Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (215)

Search Parameters:
Keywords = opportunistic screening

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2246 KiB  
Article
Opportunistic Screening for Low Bone Mineral Density in Adults with Cystic Fibrosis Using Low-Dose Computed Tomography of the Chest with Artificial Intelligence
by Matthias Welsner, Henning Navel, Rene Hosch, Peter Rathsmann, Florian Stehling, Annie Mathew, Sivagurunathan Sutharsan, Svenja Strassburg, Dirk Westhölter, Christian Taube, Sebastian Zensen, Benedikt M. Schaarschmidt, Michael Forsting, Felix Nensa, Mathias Meetschen, Johannes Haubold, Luca Salhöfer and Marcel Opitz
J. Clin. Med. 2024, 13(19), 5961; https://doi.org/10.3390/jcm13195961 - 7 Oct 2024
Viewed by 324
Abstract
Background: Cystic fibrosis bone disease (CFBD) is a common comorbidity in adult people with cystic fibrosis (pwCF), resulting in an increased risk of bone fractures. This study evaluated the capacity of artificial intelligence (AI)-assisted low-dose chest CT (LDCT) opportunistic screening for detecting low [...] Read more.
Background: Cystic fibrosis bone disease (CFBD) is a common comorbidity in adult people with cystic fibrosis (pwCF), resulting in an increased risk of bone fractures. This study evaluated the capacity of artificial intelligence (AI)-assisted low-dose chest CT (LDCT) opportunistic screening for detecting low bone mineral density (BMD) in adult pwCF. Methods: In this retrospective single-center study, 65 adult pwCF (mean age 30.1 ± 7.5 years) underwent dual-energy X-ray absorptiometry (DXA) of the lumbar vertebrae L1 to L4 to determine BMD and corresponding z-scores and completed LDCTs of the chest within three months as part of routine clinical care. A fully automated CT-based AI algorithm measured the attenuation values (Hounsfield units [HU]) of the thoracic vertebrae Th9–Th12 and first lumbar vertebra L1. The ability of the algorithm to diagnose CFBD was assessed using receiver operating characteristic (ROC) curves. Results: HU values of Th9 to L1 and DXA-derived BMD and the corresponding z-scores of L1 to L4 showed a strong correlation (all p < 0.05). The area under the curve (AUC) for diagnosing low BMD was highest for L1 (0.796; p = 0.001) and Th11 (0.835; p < 0.001), resulting in a specificity of 84.9% at a sensitivity level of 75%. The HU threshold values for distinguishing normal from low BMD were <197 (L1) and <212 (Th11), respectively. Conclusions: Routine LDCT of the chest with the fully automated AI-guided determination of thoracic and lumbar vertebral attenuation values is a valuable tool for predicting low BMD in adult pwCF, with the best results for Th11 and L1. However, further studies are required to define clear threshold values. Full article
(This article belongs to the Topic AI in Medical Imaging and Image Processing)
Show Figures

Figure 1

12 pages, 698 KiB  
Article
Photobacterium damselae subsp. damselae in Stranded Cetaceans: A 6-Year Monitoring of the Ligurian Sea in Italy
by Roberta Battistini, Chiara Masotti, Federica Giorda, Carla Grattarola, Simone Peletto, Camilla Testori, Simona Zoppi, Enrica Berio, Maria Ines Crescio, Nicola Pussini, Laura Serracca and Cristina Casalone
Animals 2024, 14(19), 2825; https://doi.org/10.3390/ani14192825 - 30 Sep 2024
Viewed by 343
Abstract
Photobacterium damselae subsp. damselae (Pdd) is an increasingly common bacterium in post-mortem diagnostics of beached marine mammals, but little is known about its precise etiological responsibility. To estimate the prevalence of Pdd in stranded cetaceans from 2017 to 2022 on the Ligurian coast [...] Read more.
Photobacterium damselae subsp. damselae (Pdd) is an increasingly common bacterium in post-mortem diagnostics of beached marine mammals, but little is known about its precise etiological responsibility. To estimate the prevalence of Pdd in stranded cetaceans from 2017 to 2022 on the Ligurian coast (Pelagos Sanctuary), we tested tissues from 53 stranded individuals belonging to four cetacean species. DNA extracts from cetacean tissue were screened using a polymerase chain reaction (PCR) assay targeting the Pdd ureC gene. Positive samples were screened by PCR for dly, hlyApl and hlyAch hemolysin genes, which were confirmed by sequencing. Twenty-two out of 53 (41.5%) cetaceans analyzed by PCR were confirmed for Pdd DNA in at least one tissue among those analyzed. Five of these cetaceans were positive for at least one of the hemolysin genes tested. In all Pdd-positive cetaceans, other pathogens that were considered responsible for the causa mortis of the animals were also found. The results provide new information on the spread of Pdd in cetaceans and support the thesis that Pdd might be an opportunistic agent that could contribute to worsening health conditions in subjects already compromised by other pathogens. However, further studies are needed to investigate and deepen this hypothesis. Full article
(This article belongs to the Special Issue Advances in the Pathology and Infectious Diseases of Marine Mammals)
19 pages, 13089 KiB  
Article
A Comparison of the Cecal Microbiota between the Infection and Recovery Periods in Chickens with Different Susceptibilities to Eimeria tenella
by Jianqiang Tang, Qi Wang, Hailiang Yu, Liyue Dong, Meihui Tang, Areej Arif, Genxi Zhang, Tao Zhang, Kaizhou Xie, Shijie Su, Zhenhua Zhao and Guojun Dai
Animals 2024, 14(18), 2709; https://doi.org/10.3390/ani14182709 - 18 Sep 2024
Viewed by 521
Abstract
To investigate the effect of Eimeria tenella (E. tenella) infection on the cecal microbiota, resistant and susceptible families were screened out based on the coccidiosis resistance evaluation indexes after E. tenella infection. Subsequently, a comparative analysis of cecal microorganisms among control, [...] Read more.
To investigate the effect of Eimeria tenella (E. tenella) infection on the cecal microbiota, resistant and susceptible families were screened out based on the coccidiosis resistance evaluation indexes after E. tenella infection. Subsequently, a comparative analysis of cecal microorganisms among control, resistant, and susceptible groups as well as between different periods following the E. tenella challenge was conducted using metagenomic sequencing technology. The results showed that the abundance of opportunistic pathogens, such as Pantoea, Sporomusa, and Pasteurella in the susceptible group and Helicobacter and Sutterella in the resistant group, was significantly higher on day 27 post-inoculation (PI) (the recovery period) than on day 5 PI (the infection period). Additionally, the abundance of Alistipes, Butyricicoccus, and Eubacterium in the susceptible group and Coprococcus, Roseburia, Butyricicoccus, and Lactobacillus in the resistant group showed a significant upward trend during the infection period compared with that in the recovery period. On day 5 PI, the abundance of Faecalibacterium and Lactobacillus was decreased in both the resistant and susceptible groups when compared with that in the control group and was greater in the resistant group than in the susceptible group, while Alistipes in the susceptible group had a relatively higher abundance than that in other groups. A total of 49 biomarker taxa were identified using the linear discriminant analysis (LDA) effect size (LEfSe) method. Of these, the relative abundance of Lactobacillus aviarius, Lactobacillus salivarius, Roseburia, and Ruminococcus gauvreauii was increased in the resistant group, while Bacteroides_sp__AGMB03916, Fusobacterium_mortiferum, Alistipes_sp__An31A, and Alistipes_sp__Marseille_P5061 were enriched in the susceptible group. On day 27 PI, LDA scores identified 43 biomarkers, among which the relative abundance of Elusimicrobium_sp__An273 and Desulfovibrio_sp__An276 was increased in the resistant group, while that of Bacteroides_sp__43_108, Chlamydiia, Chlamydiales, and Sutterella_sp__AM11 39 was augmented in the susceptible group. Our results indicated that E. tenella infection affects the structure of the cecal microbiota during both the challenge and recovery periods. These findings will enhance the understanding of the effects of changes in the cecal microbiota on chickens after coccidia infection and provide a reference for further research on the mechanisms underlying how the intestinal microbiota influence the growth and health of chickens. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

16 pages, 703 KiB  
Article
Phytochemical Composition, In Silico Molecular Docking Analysis and Antibacterial Activity of Lawsonia inermis Linn Leaves Extracts against Extended Spectrum Beta-Lactamases-Producing Strains of Klebsiella pneumoniae
by Adam Mustapha, Ahmed Nouri AlSharksi, Ukpai A. Eze, Rahma Kudla Samaila, Boniface Nwofoke Ukwah, Arinze Favour Anyiam, Shivanthi Samarasinghe and Musa Adamu Ibrahim
BioMed 2024, 4(3), 277-292; https://doi.org/10.3390/biomed4030022 - 26 Aug 2024
Viewed by 1122
Abstract
Klebsiella pneumoniae is an opportunistic Gram-negative bacterium in the Enterobacteriaceae family associated with a wide range of diseases, such as pneumonia, bloodstream infections, meningitis and urinary tract infections. Infections caused by drug-resistant strains of Klebsiella pneumoniae pose a significant threat to the effectiveness [...] Read more.
Klebsiella pneumoniae is an opportunistic Gram-negative bacterium in the Enterobacteriaceae family associated with a wide range of diseases, such as pneumonia, bloodstream infections, meningitis and urinary tract infections. Infections caused by drug-resistant strains of Klebsiella pneumoniae pose a significant threat to the effectiveness of conventional antibiotics. Hence, this has led to the need to explore alternative antimicrobial therapies, especially natural products derived from plant sources. This study assessed the phytochemical composition and antibacterial properties and performed a molecular docking analysis of Henna leaves (Lawsonia inermis L.) extracts on strains of Klebsiella pneumoniae. Crude ethanol and methanol extracts of L. inermis L. were prepared at different concentrations (25, 50, 75 and 100 mg/mL) and tested on extended spectrum beta-lactamases (ESBLs)-producing strains of Klebsiella pneumoniae. Phytocompounds were identified using gas chromatography–mass spectrometry (GC-MS) and further subjected to virtual ligands screening with DataWarrior (v05.02.01) and a molecular docking analysis using AutoDock4.2 (v4.2.6). The active compounds of L. inermis L. were determined by the docking analysis, including phytochemical, physicochemical, pharmacokinetics and docking score. The GC-MS analysis identified 27 phytoconstituents, including ethyl acetate, sclareol, 2-[1,2-dihydroxyethyl]-9-[β-d-ribofuranosyl] hypoxanthine, α-bisabolol and 2-Isopropyl-5-methylcyclohexyl 3-(1-(4-chlorophenyl)-3-oxobutyl)-coumarin-4-yl carbonate. The 27 compounds were then screened for their physicochemical and pharmacokinetic properties. The results revealed that the methanol extracts at 100 mg/mL showed significantly higher (p < 0.05) zones of inhibition (13.7 ± 1.2 mm), while the ethanol extracts at 50 mg/mL were significantly lower (6.3 ± 0.6 mm) compared to all the other treatments. The docking analysis revealed that out of the 27 compounds identified, only twelve (12) compounds have a drug-likeness activity. The 12 compounds were further subjected to docking analysis to determine the binding energies with the CTX-M protein of Klebsiella pneumoniae. Only one compound [CID_440869; (2-[1,2-dihydroxyethyl]-9-[β-d-ribofuranosyl] hypoxanthine)] had the best binding energy of −9.76 kcal/mol; hence, it can be considered a potentially suitable treatment for infections caused by ESBLs-producing strains of Klebsiella pneumoniae. This study has demonstrated that L. inermis L. extracts have antibacterial effects. Further research could explore the potential antimicrobial applications of L. inermis L. extracts to many bacterial strains. Full article
Show Figures

Figure 1

13 pages, 1736 KiB  
Article
Automated Opportunistic Osteoporosis Screening Using Low-Dose Chest CT among Individuals Undergoing Lung Cancer Screening in a Korean Population
by Woo Young Kang, Zepa Yang, Heejun Park, Jemyoung Lee, Suk-Joo Hong, Euddeum Shim and Ok Hee Woo
Diagnostics 2024, 14(16), 1789; https://doi.org/10.3390/diagnostics14161789 - 16 Aug 2024
Viewed by 619
Abstract
Opportunistic osteoporosis screening using deep learning (DL) analysis of low-dose chest CT (LDCT) scans is a potentially promising approach for the early diagnosis of this condition. We explored bone mineral density (BMD) profiles across all adult ages and prevalence of osteoporosis using LDCT [...] Read more.
Opportunistic osteoporosis screening using deep learning (DL) analysis of low-dose chest CT (LDCT) scans is a potentially promising approach for the early diagnosis of this condition. We explored bone mineral density (BMD) profiles across all adult ages and prevalence of osteoporosis using LDCT with DL in a Korean population. This retrospective study included 1915 participants from two hospitals who underwent LDCT during general health checkups between 2018 and 2021. Trabecular volumetric BMD of L1-2 was automatically calculated using DL and categorized according to the American College of Radiology quantitative computed tomography diagnostic criteria. BMD decreased with age in both men and women. Women had a higher peak BMD in their twenties, but lower BMD than men after 50. Among adults aged 50 and older, the prevalence of osteoporosis and osteopenia was 26.3% and 42.0%, respectively. Osteoporosis prevalence was 18.0% in men and 34.9% in women, increasing with age. Compared to previous data obtained using dual-energy X-ray absorptiometry, the prevalence of osteoporosis, particularly in men, was more than double. The automated opportunistic BMD measurements using LDCT can effectively predict osteoporosis for opportunistic screening and identify high-risk patients. Patients undergoing lung cancer screening may especially profit from this procedure requiring no additional imaging or radiation exposure. Full article
(This article belongs to the Special Issue Diagnosis and Management of Osteoporosis)
Show Figures

Figure 1

17 pages, 3220 KiB  
Article
Seasonal Dynamics of Culturable Yeasts in Ornithogenically Influenced Soils in a Temperate Forest and Evaluation of Extracellular Enzyme Secretion in Tausonia pullulans at Different Temperatures
by Anna Glushakova, Anna Sharova and Aleksey Kachalkin
J. Fungi 2024, 10(8), 532; https://doi.org/10.3390/jof10080532 - 30 Jul 2024
Viewed by 751
Abstract
The culturable yeast communities in temperate forest soils under the ornithogenic influence were studied in a seasonal dynamic. To investigate the intense ornithogenic influence, conventional and “live” feeders were used, which were attached to trees in the forest and constantly replenished throughout the [...] Read more.
The culturable yeast communities in temperate forest soils under the ornithogenic influence were studied in a seasonal dynamic. To investigate the intense ornithogenic influence, conventional and “live” feeders were used, which were attached to trees in the forest and constantly replenished throughout the year. It was found that the yeast abundance in the soil under strong ornithogenic influence reached the highest values in winter compared to the other seasons and amounted to 4.8 lg (cfu/g). This was almost an order of magnitude higher than the minimum value of yeast abundance in ornithogenic soils determined for summer. A total of 44 yeast species, 21 ascomycetes and 23 basidiomycetes, were detected in ornithogenic soil samples during the year. These included soil-related species (Barnettozyma californica, Cyberlindnera misumaiensis, Cutaneotrichosporon moniliiforme, Goffeauzyma gastrica, Holtermanniella festucosa, Leucosporidium creatinivorum, L. yakuticum, Naganishia adeliensis, N. albidosimilis, N. globosa, Tausonia pullulans, and Vanrija albida), eurybionts (yeast-like fungus Aureobasidium pullulans, Debaryomyces hansenii, and Rhodotorula mucilaginosa), inhabitants of plant substrates and litter (Cystofilobasidium capitatum, Cys. infirmominiatum, Cys. macerans, Filobasidium magnum, Hanseniaspora uvarum, Metschnikowia pulcherrima, and Rh. babjevae) as well as a group of pathogenic and opportunistic yeast species (Arxiozyma bovina, Candida albicans, C. parapsilosis, C. tropicalis, Clavispora lusitaniae, and Nakaseomyces glabratus). Under an ornithogenic influence, the diversity of soil yeasts was higher compared to the control, confirming the uneven distribution of yeasts in temperate forest soils and their dependence on natural hosts and vectors. Interestingly, the absolute dominant species in ornithogenic soils in winter (when the topsoil temperature was below zero) was the basidiomycetous psychrotolerant yeast T. pullulans. It is regularly observed in various soils in different geographical regions. Screening of the hydrolytic activity of 50 strains of this species at different temperatures (2, 4, 10, 15 and 20 °C) showed that the activity of esterases, lipases and proteases was significantly higher at the cultivation temperature. Ornithogenic soils could be a source for the relatively easy isolation of a large number of strains of the psychrotolerant yeast T. pullulans to test, study and optimize their potential for the production of cold-adapted enzymes for industry. Full article
(This article belongs to the Special Issue Diversity and Biotechnology of Soil Fungi and Rhizosphere Fungi)
Show Figures

Figure 1

9 pages, 1834 KiB  
Article
Early Detection of Heart Failure with Autonomous AI-Based Model Using Chest Radiographs: A Multicenter Study
by Emiliano Garza-Frias, Parisa Kaviani, Lina Karout, Roshan Fahimi, Seyedehelaheh Hosseini, Preetham Putha, Manoj Tadepalli, Sai Kiran, Charu Arora, Dennis Robert, Bernardo Bizzo, Keith J. Dreyer, Mannudeep K. Kalra and Subba R. Digumarthy
Diagnostics 2024, 14(15), 1635; https://doi.org/10.3390/diagnostics14151635 - 30 Jul 2024
Viewed by 894
Abstract
The opportunistic use of radiological examinations for disease detection can potentially enable timely management. We assessed if an index created by an AI software to quantify chest radiography (CXR) findings associated with heart failure (HF) could distinguish between patients who would develop HF [...] Read more.
The opportunistic use of radiological examinations for disease detection can potentially enable timely management. We assessed if an index created by an AI software to quantify chest radiography (CXR) findings associated with heart failure (HF) could distinguish between patients who would develop HF or not within a year of the examination. Our multicenter retrospective study included patients who underwent CXR without an HF diagnosis. We included 1117 patients (age 67.6 ± 13 years; m:f 487:630) that underwent CXR. A total of 413 patients had the CXR image taken within one year of their HF diagnosis. The rest (n = 704) were patients without an HF diagnosis after the examination date. All CXR images were processed with the model (qXR-HF, Qure.AI) to obtain information on cardiac silhouette, pleural effusion, and the index. We calculated the accuracy, sensitivity, specificity, and area under the curve (AUC) of the index to distinguish patients who developed HF within a year of the CXR and those who did not. We report an AUC of 0.798 (95%CI 0.77–0.82), accuracy of 0.73, sensitivity of 0.81, and specificity of 0.68 for the overall AI performance. AI AUCs by lead time to diagnosis (<3 months: 0.85; 4–6 months: 0.82; 7–9 months: 0.75; 10–12 months: 0.71), accuracy (0.68–0.72), and specificity (0.68) remained stable. Our results support the ongoing investigation efforts for opportunistic screening in radiology. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in Thoracic Imaging)
Show Figures

Figure 1

12 pages, 2956 KiB  
Article
Nanosensor-Enabled Detection and Identification of Intracellular Bacterial Infections in Macrophages
by Aritra Nath Chattopadhyay, Mingdi Jiang, Jessa Marie V. Makabenta, Jungmi Park, Yingying Geng and Vincent Rotello
Biosensors 2024, 14(8), 360; https://doi.org/10.3390/bios14080360 - 25 Jul 2024
Cited by 1 | Viewed by 1241
Abstract
Opportunistic bacterial pathogens can evade the immune response by residing and reproducing within host immune cells, including macrophages. These intracellular infections provide reservoirs for pathogens that enhance the progression of infections and inhibit therapeutic strategies. Current sensing strategies for intracellular infections generally use [...] Read more.
Opportunistic bacterial pathogens can evade the immune response by residing and reproducing within host immune cells, including macrophages. These intracellular infections provide reservoirs for pathogens that enhance the progression of infections and inhibit therapeutic strategies. Current sensing strategies for intracellular infections generally use immunosensing of specific biomarkers on the cell surface or polymerase chain reaction (PCR) of the corresponding nucleic acids, making detection difficult, time-consuming, and challenging to generalize. Intracellular infections can induce changes in macrophage glycosylation, providing a potential strategy for signature-based detection of intracellular infections. We report here the detection of bacterial infection in macrophages using a boronic acid (BA)-based pH-responsive polymer sensor array engineered to distinguish mammalian cell phenotypes by their cell surface glycosylation signatures. The sensor was able to discriminate between different infecting bacteria in minutes, providing a promising tool for diagnostic and screening applications. Full article
(This article belongs to the Special Issue Microbial Biosensor: From Design to Applications)
Show Figures

Graphical abstract

15 pages, 3630 KiB  
Article
Anti-Biofilm Action of Cineole and Hypericum perforatum to Combat Pneumonia-Causing Drug-Resistant P. aeruginosa
by Sourav Chakraborty, Piyush Baindara, Pralay Sharma, Austin Jose T, Kumaravel V, Raja Manoharan and Santi M. Mandal
Antibiotics 2024, 13(8), 689; https://doi.org/10.3390/antibiotics13080689 - 24 Jul 2024
Viewed by 892
Abstract
Hospital-acquired antibiotic-resistant pneumonia is one of the major causes of mortality around the world that pose a catastrophic threat. Pseudomonas aeruginosa is one of the most significant opportunistic pathogens responsible for hospital-acquired pneumonia and gained resistance to the majority of conventional antibiotics. There [...] Read more.
Hospital-acquired antibiotic-resistant pneumonia is one of the major causes of mortality around the world that pose a catastrophic threat. Pseudomonas aeruginosa is one of the most significant opportunistic pathogens responsible for hospital-acquired pneumonia and gained resistance to the majority of conventional antibiotics. There is an urgent need for antibiotic alternatives to control drug-resistant pneumonia and other related respiratory infections. In the present study, we explored the antibacterial potential of cineole in combination with homeopathic medicines against biofilm-forming drug-resistant P. aeruginosa. Out of 26 selected and screened homeopathic medicines, Hypericum Perforatum (HyPer) was found to eradicate biofilm-forming drug-resistant P. aeruginosa most effectively when used in combination with cineole. Interestingly, the synergistic action of HyPer and cineole was also found to be similarly effective against planktonic cells of P. aeruginosa. Further, the potential synergistic killing mechanisms of cineole and HyPer were determined by analyzing zeta membrane potential, outer membrane permeability, and DNA release from P. aeruginosa cells upon treatment with cineole and HyPer. Additionally, molecular docking analysis revealed strong binding affinities of hypericin (an active ingredient of HyPer) with the PqsA (a quorum sensing protein) of P. aeruginosa. Overall, our findings revealed the potential synergistic action of cineole and HyPer against biofilm-forming drug-resistant P. aeruginosa. Cineole and HyPer could be used in combination with other bronchodilators as inhalers to control the biofilm-forming drug-resistant P. aeruginosa. Full article
Show Figures

Figure 1

21 pages, 2098 KiB  
Article
Exploring the Antimicrobial and Probiotic Potential of Microorganisms Derived from Kazakh Dairy Products
by Sandugash Anuarbekova, Zhandarbek Bekshin, Serik Shaikhin, Gulzhan Alzhanova, Azamat Sadykov, Aslan Temirkhanov, Zinigul Sarmurzina and Yerkanat N. Kanafin
Microbiol. Res. 2024, 15(3), 1298-1318; https://doi.org/10.3390/microbiolres15030087 - 23 Jul 2024
Viewed by 764
Abstract
The emergence of antibiotic-resistant pathogens in clinical settings has intensified the search for new probiotic strains with both health benefits and technological utility. This study aims to identify and characterize promising antimicrobial cultures derived from milk and dairy products, capable of inhibiting opportunistic [...] Read more.
The emergence of antibiotic-resistant pathogens in clinical settings has intensified the search for new probiotic strains with both health benefits and technological utility. This study aims to identify and characterize promising antimicrobial cultures derived from milk and dairy products, capable of inhibiting opportunistic pathogens. The samples of dairy products were collected from various markets across Kazakhstan. Microorganisms isolated from these samples underwent identification through 16S rRNA and ITS gene sequencing, using the BLAST algorithm. Their antimicrobial activity was assessed using the delayed antagonism method against pathogenic microorganisms including E. coli, S. aureus, Pseudomonas sp., Candida sp., and B. subtilis. Additionally, the isolates were evaluated for resistance to environmental stress factors such as temperature, pH, salt, ethanol, glucose, and peroxide. From 24 distinct samples, 33 isolates were purified, with 15 demonstrating high viability (108–109 CFU/mL) and stress resistance. Notably, Lacticaseibacillus casei AK and Enterococcus faecium KS exhibited resistance to all tested stress conditions. Antimicrobial screening revealed strong activity by strains LP, LB, and S-2 against multiple pathogens. Genotyping and carbohydrate fermentation tests identified these effective isolates as belonging to the genera Lactobacillus, Lactococcus, Enterococcus, Lactiplantibacillus, Streptococcus, and the yeast genus Pichia. This study underscores the industrial and health potential of the identified microorganisms. Prominent among the strains, Lactiplantibacillus pentosus LP, Lacticaseibacillus casei AK, Lactiplantibacillus argentoratensis LB, Lactiplantibacillus plantarum S-2, and Enterococcus faecium KS have been recognized as potent probiotics. These strains exhibit broad-spectrum antimicrobial activity coupled with robust stress tolerance, making them suitable candidates for probiotic applications. Full article
Show Figures

Figure 1

12 pages, 2428 KiB  
Article
Understanding the Barriers to Prostate Cancer Population-Based Early Detection Programs: The PRAISE-U BEST Survey
by Katharina Beyer, Renée C. A. Leenen, Lionne D. F. Venderbos, Jozien Helleman, Sebastiaan Remmers, Vera Vasilyeva, Juan Gomez Rivas, Erik Briers, Thomas Frese, Josep Vilaseca, Shlomo Vinker, Renata Chloupkova, Ondrej Majek, Lieven Annemans, Pieter Vynckier, Partha Basu, Arunah Chandran, Roderick van den Bergh, Sarah Collen, Hendrik van Poppel, Monique J. Roobol and on behalf of the PRAISE-U Consortiumadd Show full author list remove Hide full author list
J. Pers. Med. 2024, 14(7), 751; https://doi.org/10.3390/jpm14070751 - 15 Jul 2024
Viewed by 1031
Abstract
In 2022, the European Commission updated its recommendation on cancer screening, inviting the Member States (MSs) to explore the feasibility of stepwise implementation of population-based screening for prostate cancer (PCa). In line with this recommendation, the PRAISE-U (Prostate Cancer Awareness and Initiative for [...] Read more.
In 2022, the European Commission updated its recommendation on cancer screening, inviting the Member States (MSs) to explore the feasibility of stepwise implementation of population-based screening for prostate cancer (PCa). In line with this recommendation, the PRAISE-U (Prostate Cancer Awareness and Initiative for Screening in the European Union (EU)) project was initiated. As part of the PRAISE-U, we aim to understand the current practice towards early detection in the EU MSs, the barriers to implementing or planning population-based screening programmes, and potential solutions to overcome these barriers. Methods: We adapted the Barriers to Effective Screening Tool (BEST) survey to the PCa context. However, it has not been validated in this context. We translated it into all spoken languages in the EU27 and disseminated it to different stakeholders across the EU using a snowballing approach. Results: We received 410 responses from 55 countries, of which 301 (73%) were from the 27 EU MSs. The most represented stakeholder group was urologists (218 (54%)), followed by general practitioners (GPs) (83 (21%)), patient representatives (35 (9%)), policy stakeholders (27 (7%)), researchers (23 (6%)), oncologists, pathologists, radiologists, nurses, and others (16 (4%)) and one industry representative. Among all respondents, 286 (69%) reported the absence of a population-based screening programme, mainly attributed to resource limitations and a lack of political and medical society support. Out of these 286 respondents, 196 (69%) indicated that opportunistic screening is being applied in their country, and 199 (70%) expressed their support for population-based screening programmes (which was highest amongst patient representatives and urologists and lowest amongst GPs and policy stakeholders). The highest scored barriers were lack of political support, insufficient operational resources, and inadequate participation. Suggested solutions to overcome these included awareness campaigns, consensus meetings, political lobbying and European guidelines (to overcome political support barriers), compatible IT systems (to overcome operational barriers), and easy access (to overcome participation barriers). Conclusions: Participants have noted the presence of opportunistic screening, and particularly urologists and patient representatives expressed their support for the establishment of a population-based PCa screening programme. Nevertheless, successful implementation of population-based screening programmes is complex; it requires political and medical society support, operational resources and capacity, awareness campaigns, as well as the development of protocols, guidelines, and legal frameworks. Full article
Show Figures

Figure 1

15 pages, 1003 KiB  
Article
Characterization of Extended-Spectrum β-Lactamase Producing- and Carbapenem–Resistant Escherichia coli Isolated from Diarrheic Dogs in Tunisia: First Report of blaIMP Gene in Companion Animals
by Asma Ben Haj Yahia, Ghassan Tayh, Sarrah Landolsi, Ala Maazaoui, Faten Ben Chehida, Aymen Mamlouk, Monia Dâaloul-Jedidi and Lilia Messadi
Microbiol. Res. 2024, 15(3), 1119-1133; https://doi.org/10.3390/microbiolres15030075 - 30 Jun 2024
Viewed by 771
Abstract
Escherichia coli is an important opportunistic pathogen, causing several infections in dogs. The antimicrobial resistance of E. coli occurring in companion animals becomes an emerging problem. This study aimed to estimate the prevalence of ESBL-producing E. coli in diarrheic dogs, investigate the occurrence [...] Read more.
Escherichia coli is an important opportunistic pathogen, causing several infections in dogs. The antimicrobial resistance of E. coli occurring in companion animals becomes an emerging problem. This study aimed to estimate the prevalence of ESBL-producing E. coli in diarrheic dogs, investigate the occurrence and molecular characterization of carbapenem-resistant isolates, and determine their virulence genes. Fecal samples were collected from 150 diarrheic dogs in Tunisia. E. coli isolates were screened for antimicrobial resistance against 21 antibiotics by the disk diffusion method. The characterization of β-lactamase genes, associated resistance genes, and virulence genes was studied using PCR. Among 95 E. coli strains, 25 were ESBL-producing, and most of them were multidrug-resistant. The most prevalent β-lactamase genes were blaCTX-M1 (n = 14), blaTEM (n = 3), and blaCMY (n = 2). The blaIMP carbapenemase gene was found in two carbapenem-resistant isolates, which showed that carbapenemase-producing E. coli spread to companion animals in Tunisia. Different virulence genes associated with extraintestinal pathogenic E. coli were detected. This is the first report of the characterization of carbapenem resistance and virulence genes in dogs in North Africa. Our study showed that diarrheic dogs in Tunisia can be a potential reservoir of ESBL- or carbapenemase-producing E. coli with a possible risk of transmission to humans. Full article
(This article belongs to the Special Issue Zoonotic Bacteria: Infection, Pathogenesis and Drugs)
Show Figures

Figure 1

17 pages, 5659 KiB  
Article
Antimicrobial Peptide Screening for Designing Custom Bactericidal Hydrogels
by Matthias Recktenwald, Muskanjot Kaur, Mohammed M. Benmassaoud, Aryanna Copling, Tulika Khanna, Michael Curry, Dennise Cortes, Gilbert Fleischer, Valerie J. Carabetta and Sebastián L. Vega
Pharmaceutics 2024, 16(7), 860; https://doi.org/10.3390/pharmaceutics16070860 - 27 Jun 2024
Viewed by 970
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic pathogen that lives on surfaces and skin and can cause serious infections inside the body. Antimicrobial peptides (AMPs) are part of the innate immune system and can eliminate pathogens, including bacteria and viruses, and [...] Read more.
Staphylococcus aureus (S. aureus) is an opportunistic pathogen that lives on surfaces and skin and can cause serious infections inside the body. Antimicrobial peptides (AMPs) are part of the innate immune system and can eliminate pathogens, including bacteria and viruses, and are a promising alternative to antibiotics. Although studies have reported that AMP-functionalized hydrogels can prevent bacterial adhesion and biofilm formation, AMP dosing and the combined effects of multiple AMPs are not well understood. Here, three AMPs with different antibacterial properties were synthesized and the soluble minimum inhibitory concentrations (MICs) of each AMP against methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) were determined. Hydrogels with immobilized AMPs at their MIC (DD13-RIP 27.5 µM; indolicidin 43.8 µM; P10 120 µM) were effective in preventing MRSA adhesion and biofilm formation. Checkerboard AMP screens identified synergy between indolicidin (3.1 µM) and P10 (12.5 µM) based on soluble fractional inhibitory concentration indices (FICIs) against MRSA, and hydrogels formed with these AMPs at half of their synergistic concentrations (total peptide concentration, 7.8 µM) were highly efficacious in killing MRSA. Mammalian cells cultured atop these hydrogels were highly viable, demonstrating that these AMP hydrogels are biocompatible and selectively eradicate bacteria, based on soluble checkerboard-screening data. Full article
Show Figures

Figure 1

12 pages, 2027 KiB  
Article
Clinical Validation of a Deep Learning-Based Software for Lumbar Bone Mineral Density and T-Score Prediction from Chest X-ray Images
by Sheng-Chieh Tseng, Chia-En Lien, Cheng-Hung Lee, Kao-Chang Tu, Chia-Hui Lin, Amy Y. Hsiao, Shin Teng, Hsiao-Hung Chiang, Liang-Yu Ke, Chun-Lin Han, Yen-Cheng Lee, An-Chih Huang, Dun-Jhu Yang, Chung-Wen Tsai and Kun-Hui Chen
Diagnostics 2024, 14(12), 1208; https://doi.org/10.3390/diagnostics14121208 - 7 Jun 2024
Viewed by 1192
Abstract
Screening for osteoporosis is crucial for early detection and prevention, yet it faces challenges due to the low accuracy of calcaneal quantitative ultrasound (QUS) and limited access to dual-energy X-ray absorptiometry (DXA) scans. Recent advances in AI offer a promising solution through opportunistic [...] Read more.
Screening for osteoporosis is crucial for early detection and prevention, yet it faces challenges due to the low accuracy of calcaneal quantitative ultrasound (QUS) and limited access to dual-energy X-ray absorptiometry (DXA) scans. Recent advances in AI offer a promising solution through opportunistic screening using existing medical images. This study aims to utilize deep learning techniques to develop a model that analyzes chest X-ray (CXR) images for osteoporosis screening. This study included the AI model development stage and the clinical validation stage. In the AI model development stage, the combined dataset of 5122 paired CXR images and DXA reports from the patients aged 20 to 98 years at a medical center was collected. The images were enhanced and filtered for hardware retention such as pedicle screws, bone cement, artificial intervertebral discs or severe deformity in target level of T12 and L1. The dataset was then separated into training, validating, and testing datasets for model training and performance validation. In the clinical validation stage, we collected 440 paired CXR images and DXA reports from both the TCVGH and Joy Clinic, including 304 pared data from TCVGH and 136 paired data from Joy Clinic. The pre-clinical test yielded an area under the curve (AUC) of 0.940, while the clinical validation showed an AUC of 0.946. Pearson’s correlation coefficient was 0.88. The model demonstrated an overall accuracy, sensitivity, and specificity of 89.0%, 88.7%, and 89.4%, respectively. This study proposes an AI model for opportunistic osteoporosis screening through CXR, demonstrating good performance and suggesting its potential for broad adoption in preliminary screening among high-risk populations. Full article
Show Figures

Figure 1

16 pages, 12242 KiB  
Article
Veratryl Alcohol Attenuates the Virulence and Pathogenicity of Pseudomonas aeruginosa Mainly via Targeting las Quorum-Sensing System
by Songzhe Fu, Wenxu Song, Xiaofeng Han, Lin Chen and Lixin Shen
Microorganisms 2024, 12(5), 985; https://doi.org/10.3390/microorganisms12050985 - 14 May 2024
Viewed by 1021
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that usually causes chronic infections and even death in patients. The treatment of P. aeruginosa infection has become more challenging due to the prevalence of antibiotic resistance and the slow pace of new antibiotic development. Therefore, it [...] Read more.
Pseudomonas aeruginosa is an opportunistic pathogen that usually causes chronic infections and even death in patients. The treatment of P. aeruginosa infection has become more challenging due to the prevalence of antibiotic resistance and the slow pace of new antibiotic development. Therefore, it is essential to explore non-antibiotic methods. A new strategy involves screening for drugs that target the quorum-sensing (QS) system. The QS system regulates the infection and drug resistance in P. aeruginosa. In this study, veratryl alcohol (VA) was found as an effective QS inhibitor (QSI). It effectively suppressed the expression of QS-related genes and the subsequent production of virulence factors under the control of QS including elastase, protease, pyocyanin and rhamnolipid at sub-inhibitory concentrations. In addition, motility activity and biofilm formation, which were correlated with the infection of P. aeruginosa, were also suppressed by VA. In vivo experiments demonstrated that VA could weaken the pathogenicity of P. aeruginosa in Chinese cabbage, Drosophila melanogaster, and Caenorhabditis elegans infection models. Molecular docking, combined with QS quintuple mutant infection analysis, identified that the mechanism of VA could target the LasR protein of the las system mainly. Moreover, VA increased the susceptibility of P. aeruginosa to conventional antibiotics of tobramycin, kanamycin and gentamicin. The results firstly demonstrate that VA is a promising QSI to treat infections caused by P. aeruginosa. Full article
(This article belongs to the Special Issue Advances in Novel Antibacterial Agents)
Show Figures

Figure 1

Back to TopTop