piezoresistive sensor shows a good linear relationship with the micromirror’s deflection angle, enabling closed-loop feedback control of the electrostatic MEMS micromirror. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators, 2nd Edition)
Show Figures

Figure 1

10 pages, 4180 KiB  
Proceeding Paper
The Influence of MIM Metamaterial Absorbers on the Thermal and Electro-Optical Characteristics of Uncooled CMOS-SOI-MEMS Infrared Sensors
by Moshe Avraham, Mikhail Klinov and Yael Nemirovsky
Eng. Proc. 2024, 82(1), 11; https://doi.org/10.3390/ecsa-11-20442 - 25 Nov 2024
Viewed by 166
Abstract
Uncooled infrared (IR) sensors, including bolometers, thermopiles, and pyroelectrics, have traditionally dominated the market. Nevertheless, a new innovative technology, dubbed the TMOS sensor, has emerged. It is based on CMOS-SOI-MEMS (complementary-metal-oxide-semiconductor silicon-on-insulator micro-electromechanical systems) fabrication. This pioneering technology utilizes a suspended, micro-machined, thermally [...] Read more.
Uncooled infrared (IR) sensors, including bolometers, thermopiles, and pyroelectrics, have traditionally dominated the market. Nevertheless, a new innovative technology, dubbed the TMOS sensor, has emerged. It is based on CMOS-SOI-MEMS (complementary-metal-oxide-semiconductor silicon-on-insulator micro-electromechanical systems) fabrication. This pioneering technology utilizes a suspended, micro-machined, thermally insulated transistor to directly convert absorbed infrared radiation into an electrical signal. The miniaturization of IR sensors, including the TMOS, is crucial for seamless integration into wearable and mobile technologies. However, this presents a significant challenge: balancing size reduction with sensor sensitivity. Smaller sensor footprints can often lead to decreased signal capture and, consequently, diminished performance. Metamaterial advancements offer a promising solution to this challenge. These engineered materials exhibit unique electromagnetic properties that can potentially boost sensor sensitivity while enabling miniaturization. The strategic integration of metamaterials into sensor design offers a pathway towards compact, high-sensitivity IR systems with diverse applications. This study explores the impact of electro-optical metal-insulator-metal (MIM) metamaterial absorbers on the thermal and electro-optical characteristics of CMOS-SOI-MEMS sensors in the mid-IR region. We target the key thermal properties critical to IR sensor performance: thermal conductance (Gth), thermal capacitance (Cth), and thermal time constant (τth). This study shows how material selection, layer thickness, and metamaterial geometry fill-factor affect the sensor’s thermal performance. An analytical thermal model is employed alongside 3D finite element software for precise numerical simulations. Full article
Show Figures

Figure 1

34 pages, 4857 KiB  
Review
Grayscale Lithography and a Brief Introduction to Other Widely Used Lithographic Methods: A State-of-the-Art Review
by Svetlana N. Khonina, Nikolay L. Kazanskiy and Muhammad A. Butt
Micromachines 2024, 15(11), 1321; https://doi.org/10.3390/mi15111321 - 30 Oct 2024
Cited by 3 | Viewed by 3932
Abstract
Lithography serves as a fundamental process in the realms of microfabrication and nanotechnology, facilitating the transfer of intricate patterns onto a substrate, typically in the form of a wafer or a flat surface. Grayscale lithography (GSL) is highly valued in precision manufacturing and [...] Read more.
Lithography serves as a fundamental process in the realms of microfabrication and nanotechnology, facilitating the transfer of intricate patterns onto a substrate, typically in the form of a wafer or a flat surface. Grayscale lithography (GSL) is highly valued in precision manufacturing and research endeavors because of its unique capacity to create intricate and customizable patterns with varying depths and intensities. Unlike traditional binary lithography, which produces discrete on/off features, GSL offers a spectrum of exposure levels. This enables the production of complex microstructures, diffractive optical elements, 3D micro-optics, and other nanoscale designs with smooth gradients and intricate surface profiles. GSL plays a crucial role in sectors such as microelectronics, micro-optics, MEMS/NEMS manufacturing, and photonics, where precise control over feature depth, shape, and intensity is critical for achieving advanced functionality. Its versatility and capacity to generate tailored structures make GSL an indispensable tool in various cutting-edge applications. This review will delve into several lithographic techniques, with a particular emphasis on masked and maskless GSL methods. As these technologies continue to evolve, the future of 3D micro- and nanostructure manufacturing will undoubtedly assume even greater significance in various applications. Full article
Show Figures

Figure 1

16 pages, 13038 KiB  
Article
Underwater Gyros Denoising Net (UGDN): A Learning-Based Gyros Denoising Method for Underwater Navigation
by Chun Cao, Can Wang, Shaoping Zhao, Tingfeng Tan, Liang Zhao and Feihu Zhang
J. Mar. Sci. Eng. 2024, 12(10), 1874; https://doi.org/10.3390/jmse12101874 - 18 Oct 2024
Viewed by 891
Abstract
Autonomous Underwater Vehicles (AUVs) are widely used for hydrological monitoring, underwater exploration, and geological surveys. However, AUVs face limitations in underwater navigation due to the high costs associated with Strapdown Inertial Navigation System (SINS) and Doppler Velocity Log (DVL), hindering the development of [...] Read more.
Autonomous Underwater Vehicles (AUVs) are widely used for hydrological monitoring, underwater exploration, and geological surveys. However, AUVs face limitations in underwater navigation due to the high costs associated with Strapdown Inertial Navigation System (SINS) and Doppler Velocity Log (DVL), hindering the development of low-cost vehicles. Micro Electro Mechanical System Inertial Measurement Units (MEMS IMUs) are widely used in industry due to their low cost and can output acceleration and angular velocity, making them suitable as an Attitude Heading Reference System (AHRS) for low-cost vehicles. However, poorly calibrated MEMS IMUs provide an inaccurate angular velocity, leading to rapid drift in orientation. In underwater environments where AUVs cannot use GPS for position correction, this drift can have severe consequences. To address this issue, this paper proposes Underwater Gyros Denoising Net (UGDN), a method based on dilated convolutions and LSTM that learns and extracts the spatiotemporal features of IMU sequences to dynamically compensate for the gyroscope’s angular velocity measurements, reducing attitude and heading errors. In the experimental section of this paper, we deployed this method on a dataset collected from field trials and achieved significant results. The experimental results show that the accuracy of MEMS IMU data denoised by UGDN approaches that of fiber-optic SINS, and when integrated with DVL, it can serve as a low-cost underwater navigation solution. Full article
(This article belongs to the Special Issue Autonomous Marine Vehicle Operations—2nd Edition)
Show Figures

Figure 1

13 pages, 4403 KiB  
Article
Development of a Compact NDIR CO2 Gas Sensor for a Portable Gas Analyzer
by Maosen Xu, Wei Tian, Yuzhe Lin, Yan Xu and Jifang Tao
Micromachines 2024, 15(10), 1203; https://doi.org/10.3390/mi15101203 - 28 Sep 2024
Cited by 1 | Viewed by 3717
Abstract
A carbon dioxide (CO2) gas sensor based on non-dispersive infrared (NDIR) technology has been developed and is suitable for use in portable devices for high-precision CO2 detection. The NDIR gas sensor comprises a MEMS infrared emitter, a MEMS thermopile detector [...] Read more.
A carbon dioxide (CO2) gas sensor based on non-dispersive infrared (NDIR) technology has been developed and is suitable for use in portable devices for high-precision CO2 detection. The NDIR gas sensor comprises a MEMS infrared emitter, a MEMS thermopile detector with an integrated optical filter, and a compact gas cell with high optical coupling efficiency. A dual-ellipsoid mirror optical system was designed, and based on optical simulation analysis, the structure of the dual-ellipsoid reflective gas chamber was designed and optimized, achieving a coupling efficiency of up to 54%. Optical and thermal simulations were conducted to design the sensor structure, considering thermal management and light analysis. By optimizing the gas cell structure and conditioning circuit, we effectively reduced the sensor’s baseline noise, enhancing the overall reliability and stability of the system. The sensor’s dimensions were 20 mm × 10 mm × 4 mm (L × W × H), only 15% of the size of traditional NDIR gas sensors with equivalent detection resolution. The developed sensor offers high sensitivity and low noise, with a sensitivity of 15 μV/ppm, a detection limit of 90 ppm, and a resolution of 30 ppm. The total power consumption of the whole sensor system is 6.5 mW, with a maximum power consumption of only 90 mW. Full article
Show Figures

Figure 1

8 pages, 411 KiB  
Article
Modeling Electronic Devices with a Casimir Cavity
by G. Jordan Maclay
Physics 2024, 6(3), 1124-1131; https://doi.org/10.3390/physics6030070 - 10 Sep 2024
Viewed by 3447
Abstract
The Casimir effect has been exploited in various MEMS (micro-electro-mechanical system) devices, especially to make sensitive force sensors and accelerometers. It has also been used to provide forces for a variety of purposes, for example, for the assembly of considerably small parts. Repulsive [...] Read more.
The Casimir effect has been exploited in various MEMS (micro-electro-mechanical system) devices, especially to make sensitive force sensors and accelerometers. It has also been used to provide forces for a variety of purposes, for example, for the assembly of considerably small parts. Repulsive forces and torques have been produced using various configurations of media and materials. Just a few electronic devices have been explored that utilize the electrical properties of the Casimir effect. Recently, experimental results were presented that described the operation of an electronic device that employed a Casimir cavity attached to a standard MIM (metal–insulator–metal) structure. The DC (direct current) conductance of the novel MIM device was enhanced by the attached cavity and found to be directly proportional to the capacitance of the attached cavity. The phenomenological model proposed assumed that the cavity reduced the vacuum fluctuations, which resulted in a reduced injection of carriers. The analysis presented here indicates that the optical cavity actually enhances vacuum fluctuations, which would predict a current in the opposite direction from that observed. Further, the vacuum fluctuations near the electrode are shown to be approximately independent of the size of the optical cavity, in disagreement with the experimental data which show a dependence on the size. Thus, the proposed mechanism of operation does not appear correct. A more detailed theoretical analysis of these devices is needed, in particular, one that uses real material parameters and computes the vacuum fluctuations for the entire device. Such an analysis would reveal how these devices operate and might suggest design principles for a new genre of electronic devices that make use of vacuum fluctuations. Full article
(This article belongs to the Section Atomic Physics)
Show Figures

Figure 1

14 pages, 3988 KiB  
Article
Study on the Detection of Single and Dual Partial Discharge Sources in Transformers Using Fiber-Optic Ultrasonic Sensors
by Feng Liu, Yansheng Shi, Shuainan Zhang and Wei Wang
Photonics 2024, 11(9), 815; https://doi.org/10.3390/photonics11090815 - 29 Aug 2024
Viewed by 3423
Abstract
Partial discharge is a fault that occurs at the site of insulation defects within a transformer. Dual instances of partial discharge origination discharging simultaneously embody a more intricate form of discharge, where the interaction between the discharge sources leads to more intricate and [...] Read more.
Partial discharge is a fault that occurs at the site of insulation defects within a transformer. Dual instances of partial discharge origination discharging simultaneously embody a more intricate form of discharge, where the interaction between the discharge sources leads to more intricate and unpredictable insulation damage. Conventional piezoelectric transducers are magnetically affixed to the exterior metal tank of transformers. The ultrasonic signals emanating from partial discharge undergo deflection and reverberation upon traversing the windings, insulation paperboards, and the outer shell, resulting in signal attenuation and thus making it difficult to detect such faults. Furthermore, it is challenging to distinguish between simultaneous discharges from dual partial discharge sources and continuous discharges from a single source, often leading to missed detection and repairs of fault points, which increase the maintenance difficulty and cost of power equipment. With the advancement of MEMS (Micro-Electro-Mechanical System) technology, fiber-optic ultrasonic sensors have surfaced as an innovative technique for optically detecting partial discharges. These sensors are distinguished by their minute dimensions, heightened sensitivity, and robust immunity to electromagnetic disturbances. and excellent insulation properties, allowing for internal installation within power equipment for partial discharge monitoring. In this study, we developed an EFPI (Extrinsic Fabry Perot Interferometer) optical fiber ultrasonic sensor that can be installed inside transformers. Based on this sensor array, we also created a partial discharge ultrasonic detection system that estimates the directional information of single and dual partial discharge sources using the received signals from the sensor array. By utilizing the DOA (Direction of Arrival) as a feature recognition parameter, our system can effectively detect both simultaneous discharges from dual partial discharge sources and continuous discharges from a single source within transformer oil tanks, meeting practical application requirements. The detection methodology presented in this paper introduces an original strategy and resolution for pinpointing the types of partial discharges occurring under intricate conditions within power apparatus, effectively distinguishing between discharges from single and dual partial discharge sources. Full article
Show Figures

Figure 1

14 pages, 2739 KiB  
Review
The Status of Environmental Electric Field Detection Technologies: Progress and Perspectives
by Qingsong Liu, Zhaoqing Lan, Wei Guo, Jun Deng, Xiang Peng, Minghe Chi and Shunbo Li
Sensors 2024, 24(17), 5532; https://doi.org/10.3390/s24175532 - 27 Aug 2024
Viewed by 3882
Abstract
The detection of electric fields in the environment has great importance for understanding various natural phenomena, environmental monitoring, and ensuring human safety. This review paper provides an overview of the current state-of-the-art technologies utilized for sensing electric fields in the environment, the challenges [...] Read more.
The detection of electric fields in the environment has great importance for understanding various natural phenomena, environmental monitoring, and ensuring human safety. This review paper provides an overview of the current state-of-the-art technologies utilized for sensing electric fields in the environment, the challenges encountered, and the diverse applications of this sensing technology. The technology is divided into three categories according to the differences in the physical mechanism: the electro-optic effect-based measurement system, the MEMS-based sensor, and the newly reported quantum effect-based sensors. The principles of the underlying methods are comprehensively introduced, and the tentative applications for each type are discussed. Detailed comparisons of the three different techniques are identified and discussed with regard to the instrument, its sensitivity, and bandwidth. Additionally, the challenges faced in environmental electric field sensing, the potential solutions, and future development directions are addressed. Full article
(This article belongs to the Special Issue Advanced Physical Sensors for Environmental Monitoring)
Show Figures

Figure 1

11 pages, 7955 KiB  
Article
Grating Bio-Microelectromechanical Platform Architecture for Multiple Biomarker Detection
by Fahimeh Marvi, Kian Jafari and Mohamad Sawan
Biosensors 2024, 14(8), 385; https://doi.org/10.3390/bios14080385 - 9 Aug 2024
Viewed by 1530
Abstract
A label-free biosensor based on a tunable MEMS metamaterial structure is proposed in this paper. The adopted structure is a one-dimensional array of metamaterial gratings with movable and fixed fingers. The moving unit of the optical detection system is a component of the [...] Read more.
A label-free biosensor based on a tunable MEMS metamaterial structure is proposed in this paper. The adopted structure is a one-dimensional array of metamaterial gratings with movable and fixed fingers. The moving unit of the optical detection system is a component of the MEMS structure, driven by the surface stress effect. Thus, these suspended optical nanoribbons can be moved and change the grating pattern by the biological bonds that happened on the modified cantilever surface. Such structural variations lead to significant changes in the optical response of the metamaterial system under illuminating angled light and subsequently shift its resonance wavelength spectrum. As a result, the proposed biosensor shows appropriate analytical characteristics, including the mechanical sensitivity of Sm = 11.55 μm/Nm−1, the optical sensitivity of So = Δλ/Δd = 0.7 translated to So = Δλ/Δσ = 8.08 μm/Nm−1, and the quality factor of Q = 102.7. Also, considering the importance of multi-biomarker detection, a specific design of the proposed topology has been introduced as an array for identifying different biomolecules. Based on the conducted modeling and analyses, the presented device poses the capability of detecting multiple biomarkers of disease at very low concentrations with proper precision in fluidic environments, offering a suitable bio-platform for lab-on-chip structures. Full article
(This article belongs to the Special Issue Micro-nano Optic-Based Biosensing Technology and Strategy)
Show Figures

Figure 1

11 pages, 7519 KiB  
Article
A Large-Scan-Range Electrothermal Micromirror Integrated with Thermal Convection-Based Position Sensors
by Anrun Ren, Yingtao Ding, Hengzhang Yang, Teng Pan, Ziyue Zhang and Huikai Xie
Micromachines 2024, 15(8), 1017; https://doi.org/10.3390/mi15081017 - 8 Aug 2024
Viewed by 3453
Abstract
This paper presents the design, simulation, fabrication, and characterization of a novel large-scan-range electrothermal micromirror integrated with a pair of position sensors. Note that the micromirror and the sensors can be manufactured within a single MEMS process flow. Thanks to the precise control [...] Read more.
This paper presents the design, simulation, fabrication, and characterization of a novel large-scan-range electrothermal micromirror integrated with a pair of position sensors. Note that the micromirror and the sensors can be manufactured within a single MEMS process flow. Thanks to the precise control of the fabrication of the grid-based large-size Al/SiO2 bimorph actuators, the maximum piston displacement and optical scan angle of the micromirror reach 370 μm and 36° at only 6 Vdc, respectively. Furthermore, the working principle of the sensors is deeply investigated, where the motion of the micromirror is reflected by monitoring the temperature variation-induced resistance change of the thermistors on the substrate during the synchronous movement of the mirror plate and the heaters. The results show that the full-range motion of the micromirror can be recognized by the sensors with sensitivities of 0.3 mV/μm in the piston displacement sensing and 2.1 mV/° in the tip-tilt sensing, respectively. The demonstrated large-scan-range micromirror that can be monitored by position sensors has a promising prospect for the MEMS Fourier transform spectrometers (FTS) systems. Full article
Show Figures

Figure 1

3 pages, 3130 KiB  
Abstract
Thermal Behavior of Biaxial Piezoelectric MEMS Scanner
by Laurent Mollard, Christel Dieppedale, Antoine Hamelin, François Gardien, Gwenael Le Rhun, Jean Hue, Laurent Frey and Gael Castellan
Proceedings 2024, 97(1), 223; https://doi.org/10.3390/proceedings2024097223 - 14 Jun 2024
Viewed by 3280
Abstract
This paper presents the thermal behavior of a non-resonant (quasi-static) biaxial piezoelectric MEMS scanner [...] Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

Back to TopTop