Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,871)

Search Parameters:
Keywords = noise filtering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4653 KiB  
Article
Research on Process Control of Laser-Based Direct Energy Deposition Based on Real-Time Monitoring of Molten Pool
by Haoda Wang, Jingbin Hao, Mengsen Ding, Xuanyu Zheng, Haifeng Yang and Hao Liu
Coatings 2024, 14(9), 1131; https://doi.org/10.3390/coatings14091131 - 3 Sep 2024
Abstract
In the process of laser-based direct energy deposition (DED-LB), the quality of the deposited layer will be affected by the process parameters and the external environment, and there are problems such as poor stability and low accuracy. A molten pool monitoring method based [...] Read more.
In the process of laser-based direct energy deposition (DED-LB), the quality of the deposited layer will be affected by the process parameters and the external environment, and there are problems such as poor stability and low accuracy. A molten pool monitoring method based on coaxial vision is proposed. Firstly, the molten pool image is captured by a coaxial CCD camera, and the geometric features of the molten pool are accurately extracted by image processing techniques such as grayscale, median filtering noise reduction, and K-means clustering combined with threshold segmentation. The molten pool width is accurately extracted by the Canny operator combined with the minimum boundary rectangle method, and it is used as the feedback of weld pool control. The influence of process parameters on the molten pool was further analyzed. The results show that with an increase in laser power, the width and area of the molten pool increase monotonously, but exceeding the material limit will cause distortion. Increasing the scanning speed will reduce the size of the molten pool. By comparing the molten pool under constant power mode and width control mode, it is found that in width control mode, the melt pool width fluctuates less, and the machining accuracy is improved, validating the effectiveness of the real-time control system. Full article
Show Figures

Figure 1

47 pages, 2588 KiB  
Article
Observations and Considerations for Implementing Vibration Signals as an Input Technique for Mobile Devices
by Thomas Hrast, David Ahlström and Martin Hitz
Multimodal Technol. Interact. 2024, 8(9), 76; https://doi.org/10.3390/mti8090076 - 2 Sep 2024
Viewed by 282
Abstract
This work examines swipe-based interactions on smart devices, like smartphones and smartwatches, that detect vibration signals through defined swipe surfaces. We investigate how these devices, held in users’ hands or worn on their wrists, process vibration signals from swipe interactions and ambient noise [...] Read more.
This work examines swipe-based interactions on smart devices, like smartphones and smartwatches, that detect vibration signals through defined swipe surfaces. We investigate how these devices, held in users’ hands or worn on their wrists, process vibration signals from swipe interactions and ambient noise using a support vector machine (SVM). The work details the signal processing workflow involving filters, sliding windows, feature vectors, SVM kernels, and ambient noise management. It includes how we separate the vibration signal from a potential swipe surface and ambient noise. We explore both software and human factors influencing the signals: the former includes the computational techniques mentioned, while the latter encompasses swipe orientation, contact, and movement. Our findings show that the SVM classifies swipe surface signals with an accuracy of 69.61% when both devices are used, 97.59% with only the smartphone, and 99.79% with only the smartwatch. However, the classification accuracy drops to about 50% in field user studies simulating real-world conditions such as phone calls, typing, walking, and other undirected movements throughout the day. The decline in performance under these conditions suggests challenges in ambient noise discrimination, which this work discusses, along with potential strategies for improvement in future research. Full article
Show Figures

Figure 1

16 pages, 7723 KiB  
Article
Vehicle State Estimation by Integrating the Recursive Least Squares Method with a Variable Forgetting Factor with an Adaptive Iterative Extended Kalman Filter
by Yong Chen, Yanmin Huang and Zeyu Song
World Electr. Veh. J. 2024, 15(9), 399; https://doi.org/10.3390/wevj15090399 - 2 Sep 2024
Viewed by 230
Abstract
The sideslip angle and the yaw rate are the key state parameters for vehicle handling and stability control. To improve the accuracy of the input parameters and the time-varying characteristics of noise covariance in state estimation, a combined method of recursive least squares [...] Read more.
The sideslip angle and the yaw rate are the key state parameters for vehicle handling and stability control. To improve the accuracy of the input parameters and the time-varying characteristics of noise covariance in state estimation, a combined method of recursive least squares with a variable forgetting factor and adaptive iterative extended Kalman filtering is proposed for estimation. Based on the established three-degrees-of-freedom nonlinear model of the vehicle, the variable forgetting factor recursive least squares method is used to identify the tire cornering stiffness and serves as an input for vehicle state estimation. An innovative algorithm is used to optimise the uncertain noise covariance in the iterative extended Kalman filter (IEKF) process. Finally, with the help of the joint simulation of CarSim2019 and Matlab/Simulink R2022a, a distributed drive electric vehicle state parameter estimation model is established, and a simulation analysis of typical working conditions is carried out. Furthermore, an experiment is conducted with the pix moving vehicle and the integrated navigation system. The simulation and experimental results show that, compared to the traditional extended Kalman filter algorithm, the proposed algorithm improves the estimation accuracy of the yaw rate, sideslip angle, and longitudinal speed by 58.17%, 57.2%, and 76.47%, respectively, which shows that the algorithm has a higher estimation accuracy and a stronger applicability to provide accurate state information for vehicle handling and stability control. Full article
Show Figures

Figure 1

20 pages, 19743 KiB  
Article
Flexible and Ecological Cotton-Based Dosimeter for 2D UV Surface Dose Distribution Measurements
by Elżbieta Sąsiadek-Andrzejczak, Piotr Maras and Marek Kozicki
Materials 2024, 17(17), 4339; https://doi.org/10.3390/ma17174339 - 2 Sep 2024
Viewed by 197
Abstract
This work presents a 2D radiochromic dosimeter for ultraviolet (UV) radiation measurements, based on cotton fabric volume-modified with nitroblue tetrazolium chloride (NBT) as a radiation-sensitive compound. The developed dosimeter is flexible, which allows it to adapt to various shapes and show a color [...] Read more.
This work presents a 2D radiochromic dosimeter for ultraviolet (UV) radiation measurements, based on cotton fabric volume-modified with nitroblue tetrazolium chloride (NBT) as a radiation-sensitive compound. The developed dosimeter is flexible, which allows it to adapt to various shapes and show a color change from yellowish to purple-brown during irradiation. The intensity of the color change depends on the type of UV radiation and is the highest for UVC (253.7 nm). It has been shown that the developed dosimeters (i) can be used for UVC radiation dose measurements in the range of up to 10 J/cm2; (ii) can be measured in 2D using a flatbed scanner; and (iii) can have the obtained images after scanning be filtered with a medium filter to improve their quality by reducing noise from the fabric structure. The developed cotton–NBT dosimeters can measure UVC-absorbed radiation doses on objects of various shapes, and when combined with a dedicated computer software package and a data processing method, they form a comprehensive system for measuring dose distributions for objects with complex shapes. The developed system can also serve as a comprehensive method for assessing the quality and control of UV radiation sources used in various industrial processes. Full article
(This article belongs to the Special Issue Properties of Textiles and Fabrics and Their Processing)
Show Figures

Figure 1

21 pages, 7239 KiB  
Article
UVIO: Adaptive Kalman Filtering UWB-Aided Visual-Inertial SLAM System for Complex Indoor Environments
by Junxi Li, Shouwen Wang, Jiahui Hao, Biao Ma and Henry K. Chu
Remote Sens. 2024, 16(17), 3245; https://doi.org/10.3390/rs16173245 - 1 Sep 2024
Viewed by 452
Abstract
Precise positioning in an indoor environment is a challenging task because it is difficult to receive a strong and reliable global positioning system (GPS) signal. For existing wireless indoor positioning methods, ultra-wideband (UWB) has become more popular because of its low energy consumption [...] Read more.
Precise positioning in an indoor environment is a challenging task because it is difficult to receive a strong and reliable global positioning system (GPS) signal. For existing wireless indoor positioning methods, ultra-wideband (UWB) has become more popular because of its low energy consumption and high interference immunity. Nevertheless, factors such as indoor non-line-of-sight (NLOS) obstructions can still lead to large errors or fluctuations in the measurement data. In this paper, we propose a fusion method based on ultra-wideband (UWB), inertial measurement unit (IMU), and visual simultaneous localization and mapping (V-SLAM) to achieve high accuracy and robustness in tracking a mobile robot in a complex indoor environment. Specifically, we first focus on the identification and correction between line-of-sight (LOS) and non-line-of-sight (NLOS) UWB signals. The distance evaluated from UWB is first processed by an adaptive Kalman filter with IMU signals for pose estimation, where a new noise covariance matrix using the received signal strength indicator (RSSI) and estimation of precision (EOP) is proposed to reduce the effect due to NLOS. After that, the corrected UWB estimation is tightly integrated with IMU and visual SLAM through factor graph optimization (FGO) to further refine the pose estimation. The experimental results show that, compared with single or dual positioning systems, the proposed fusion method provides significant improvements in positioning accuracy in a complex indoor environment. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

16 pages, 4529 KiB  
Article
A Hybrid Forecasting Model for Electricity Demand in Sustainable Power Systems Based on Support Vector Machine
by Xuejun Li, Minghua Jiang, Deyu Cai, Wenqin Song and Yalu Sun
Energies 2024, 17(17), 4377; https://doi.org/10.3390/en17174377 - 1 Sep 2024
Viewed by 275
Abstract
Renewable energy sources, such as wind and solar power, are increasingly contributing to electricity systems. Participants in the energy market need to understand the future electricity demand in order to plan their purchasing and selling strategies. To forecast the electricity demand, this study [...] Read more.
Renewable energy sources, such as wind and solar power, are increasingly contributing to electricity systems. Participants in the energy market need to understand the future electricity demand in order to plan their purchasing and selling strategies. To forecast the electricity demand, this study proposes a hybrid forecasting model. The method uses Kalman filtering to eliminate noise from the electricity demand series. After decomposing the electricity demand using an empirical model, a support vector machine optimized by a genetic algorithm is employed for prediction. The performance of the proposed forecasting model was evaluated using actual electricity demand data from the Australian energy market. The simulation results indicate that the proposed model has the best forecasting capability, with a mean absolute percentage error of 0.25%. Accuracy improved by 74% compared to the Support Vector Machine (SVM) electricity demand forecasting model, by 73% when compared to the SVM with empirical mode decomposition, and by 51% when compared to the SVM with Kalman filtering for noise reduction. Additionally, compared to existing forecasting methods, this study’s accuracy surpasses LSTM by 63%, Transformer by 47%, and LSTM-Adaboost by 36%. The simulation of and comparison with existing forecasting methods validate the effectiveness of the proposed hybrid forecasting model, demonstrating its superior predictive capabilities. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

25 pages, 7603 KiB  
Article
Optimizing Portfolio in the Evolutional Portfolio Optimization System (EPOS)
by Nikolaos Loukeris, Yiannis Boutalis, Iordanis Eleftheriadis and Gregorios Gikas
Mathematics 2024, 12(17), 2729; https://doi.org/10.3390/math12172729 - 31 Aug 2024
Viewed by 347
Abstract
A novel method of portfolio selection is provided with further higher moments, filtering with fundamentals in intelligent computing resources. The Evolutional Portfolio Optimization System (EPOS) evaluates unobtrusive relations from a vast amount of accounting and financial data, excluding hoax and noise, to select [...] Read more.
A novel method of portfolio selection is provided with further higher moments, filtering with fundamentals in intelligent computing resources. The Evolutional Portfolio Optimization System (EPOS) evaluates unobtrusive relations from a vast amount of accounting and financial data, excluding hoax and noise, to select the optimal portfolio. The fundamental question of Free Will, limited in investment selection, is answered through a new philosophical approach. Full article
(This article belongs to the Special Issue New Advance of Mathematical Economics)
Show Figures

Figure 1

20 pages, 1102 KiB  
Article
Training Artificial Neural Networks to Detect Multiple Sclerosis Lesions Using Granulometric Data from Preprocessed Magnetic Resonance Images with Morphological Transformations
by Edgar Rafael Ponce de Leon-Sanchez, Jorge Domingo Mendiola-Santibañez, Omar Arturo Dominguez-Ramirez, Ana Marcela Herrera-Navarro, Alberto Vazquez-Cervantes, Hugo Jimenez-Hernandez, Diana Margarita Cordova-Esparza, María de los Angeles Cuán Hernández and Horacio Senties-Madrid
Technologies 2024, 12(9), 145; https://doi.org/10.3390/technologies12090145 - 31 Aug 2024
Viewed by 393
Abstract
The symptoms of multiple sclerosis (MS) are determined by the location of demyelinating lesions in the white matter of the brain and spinal cord. Currently, magnetic resonance imaging (MRI) is the most common tool used for diagnosing MS, understanding the course of the [...] Read more.
The symptoms of multiple sclerosis (MS) are determined by the location of demyelinating lesions in the white matter of the brain and spinal cord. Currently, magnetic resonance imaging (MRI) is the most common tool used for diagnosing MS, understanding the course of the disease, and analyzing the effects of treatments. However, undesirable components may appear during the generation of MRI scans, such as noise or intensity variations. Mathematical morphology (MM) is a powerful image analysis technique that helps to filter the image and extract relevant structures. Granulometry is an image measurement tool for measuring MM that determines the size distribution of objects in an image without explicitly segmenting each object. While several methods have been proposed for the automatic segmentation of MS lesions in MRI scans, in some cases, only simple data preprocessing, such as image resizing to standardize the input dimensions, has been performed before the algorithm training. Therefore, this paper proposes an MRI preprocessing algorithm capable of performing elementary morphological transformations in brain images of MS patients and healthy individuals in order to delete undesirable components and extract the relevant structures such as MS lesions. Also, the algorithm computes the granulometry in MRI scans to describe the size qualities of lesions. Using this algorithm, we trained two artificial neural networks (ANNs) to predict MS diagnoses. By computing the differences in granulometry measurements between an image with MS lesions and a reference image (without lesions), we determined the size characterization of the lesions. Then, the ANNs were evaluated with the validation set, and the performance results (test accuracy = 0.9753; cross-entropy loss = 0.0247) show that the proposed algorithm can support specialists in making decisions to diagnose MS and estimating the disease progress based on granulometry values. Full article
(This article belongs to the Special Issue Medical Imaging & Image Processing III)
Show Figures

Figure 1

18 pages, 2794 KiB  
Article
Weak Signal Extraction in Noise Using Variable-Step Gaussian-Sinusiodal Filter
by Haiyang Lou, Rujiang Hao and Jianchao Zhang
Machines 2024, 12(9), 601; https://doi.org/10.3390/machines12090601 - 30 Aug 2024
Viewed by 240
Abstract
When analyzing vibration or acoustic signals in machinery, noise interference within the characteristic signals can significantly distort the results. This issue is particularly pronounced in complex environments, where mechanical signals are often overwhelmed by noise, making it extremely difficult or even impossible to [...] Read more.
When analyzing vibration or acoustic signals in machinery, noise interference within the characteristic signals can significantly distort the results. This issue is particularly pronounced in complex environments, where mechanical signals are often overwhelmed by noise, making it extremely difficult or even impossible to determine the operational status of mechanical equipment by the analysis of characteristic signals. Existing methods for analyzing weak signals in the presence of strong Gaussian noise have limitations in their effectiveness. This paper proposes an innovative approach that utilizes a Variable-Step Gaussian-Sinusoidal Filter (VSGF) combined with rotational coordinate transformation to extract weak signals from strong noise backgrounds. The proposed method improves noise reduction capabilities and frequency selectivity, showing significant improvements over traditional Gaussian filters. Experimental validation demonstrates that the signal detection accuracy of the proposed method is 10–15% higher than that of conventional Gaussian filters. This paper presents a detailed mathematical analysis, experimental validation, and comparisons with other methods to demonstrate the effectiveness of the proposed approach. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

17 pages, 2091 KiB  
Article
Maximum Correntropy Extended Kalman Filtering with Nonlinear Regression Technique for GPS Navigation
by Amita Biswal and Dah-Jing Jwo
Appl. Sci. 2024, 14(17), 7657; https://doi.org/10.3390/app14177657 - 29 Aug 2024
Viewed by 336
Abstract
One technique that is widely used in various fields, including nonlinear target tracking, is the extended Kalman filter (EKF). The well-known minimum mean square error (MMSE) criterion, which performs magnificently under the assumption of Gaussian noise, is the optimization criterion that is frequently [...] Read more.
One technique that is widely used in various fields, including nonlinear target tracking, is the extended Kalman filter (EKF). The well-known minimum mean square error (MMSE) criterion, which performs magnificently under the assumption of Gaussian noise, is the optimization criterion that is frequently employed in EKF. Further, if the noises are loud (or heavy-tailed), its performance can drastically suffer. To overcome the problem, this paper suggests a new technique for maximum correntropy EKF with nonlinear regression (MCCEKF-NR) by using the maximum correntropy criterion (MCC) instead of the MMSE criterion to calculate the effectiveness and vitality. The preliminary estimates of the state and covariance matrix in MCKF are provided via the state mean vector and covariance matrix propagation equations, just like in the conventional Kalman filter. In addition, a newly designed fixed-point technique is used to update the posterior estimates of each filter in a regression model. To show the practicality of the proposed strategy, we propose an effective implementation for positioning enhancement in GPS navigation and radar measurement systems. Full article
Show Figures

Figure 1

17 pages, 6447 KiB  
Article
LiDAR-Based Snowfall Level Classification for Safe Autonomous Driving in Terrestrial, Maritime, and Aerial Environments
by Ji-il Park, Seunghyeon Jo, Hyung-Tae Seo and Jihyuk Park
Sensors 2024, 24(17), 5587; https://doi.org/10.3390/s24175587 - 28 Aug 2024
Viewed by 456
Abstract
Studies on autonomous driving have started to focus on snowy environments, and studies to acquire data and remove noise and pixels caused by snowfall in such environments are in progress. However, research to determine the necessary weather information for the control of unmanned [...] Read more.
Studies on autonomous driving have started to focus on snowy environments, and studies to acquire data and remove noise and pixels caused by snowfall in such environments are in progress. However, research to determine the necessary weather information for the control of unmanned platforms by sensing the degree of snowfall in real time has not yet been conducted. Therefore, in this study, we attempted to determine snowfall information for autonomous driving control in snowy weather conditions. To this end, snowfall data were acquired by LiDAR sensors in various snowy areas in South Korea, Sweden, and Denmark. Snow, which was extracted using a snow removal filter (the LIOR filter that we previously developed), was newly classified and defined based on the extracted number of snow particles, the actual snowfall total, and the weather forecast at the time. Finally, we developed an algorithm that extracts only snow in real time and then provides snowfall information to an autonomous driving system. This algorithm is expected to have a similar effect to that of actual controllers in promoting driving safety in real-time weather conditions. Full article
(This article belongs to the Special Issue Sensors for Intelligent Vehicles and Autonomous Driving)
Show Figures

Figure 1

23 pages, 18270 KiB  
Article
Towards Optimising the Derivation of Phenological Phases of Different Crop Types over Germany Using Satellite Image Time Series
by Abdelaziz Htitiou, Markus Möller, Tanja Riedel, Florian Beyer and Heike Gerighausen
Remote Sens. 2024, 16(17), 3183; https://doi.org/10.3390/rs16173183 (registering DOI) - 28 Aug 2024
Viewed by 313
Abstract
Operational crop monitoring applications, including crop type mapping, condition monitoring, and yield estimation, would benefit from the ability to robustly detect and map crop phenology measures related to the crop calendar and management activities like emergence, stem elongation, and harvest timing. However, this [...] Read more.
Operational crop monitoring applications, including crop type mapping, condition monitoring, and yield estimation, would benefit from the ability to robustly detect and map crop phenology measures related to the crop calendar and management activities like emergence, stem elongation, and harvest timing. However, this has proven to be challenging due to two main issues: first, the lack of optimised approaches for accurate crop phenology retrievals, and second, the cloud cover during the crop growth period, which hampers the use of optical data. Hence, in the current study, we outline a novel calibration procedure that optimises the settings to produce high-quality NDVI time series as well as the thresholds for retrieving the start of the season (SOS) and end of the season (EOS) of different crops, making them more comparable and related to ground crop phenological measures. As a first step, we introduce a new method, termed UE-WS, to reconstruct high-quality NDVI time series data by integrating a robust upper envelope detection technique with the Whittaker smoothing filter. The experimental results demonstrate that the new method can achieve satisfactory performance in reducing noise in the original NDVI time series and producing high-quality NDVI profiles. As a second step, a threshold optimisation approach was carried out for each phenophase of three crops (winter wheat, corn, and sugarbeet) using an optimisation framework, primarily leveraging the state-of-the-art hyperparameter optimization method (Optuna) by first narrowing down the search space for the threshold parameter and then applying a grid search to pinpoint the optimal value within this refined range. This process focused on minimising the error between the satellite-derived and observed days of the year (DOY) based on data from the German Meteorological Service (DWD) covering two years (2019–2020) and three federal states in Germany. The results of the calculation of the median of the temporal difference between the DOY observations of DWD phenology held out from a separate year (2021) and those derived from satellite data reveal that it typically ranged within ±10 days for almost all phenological phases. The validation results of the detection of dates of phenological phases against separate field-based phenological observations resulted in an RMSE of less than 10 days and an R-squared value of approximately 0.9 or greater. The findings demonstrate how optimising the thresholds required for deriving crop-specific phenophases using high-quality NDVI time series data could produce timely and spatially explicit phenological information at the field and crop levels. Full article
(This article belongs to the Special Issue Cropland Phenology Monitoring Based on Cloud-Computing Platforms)
Show Figures

Figure 1

17 pages, 5859 KiB  
Article
Detection of Road Risk Sources Based on Multi-Scale Lightweight Networks
by Rong Pang, Jiacheng Ning, Yan Yang, Peng Zhang, Jilong Wang and Jingxiao Liu
Sensors 2024, 24(17), 5577; https://doi.org/10.3390/s24175577 - 28 Aug 2024
Viewed by 399
Abstract
Timely discovery and disposal of road risk sources constitute the cornerstone of road operation safety. Presently, the detection of road risk sources frequently relies on manual inspections via inspection vehicles, a process that is both inefficient and time-consuming. To tackle this challenge, this [...] Read more.
Timely discovery and disposal of road risk sources constitute the cornerstone of road operation safety. Presently, the detection of road risk sources frequently relies on manual inspections via inspection vehicles, a process that is both inefficient and time-consuming. To tackle this challenge, this paper introduces a novel automated approach for detecting road risk sources, termed the multi-scale lightweight network (MSLN). This method primarily focuses on identifying road surfaces, potholes, and scattered objects. To mitigate the influence of real-world factors such as noise and uneven brightness on test results, pavement images were carefully collected. Initially, the collected images underwent grayscale processing. Subsequently, the median filtering algorithm was employed to filter out noise interference. Furthermore, adaptive histogram equalization techniques were utilized to enhance the visibility of cracks and the road background. Following these preprocessing steps, the MSLN model was deployed for the detection of road risk sources. Addressing the challenges associated with two-stage network models, such as prolonged training and testing times, as well as deployment difficulties, this study adopted the lightweight feature extraction network MobileNetV2. Additionally, transfer learning was incorporated to elevate the model’s training efficiency. Moreover, this paper established a mapping relationship model that transitions from the world coordinate system to the pixel coordinate system. This model enables the calculation of risk source dimensions based on detection outcomes. Experimental results reveal that the MSLN model exhibits a notably faster convergence rate. This enhanced convergence not only boosts training speed but also elevates the precision of risk source detection. Furthermore, the proposed mapping relationship coordinate transformation model proves highly effective in determining the scale of risk sources. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

14 pages, 3386 KiB  
Article
Research on an Autonomous Localization Method for Trains Based on Pulse Observation in a Tunnel Environment
by Jianqiang Shi, Youpeng Zhang, Guangwu Chen and Yongbo Si
Sensors 2024, 24(17), 5556; https://doi.org/10.3390/s24175556 - 28 Aug 2024
Viewed by 182
Abstract
China’s rail transit system is developing rapidly, but achieving seamless high-precision localization of trains throughout the entire route in closed environments such as tunnels and culverts still faces significant challenges. Traditional localization technologies cannot meet current demands, and the present paper proposes an [...] Read more.
China’s rail transit system is developing rapidly, but achieving seamless high-precision localization of trains throughout the entire route in closed environments such as tunnels and culverts still faces significant challenges. Traditional localization technologies cannot meet current demands, and the present paper proposes an autonomous localization method for trains based on pulse observation in a tunnel environment. First, the Letts criterion is used to eliminate abnormal gyro data, the CEEMDAN method is employed for signal decomposition, and the decomposed signals are classified using the continuous mean square error and norm method. Noise reduction is performed using forward linear filtering and dynamic threshold filtering, respectively, maximizing the retention of its effective signal components. A SINS/OD integrated localization model is established, and an observation equation is constructed based on velocity matching, resulting in an 18-dimensional complex state space model. Finally, the EM algorithm is used to address Non-Line-Of-Sight and multipath effect errors. The optimized model is then applied in the Kalman filter to better adapt to the system’s observation conditions. By dynamically adjusting the noise covariance, the localization system can continue to maintain continuous high-precision position information output in a tunnel environment. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

28 pages, 1183 KiB  
Article
Generalization of the Synthetic Aperture Radar Azimuth Multi-Aperture Processing Scheme—MAPS
by Daniele Mapelli, Pietro Guccione, Davide Giudici, Martina Stasi and Ernesto Imbembo
Remote Sens. 2024, 16(17), 3170; https://doi.org/10.3390/rs16173170 - 27 Aug 2024
Viewed by 298
Abstract
This paper analyzes the advantages and the drawbacks of using the Synthetic Aperture Radar (SAR) azimuth multichannel technique known as Multi-Aperture Processing Scheme (MAPS), in a set of relevant application cases that are far from the canonical ones. In the scientific literature on [...] Read more.
This paper analyzes the advantages and the drawbacks of using the Synthetic Aperture Radar (SAR) azimuth multichannel technique known as Multi-Aperture Processing Scheme (MAPS), in a set of relevant application cases that are far from the canonical ones. In the scientific literature on this topic, equally distributed azimuth channels with the quasi-monostatic deployment are assumed. With this research, we aim at extending the models from the current literature to (i) a generic bistatic acquisition geometry, (ii) a set of cases where the number of receiving tiles is not the same for each channel, or (iii) the tiles are shared between adjacent channels thus creating an overlapping configuration. The paper introduces the mathematical models for the listed non-conventional MAPS cases. Dealing with the bistatic MAPS, we first solve the problem by interpreting multichannel acquisition as a bank of Linear Time Invariant (LTI) filters. Then, a more physical approach, based on discrimination of the direction of arrivals (DoAs) is pursued. The effectiveness of the two methods and the advantages of the second approach on the first are proved by using a simplified 1D end-to-end simulation. Even limiting to the monostatic configuration, the azimuth antenna tiles have always been supposed equally partitioned among the RX channels. Overcoming this limit has two advantages: (i) more MAPS possible solutions in case few azimuth tiles are available, as in the ROSE-L mission; (ii) the number of channels can be designed independently of the number of tiles, also allowing asymmetric solutions, useful for a phase array antenna with an odd number of tiles such as in the SAOCOM-1 mission. Conversely, sharing one or more receiving tiles in different receiving channels makes the input noise partially correlated. The drawback is an increase in the noise level. A trade-off is determined for the different solutions obtained using simulations with real mission parameters. The theoretical performance and the end-to-end simulations are compared. Full article
Show Figures

Figure 1

Back to TopTop