Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,256)

Search Parameters:
Keywords = noise control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 29393 KiB  
Article
Switchable Dual-Wavelength Fiber Laser with Narrow-Linewidth Output Based on Parity-Time Symmetry System and the Cascaded FBG
by Kaiwen Wang, Bin Yin, Chao Lv, Yanzhi Lv, Yiming Wang, Hao Liang, Qun Wang, Shiyang Wang, Fengjie Yu, Zhong Zhang, Ziwang Li and Songhua Wu
Photonics 2024, 11(10), 946; https://doi.org/10.3390/photonics11100946 (registering DOI) - 8 Oct 2024
Abstract
In this paper, a dual-wavelength narrow-linewidth fiber laser based on parity-time (PT) symmetry theory is proposed and experimentally demonstrated. The PT-symmetric filter system consists of two optical couplers (OCs), four polarization controllers (PCs), a polarization beam splitter (PBS), and cascaded fiber Bragg gratings [...] Read more.
In this paper, a dual-wavelength narrow-linewidth fiber laser based on parity-time (PT) symmetry theory is proposed and experimentally demonstrated. The PT-symmetric filter system consists of two optical couplers (OCs), four polarization controllers (PCs), a polarization beam splitter (PBS), and cascaded fiber Bragg gratings (FBGs), enabling stable switchable dual-wavelength output and single longitudinal-mode (SLM) operation. The realization of single-frequency oscillation requires precise tuning of the PCs to match gain, loss, and coupling coefficients to ensure that the PT-broken phase occurs. During single-wavelength operation at 1548.71 nm (λ1) over a 60-min period, power and wavelength fluctuations were observed to be 0.94 dB and 0.01 nm, respectively, while for the other wavelength at 1550.91 nm (λ2), fluctuations were measured at 0.76 dB and 0.01 nm. The linewidths of each wavelength were 1.01 kHz and 0.89 kHz, with a relative intensity noise (RIN) lower than −117 dB/Hz. Under dual-wavelength operation, the maximum wavelength fluctuations for λ1 and λ2 were 0.03 nm and 0.01 nm, respectively, with maximum power fluctuations of 3.23 dB and 2.38 dB. The SLM laser source is suitable for applications in long-distance fiber-optic sensing and coherent LiDAR detection. Full article
(This article belongs to the Special Issue Single Frequency Fiber Lasers and Their Applications)
Show Figures

Figure 1

20 pages, 8726 KiB  
Review
Advancements in Optical Resonator Stability: Principles, Technologies, and Applications
by Huiping Li, Ding Li, Qixin Lou, Chao Liu, Tian Lan and Xudong Yu
Sensors 2024, 24(19), 6473; https://doi.org/10.3390/s24196473 (registering DOI) - 8 Oct 2024
Viewed by 75
Abstract
This paper provides an overview of the study of optical resonant cavity stability, focusing on the relevant principles, key technological advances, and applications of optical resonant cavities in a variety of high-precision measurement techniques and modern science and technology. Firstly, the vibration characteristics, [...] Read more.
This paper provides an overview of the study of optical resonant cavity stability, focusing on the relevant principles, key technological advances, and applications of optical resonant cavities in a variety of high-precision measurement techniques and modern science and technology. Firstly, the vibration characteristics, thermal noise, and temperature characteristics of the reference cavity are presented. Subsequently, the report extensively discusses the advances in key technologies such as mechanical vibration isolation, thermal noise control, and resistance to temperature fluctuations. These advances not only contribute to the development of theory but also provide innovative solutions for practical applications. Typical applications of optical cavities in areas such as laser gyroscopes, high-precision measurements, and gravitational wave detection are also discussed. Future research directions are envisioned, emphasising the importance of novel material applications, advanced vibration isolation technologies, intelligent temperature control systems, multifunctional integrated optical resonator design, and deepening theoretical models and numerical simulations. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

17 pages, 1951 KiB  
Article
Double Tseng’s Algorithm with Inertial Terms for Inclusion Problems and Applications in Image Deblurring
by Purit Thammasiri, Vasile Berinde, Narin Petrot and Kasamsuk Ungchittrakool
Mathematics 2024, 12(19), 3138; https://doi.org/10.3390/math12193138 - 7 Oct 2024
Viewed by 338
Abstract
In this research paper, we present a novel theoretical technique, referred to as the double Tseng’s algorithm with inertial terms, for finding a common solution to two monotone inclusion problems. Developing the double Tseng’s algorithm in this manner not only comprehensively expands theoretical [...] Read more.
In this research paper, we present a novel theoretical technique, referred to as the double Tseng’s algorithm with inertial terms, for finding a common solution to two monotone inclusion problems. Developing the double Tseng’s algorithm in this manner not only comprehensively expands theoretical knowledge in this field but also provides advantages in terms of step-size parameters, which are beneficial for tuning applications and positively impact the numerical results. This new technique can be effectively applied to solve the problem of image deblurring and offers numerical advantages compared to some previously related results. By utilizing certain properties of a Lipschitz monotone operator and a maximally monotone operator, along with the identity associated with the convexity of the quadratic norm in the framework of Hilbert spaces, and by imposing some constraints on the scalar control conditions, we can achieve weak convergence to a common zero point of the sum of two monotone operators. To demonstrate the benefits and advantages of this newly proposed algorithm, we performed numerical experiments to measure the improvement in the signal–to–noise ratio (ISNR) and the structural similarity index measure (SSIM). The results of both numerical experiments (ISNR and SSIM) demonstrate that our new algorithm is more efficient and has a significant advantage over the relevant preceding algorithms. Full article
(This article belongs to the Special Issue New Trends in Nonlinear Analysis)
Show Figures

Figure 1

18 pages, 2455 KiB  
Review
Differentiating the Structural and Functional Instability of the Craniocervical Junction
by Piotr Godek and Wojciech Ruciński
Healthcare 2024, 12(19), 2003; https://doi.org/10.3390/healthcare12192003 - 7 Oct 2024
Viewed by 254
Abstract
This paper presents the anatomical and biomechanical aspects of chronic instability of the craniocervical junction (CCJ) with a discussion on clinical diagnostics based on mobility tests and provocative tests related to ligamentous system injuries, as well as radiological criteria for CCJ instability. In [...] Read more.
This paper presents the anatomical and biomechanical aspects of chronic instability of the craniocervical junction (CCJ) with a discussion on clinical diagnostics based on mobility tests and provocative tests related to ligamentous system injuries, as well as radiological criteria for CCJ instability. In addition to the structural instability of the CCJ, the hypothesis of its functional form resulting from cervical proprioceptive system (CPS) damage is discussed. Clinical and neurophysiological studies have shown that functional disorders or organic changes in the CPS cause symptoms similar to those of vestibular system diseases: dizziness, nystagmus, and balance disorders. The underlying cause of the functional form of CCJ instability may be the increased activity of mechanoreceptors, leading to “informational noise” which causes vestibular system disorientation. Due to the disharmony of mutual stimulation and the inhibition of impulses between the centers controlling eye movements, the cerebellum, spinal motoneurons, and the vestibular system, inadequate vestibulospinal and vestibulo-ocular reactions occur, manifesting as postural instability, dizziness, and nystagmus. The hyperactivity of craniocervical mechanoreceptors also leads to disturbances in the reflex regulation of postural muscle tone, manifesting as “general instability”. Understanding this form of CCJ instability as a distinct clinical entity is important both diagnostically and therapeutically as it requires different management strategies compared to true instability. Chronic CCJ instability significantly impacts the quality of life (QOL) of affected patients, contributing to chronic pain, psychological distress, and functional impairments. Addressing both structural and functional instability is essential for improving patient outcomes and enhancing their overall QOL. Full article
(This article belongs to the Special Issue Clinical Healthcare and Quality of Life of Chronically Ill Patients)
Show Figures

Figure 1

18 pages, 33654 KiB  
Article
Torque Ripple and Electromagnetic Vibration Suppression of Fractional Slot Distributed Winding ISG Motors by Rotor Notching and Skewing
by Yunfei Dai and Ho-Joon Lee
Energies 2024, 17(19), 4964; https://doi.org/10.3390/en17194964 - 4 Oct 2024
Viewed by 318
Abstract
Torque ripple and radial electromagnetic (EM) vibration can lead to motor vibration and noise, which are crucial to the motor’s NVH (Noise, Vibration, and Harshness) performance. Researchers focus on two main aspects: motor body design and control strategy, employing various methods to optimize [...] Read more.
Torque ripple and radial electromagnetic (EM) vibration can lead to motor vibration and noise, which are crucial to the motor’s NVH (Noise, Vibration, and Harshness) performance. Researchers focus on two main aspects: motor body design and control strategy, employing various methods to optimize the motor and reduce torque ripple and radial EM vibration. Rotor notching and segmented rotor skewing are frequently used techniques. However, determining the optimal notch and skew strategy has been an ongoing challenge for researchers. In this paper, an 8-pole, 36-slot ISG motor is optimized using a combination of Q-axis and magnetic bridge notching (QMC notch) as well as segmented rotor skewing to reduce torque ripple and radial EM vibration. Three skewing strategies—step skew (SS), V-shape skew (VS), and zigzag skew (ZS)—along with four segmentation cases are thoroughly considered. The results show that the QMC notch significantly reduces torque ripple, while skewing designs greatly diminish radial EM vibrations. However, at 14 fe, the EM vibration frequency is close to the motor’s third-order natural frequency, leading to mixed results in vibration reduction using skewing techniques. After a comprehensive analysis of all skewing strategies, four-segment VS and ZS are recommended as the optimal approaches. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

14 pages, 1186 KiB  
Article
Multi-Stage Corn-to-Syrup Process Monitoring and Yield Prediction Using Machine Learning and Statistical Methods
by Sheng-Jen Hsieh and Jeff Hykin
Sensors 2024, 24(19), 6401; https://doi.org/10.3390/s24196401 - 2 Oct 2024
Viewed by 321
Abstract
Corn syrup is a cost-effective sweetener ingredient for the food industry. In producing syrup from corn, process control to enhance and/or maintain a constant dextrose equivalent value (DE) is a constant challenge, especially in semi-automated/batch production settings, which are common in small to [...] Read more.
Corn syrup is a cost-effective sweetener ingredient for the food industry. In producing syrup from corn, process control to enhance and/or maintain a constant dextrose equivalent value (DE) is a constant challenge, especially in semi-automated/batch production settings, which are common in small to medium-size factories. Existing work has focused on continuous process control to keep parameter values within a setpoint. The machine learning method applied is for time series data. This study focuses on building process control models to enable semi-automation in small to medium-size factories in which the data are not as time dependent. Correlation coefficients were used to identify key process parameters that contribute to feed pH value and DE. Artificial neural network (ANN), support vector machine (SVM), and linear regression (LR) models were built to predict feed pH and DE. The results suggest (1) model accuracy ranges from 91% to 96%; (2) the ANN models yielded about 1% to 3% higher accuracy than the SVM and LR models and the prediction accuracy is robust even with as few as six data sets; (3) both the SVM and ANN models have noise tolerant properties, but ANN has a higher noise tolerance than SVM; (4) SVM performance can be hindered when using high-dimensional data sets; (5) the LR model yields higher variation in accuracy prediction than ANN and SVM; (6) distribution fitting is a good approach for generating data; however, fidelity of fitting can greatly impact accuracy; and (7) multi-stage models yield higher accuracy than single-stage models, but there are pros and cons to each approach. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

13 pages, 3660 KiB  
Article
A Novel Surrogate-Assisted Multi-Objective Well Control Parameter Optimization Method Based on Selective Ensembles
by Lian Wang, Rui Deng, Liang Zhang, Jianhua Qu, Hehua Wang, Liehui Zhang, Xing Zhao, Bing Xu, Xindong Lv and Caspar Daniel Adenutsi
Processes 2024, 12(10), 2140; https://doi.org/10.3390/pr12102140 - 1 Oct 2024
Viewed by 487
Abstract
Multi-objective optimization algorithms are crucial for addressing real-world problems, particularly with regard to optimizing well control parameters, which are often computationally expensive due to their reliance on numerical simulations. Surrogate-assisted models help to reduce this computational burden, but their effectiveness depends on the [...] Read more.
Multi-objective optimization algorithms are crucial for addressing real-world problems, particularly with regard to optimizing well control parameters, which are often computationally expensive due to their reliance on numerical simulations. Surrogate-assisted models help to reduce this computational burden, but their effectiveness depends on the quality of the surrogates, which can be affected by candidate dimension and noise. This study proposes a novel surrogate-assisted multi-objective optimization framework (MOO-SESA) that combines selective ensemble support-vector regression with NSGA-II. The framework’s uniqueness lies in its adaptive selection of a diverse subset of surrogates, established prior to iteration, to enhance accuracy, robustness, and computational efficiency. To our knowledge, this is the first instance in which selective ensemble techniques with multi-objective optimization have been applied to reservoir well control problems. Through employing an ensemble strategy for improving the quality of the surrogate model, MOO-SESA demonstrated superior well control scenarios and faster convergence compared to traditional surrogate-assisted models when applied to the SPE10 and Egg reservoir models. Full article
(This article belongs to the Special Issue Advances in Enhancing Unconventional Oil/Gas Recovery, 2nd Edition)
Show Figures

Figure 1

12 pages, 4404 KiB  
Article
Development and Characterization of a Flexible Soundproofing Metapanel for Noise Reduction
by Dongil Jang, Sanha Kang, Jinyoung Kim, Hyeonghoon Kim, Sinwoo Lee and Bongjoong Kim
Appl. Sci. 2024, 14(19), 8833; https://doi.org/10.3390/app14198833 - 1 Oct 2024
Viewed by 414
Abstract
This study addresses the critical challenge of developing lightweight, flexible soundproofing materials for contemporary applications by introducing an innovative Flexible Soundproofing Metapanel (FSM). The FSM represents a significant advancement in acoustic metamaterial design, engineered to attenuate noise within the 2000–5000 Hz range—a frequency [...] Read more.
This study addresses the critical challenge of developing lightweight, flexible soundproofing materials for contemporary applications by introducing an innovative Flexible Soundproofing Metapanel (FSM). The FSM represents a significant advancement in acoustic metamaterial design, engineered to attenuate noise within the 2000–5000 Hz range—a frequency band associated with significant human auditory discomfort. The FSM’s novel structure, comprising a box-shaped frame and vibrating membrane, was optimized through rigorous finite element analysis and subsequently validated via comprehensive open field tests for enclosure-type soundproofing. Our results demonstrate that the FSM, featuring an optimized configuration of urethane rubber (Young’s modulus 6.5 MPa) and precisely tuned unit cell dimensions, significantly outperforms conventional mass-law-based materials in sound insulation efficacy across target frequencies. The FSM exhibited superior soundproofing performance across a broad spectrum of frequency bands, with particularly remarkable results in the crucial 2000–5000 Hz range. Its inherent flexibility enables applications to diverse surface geometries, substantially enhancing its practical utility. This research contributes substantially to the rapidly evolving field of acoustic metamaterials, offering a promising solution for noise control in applications where weight and spatial constraints are critical factors. Full article
Show Figures

Figure 1

17 pages, 6051 KiB  
Article
Study on the Accurate Magnetic Field Analytical Model of an Inertial Magnetic Levitation Actuator Considering End Effects
by Qianqian Wu, Yiran Chen, Guokai Yuan, Fengyan An and Bilong Liu
Actuators 2024, 13(10), 385; https://doi.org/10.3390/act13100385 - 1 Oct 2024
Viewed by 287
Abstract
To address the demand for low noise and high stealthiness in ships and other vessels, this paper innovatively proposes an inertial magnetic levitation actuator based on non-uniform-sized Halbach permanent magnet arrays. To improve control accuracy, it is necessary to establish an accurate analytical [...] Read more.
To address the demand for low noise and high stealthiness in ships and other vessels, this paper innovatively proposes an inertial magnetic levitation actuator based on non-uniform-sized Halbach permanent magnet arrays. To improve control accuracy, it is necessary to establish an accurate analytical model of the magnetic field and then obtain an accurate electromagnetic force model. However, the distortion of the magnetic field at the ends produces end effects, resulting in thrust fluctuations that affect the actuator’s control accuracy. Therefore, considering the end effects is necessary to establish an accurate analytical model of the magnetic field. To analyze the end leakage magnetic field of the Halbach array, the concept of a mechanical pseudo-cycle in the actuator is proposed, and the cycle of a Fourier series is redefined. A completed analytical expression of the Halbach array magnetic field distribution is derived by the new Fourier series, in which the end leakage magnetic field is contained. The accuracy of the proposed method is verified by solving the analytical model of the magnetic field, and the analytical results are compared with finite element simulations and experimental tests. Full article
(This article belongs to the Special Issue Actuator Technology for Active Noise and Vibration Control)
Show Figures

Figure 1

11 pages, 4168 KiB  
Article
Digital Active EMI Filter for Smart Electronic Power Converters
by Michele Darisi, Tommaso Caldognetto, Davide Biadene and Marco Stellini
Electronics 2024, 13(19), 3889; https://doi.org/10.3390/electronics13193889 - 30 Sep 2024
Viewed by 390
Abstract
Electronic power converters are widespread and crucial components in modern energy scenarios. Beyond mere electrical energy conversion, their electronic structure allows several functionalities to be naturally embedded in them, including energy management, diagnosis, communication, etc. The operation of the converter itself, or the [...] Read more.
Electronic power converters are widespread and crucial components in modern energy scenarios. Beyond mere electrical energy conversion, their electronic structure allows several functionalities to be naturally embedded in them, including energy management, diagnosis, communication, etc. The operation of the converter itself, or the system interfaced by the same, commonly produces undesired electromagnetic interferences (EMIs) that should comply with prescribed limits. This paper presents a digital active EMI filter designed to mitigate such disturbances. The proposed hardware implementation can acquire and analyze the common-mode (CM) noise affecting the circuit and inject a compensation signal to attenuate the measured interference. A novel adaptive algorithm is introduced to compute the necessary signals for effective noise cancellation. The implementation is integrated within a single printed circuit board interfaced with a field-programmable gate array (FPGA) running the control algorithm. The digital filter’s efficacy in EMI reduction is demonstrated using a synchronous buck converter with gallium nitride (GaN) power devices, achieving significant noise reduction. Additionally, potential functionalities are envisioned to fully exploit the capabilities of the proposal beyond EMI filtering, like fault detection, predictive maintenance, smart converter optimization, and communication. Full article
Show Figures

Figure 1

22 pages, 2057 KiB  
Article
FDADNet: Detection of Surface Defects in Wood-Based Panels Based on Frequency Domain Transformation and Adaptive Dynamic Downsampling
by Hongli Li, Zhiqi Yi, Zhibin Wang, Ying Wang, Liang Ge, Wei Cao, Liye Mei, Wei Yang and Qin Sun
Processes 2024, 12(10), 2134; https://doi.org/10.3390/pr12102134 - 30 Sep 2024
Viewed by 411
Abstract
The detection of surface defects on wood-based panels plays a crucial role in product quality control. However, due to the complex background and low contrast of defects in wood-based panel images, features extracted by traditional deep learning methods based on spatial domain processing [...] Read more.
The detection of surface defects on wood-based panels plays a crucial role in product quality control. However, due to the complex background and low contrast of defects in wood-based panel images, features extracted by traditional deep learning methods based on spatial domain processing often contain noise and blurred boundaries, which severely affects detection performance. To address these issues, we have proposed a wood-based panel surface defect detection method based on frequency domain transformation and adaptive dynamic downsampling (FDADNet). Specifically, we designed a Multi-axis Frequency Domain Weighted Information Representation Module (MFDW), which effectively decoupled the indistinguishable low-contrast defects from the background in the transform domain. Gaussian filtering was then employed to eliminate noise and blur between the defects and the background. Additionally, to tackle the issue of scale differences in defects that led to difficulties in accurate capture, we designed an Adaptive Dynamic Convolution (ADConv) module for downsampling. This method flexibly compressed and enhanced features, effectively improving the differentiation of the features of objects of varying scales in the transform space, and ultimately achieved effective defect detection. To compensate for the lack of data, we constructed a dataset of wood-based panel surface defects, WBP-DET. The experimental results showed that the proposed FDADNet effectively improved the detection performance of wood-based panel surface defects in complex scenarios, achieving a solid balance between efficiency and accuracy. Full article
(This article belongs to the Special Issue Research on Intelligent Fault Diagnosis Based on Neural Network)
19 pages, 6482 KiB  
Article
Reinforcement Learning-Based Tracking Control under Stochastic Noise and Unmeasurable State for Tip–Tilt Mirror Systems
by Sicheng Guo, Tao Cheng, Zeyu Gao, Lingxi Kong, Shuai Wang and Ping Yang
Photonics 2024, 11(10), 927; https://doi.org/10.3390/photonics11100927 - 30 Sep 2024
Viewed by 343
Abstract
The tip–tilt mirror (TTM) is an important component of adaptive optics (AO) to achieve beam stabilization and pointing tracking. In many practical applications, the information of accurate TTM dynamics, complete system state, and noise characteristics is difficult to achieve due to the lack [...] Read more.
The tip–tilt mirror (TTM) is an important component of adaptive optics (AO) to achieve beam stabilization and pointing tracking. In many practical applications, the information of accurate TTM dynamics, complete system state, and noise characteristics is difficult to achieve due to the lack of sufficient sensors, which then restricts the implementation of high precision tracking control for TTM. To this end, this paper proposes a new method based on noisy-output feedback Q-learning. Without relying on neural networks or additional sensors, it infers the dynamics of the controlled system and reference jitter using only noisy measurements, thereby achieving optimal tracking control for the TTM system. We have established a modified Bellman equation based on estimation theory, directly linking noisy measurements to system performance. On this basis, a fast iterative learning of the control law is implemented through the adaptive transversal predictor and experience replay technique, making the algorithm more efficient. The proposed algorithm has been validated with an application to a TTM tracking control system, which is capable of quickly learning near-optimal control law under the interference of random noise. In terms of tracking performance, the method reduces the tracking error by up to 98.7% compared with the traditional integral control while maintaining a stable control process. Therefore, this approach may provide an intelligent solution for control issues in AO systems. Full article
(This article belongs to the Special Issue Challenges and Future Directions in Adaptive Optics Technology)
Show Figures

Figure 1

23 pages, 670 KiB  
Article
Distributed Adaptive Optimization Algorithm for High-Order Nonlinear Multi-Agent Stochastic Systems with Lévy Noise
by Hui Yang, Qing Sun and Jiaxin Yuan
Entropy 2024, 26(10), 834; https://doi.org/10.3390/e26100834 - 30 Sep 2024
Viewed by 286
Abstract
An adaptive neural network output-feedback control strategy is proposed in this paper for the distributed optimization problem (DOP) of high-order nonlinear stochastic multi-agent systems (MASs) driven by Lévy noise. On the basis of the penalty-function method, the consensus constraint is removed and the [...] Read more.
An adaptive neural network output-feedback control strategy is proposed in this paper for the distributed optimization problem (DOP) of high-order nonlinear stochastic multi-agent systems (MASs) driven by Lévy noise. On the basis of the penalty-function method, the consensus constraint is removed and the global objective function (GOF) is reconstructed. The stability of the system is analyzed by combining the generalized Itô’s formula with the Lyapunov function method. Moreover, the command filtering mechanism is introduced to solve the “complexity explosion” problem in the process of designing virtual controller, and the filter errors are compensated by introducing compensating signals. The proposed algorithm has been proved that the outputs of all agents converge to the optimal solution of the DOP with bounded errors. The simulation results demonstrate the effectiveness of the proposed approach. Full article
(This article belongs to the Special Issue Information Theory in Control Systems, 2nd Edition)
Show Figures

Figure 1

18 pages, 7452 KiB  
Article
Soil Moisture Detection and Linear Deceleration Control Strategy Enhancing Trenching Depth Precision and Stability for Rapeseed Sowing
by Peiru Xu, Jianchuan Kou, Minghang Wang, Tianyu Tu, Xiaoling Chen, Jie Luo, Jianfeng Hu and Xiaolong Lei
Agriculture 2024, 14(10), 1717; https://doi.org/10.3390/agriculture14101717 - 30 Sep 2024
Viewed by 326
Abstract
Sowing depth significantly affects the germination of rapeseed, and different soil moisture conditions require corresponding sowing depths. However, most current trenching devices do not account for soil moisture content, and commonly used hydraulic or constant-force trenching equipment also exhibits deficiencies in stability and [...] Read more.
Sowing depth significantly affects the germination of rapeseed, and different soil moisture conditions require corresponding sowing depths. However, most current trenching devices do not account for soil moisture content, and commonly used hydraulic or constant-force trenching equipment also exhibits deficiencies in stability and consistency. To address these challenges, this study developed an automatic depth adjustment control system based on soil moisture content. A soil moisture detection device and an innovative sliding mechanism that maintained the soil moisture sensor in a relatively stationary position relative to the soil during seeder movement were introduced. An automatic sowing depth adjustment device was designed to modulate the sowing depth. A control strategy that incorporated the Kalman filtering algorithm and linear deceleration equations was conducted. At an observation noise covariance matrix (Q/R) of 0.001, a deceleration range of 40 mm and a minimum speed of 10, the control system exhibited minimal overshoot (approximately 4%) and steady-state error (approximately 3.2 mm). It effectively adjusted the trenching depth while operating at speeds ranging from 2 to 3.6 km/h, successfully adapting to variations in soil topography. The system performance tests revealed that the control system adjustment time (ts) was 534 ms and the steady-state error remained within 1 mm. Under three different soil moisture content conditions, the sowing depth qualification rate and stability coefficients consistently surpassed 90% and 80%, respectively. This research offers a sowing depth adjustment control system based on soil moisture content, contributing to more precise depth regulation for rapeseed sowing. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

23 pages, 8138 KiB  
Article
Non-Destructive Detection of Tea Polyphenols in Fu Brick Tea Based on Hyperspectral Imaging and Improved PKO-SVR Method
by Junyao Gong, Gang Chen, Yuezhao Deng, Cheng Li and Kui Fang
Agriculture 2024, 14(10), 1701; https://doi.org/10.3390/agriculture14101701 - 28 Sep 2024
Viewed by 336
Abstract
Tea polyphenols (TPs) are a critical indicator for evaluating the quality of tea leaves and are esteemed for their beneficial effects. The non-destructive detection of this component is essential for enhancing precise control in tea production and improving product quality. This study developed [...] Read more.
Tea polyphenols (TPs) are a critical indicator for evaluating the quality of tea leaves and are esteemed for their beneficial effects. The non-destructive detection of this component is essential for enhancing precise control in tea production and improving product quality. This study developed an enhanced PKO-SVR (support vector regression based on the Pied Kingfisher Optimization Algorithm) model for rapidly and accurately detecting tea polyphenol content in Fu brick tea using hyperspectral reflectance data. During this experiment, chemical analysis determined the tea polyphenol content, while hyperspectral imaging captured the spectral data. Data preprocessing techniques were applied to reduce noise interference and improve the prediction model. Additionally, several other models, including K-nearest neighbor (KNN) regression, neural network regression (BP), support vector regression based on the sparrow algorithm (SSA-SVR), and support vector regression based on particle swarm optimization (PSO-SVR), were established for comparison. The experiment results demonstrated that the improved PKO-SVR model excelled in predicting the polyphenol content of Fu brick tea (R2 = 0.9152, RMSE = 0.5876, RPD = 3.4345 for the test set) and also exhibited a faster convergence rate. Therefore, the hyperspectral data combined with the PKO-SVR algorithm presented in this study proved effective for evaluating Fu brick tea’s polyphenol content. Full article
(This article belongs to the Section Digital Agriculture)
Show Figures

Figure 1

Back to TopTop