Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = neuromuscular electrical stimulation (NMES)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3681 KiB  
Article
The Effect of Lower Limb Combined Neuromuscular Electrical Stimulation on Skeletal Muscle Cross-Sectional Area and Inflammatory Signaling
by Amal Alharbi, Jia Li, Erika Womack, Matthew Farrow and Ceren Yarar-Fisher
Int. J. Mol. Sci. 2024, 25(20), 11095; https://doi.org/10.3390/ijms252011095 - 16 Oct 2024
Viewed by 710
Abstract
In individuals with a spinal cord injury (SCI), rapid skeletal muscle atrophy and metabolic dysfunction pose profound rehabilitation challenges, often resulting in substantial loss of muscle mass and function. This study evaluates the effect of combined neuromuscular electrical stimulation (Comb-NMES) on skeletal muscle [...] Read more.
In individuals with a spinal cord injury (SCI), rapid skeletal muscle atrophy and metabolic dysfunction pose profound rehabilitation challenges, often resulting in substantial loss of muscle mass and function. This study evaluates the effect of combined neuromuscular electrical stimulation (Comb-NMES) on skeletal muscle cross-sectional area (CSA) and inflammatory signaling within the acute phase of SCI. We applied a novel Comb-NMES regimen, integrating both high-frequency resistance and low-frequency aerobic protocols on the vastus lateralis muscle, to participants early post-SCI. Muscle biopsies were analyzed for CSA and inflammatory markers pre- and post-intervention. The results suggest a potential preservation of muscle CSA in the Comb-NMES group compared to a control group. Inflammatory signaling proteins such as TLR4 and Atrogin-1 were downregulated, whereas markers associated with muscle repair and growth were modulated beneficially in the Comb-NMES group. The study’s findings suggest that early application of Comb-NMES post-SCI may attenuate inflammatory pathways linked to muscle atrophy and promote muscle repair. However, the small sample size and variability in injury characteristics emphasize the need for further research to corroborate these results across a more diverse and extensive SCI population. Full article
Show Figures

Figure 1

17 pages, 1912 KiB  
Article
Effects of Rehabilitative Exercise and Neuromuscular Electrical Stimulation on Muscle Morphology and Dynamic Balance in Individuals with Chronic Ankle Instability
by Sujin Choi and Hyung-pil Jun
Medicina 2024, 60(7), 1187; https://doi.org/10.3390/medicina60071187 - 22 Jul 2024
Cited by 1 | Viewed by 1378
Abstract
Background and Objectives: Muscle atrophy caused by chronic ankle instability (CAI) can incur muscle weakness, altered movement patterns, and increased risk of injury. Previous studies have investigated the effects of rehabilitative exercises and neuromuscular electrical stimulation (NMES) on characteristics in CAI individuals, but [...] Read more.
Background and Objectives: Muscle atrophy caused by chronic ankle instability (CAI) can incur muscle weakness, altered movement patterns, and increased risk of injury. Previous studies have investigated the effects of rehabilitative exercises and neuromuscular electrical stimulation (NMES) on characteristics in CAI individuals, but few studies have examined their effects on foot and ankle muscle morphology. This study aimed to determine the effects of rehabilitative exercises and NMES on muscle morphology and dynamic balance in individuals with CAI. Materials and Methods: Participants with CAI (n = 47) were randomly divided into control (CG), rehabilitative exercise (REG), NMES (NG), and rehabilitative exercise and NMES combined (RNG) groups. The six-week intervention program consisting of rehabilitative exercises and NMES was applied to groups excluding CG. Muscle morphology and dynamic balance were evaluated using a portable wireless diagnostic ultrasound device and dynamic balance tests. For statistical analysis, an effect size with 95% confidence interval was calculated to assess mean differences according to intervention. Results: After six weeks, significant increases in morphology and dynamic balance were observed for all muscles except flexor hallucis longus (p > 0.05) in the intervention groups except for CG. However, no significant changes were observed in the CG (p > 0.05). Conclusions: These findings suggest that intervention programs may help prevent muscle atrophy and improve balance in CAI individuals. Full article
Show Figures

Figure 1

9 pages, 555 KiB  
Article
Safety and Feasibility of Neuromuscular Electrical Stimulation in Patients with Extracorporeal Membrane Oxygenation
by Christos Kourek, Vasiliki Raidou, Michael Antonopoulos, Maria Dimopoulou, Antigone Koliopoulou, Eleftherios Karatzanos, Theodoros Pitsolis, Konstantinos Ieromonachos, Serafim Nanas, Stamatis Adamopoulos, Themistocles Chamogeorgakis and Stavros Dimopoulos
J. Clin. Med. 2024, 13(13), 3723; https://doi.org/10.3390/jcm13133723 - 26 Jun 2024
Viewed by 1255
Abstract
Background/Objectives: The aim of this study was to investigate the feasibility and safety of neuromuscular electrical stimulation (NMES) in patients on extracorporeal membrane oxygenation (ECMO) and thoroughly assess any potential adverse events. Methods: We conducted a prospective observational study assessing safety [...] Read more.
Background/Objectives: The aim of this study was to investigate the feasibility and safety of neuromuscular electrical stimulation (NMES) in patients on extracorporeal membrane oxygenation (ECMO) and thoroughly assess any potential adverse events. Methods: We conducted a prospective observational study assessing safety and feasibility, including 16 ICU patients on ECMO support who were admitted to the cardiac surgery ICU from January 2022 to December 2023. The majority of patients were females (63%) on veno-arterial (VA)-ECMO (81%), while the main cause was cardiogenic shock (81%) compared to respiratory failure. Patients underwent a 45 min NMES session while on ECMO support that included a warm-up phase of 5 min, a main phase of 35 min, and a recovery phase of 5 min. NMES was implemented on vastus lateralis, vastus medialis, gastrocnemius, and peroneus longus muscles of both lower extremities. Two stimulators delivered biphasic, symmetric impulses of 75 Hz, with a 400 μsec pulse duration, 5 sec on (1.6 sec ramp up and 0.8 sec ramp down) and 21 sec off. The intensity levels aimed to cause visible contractions and be well tolerated. Primary outcomes of this study were feasibility and safety, evaluated by whether NMES sessions were successfully achieved, and by any adverse events and complications. Secondary outcomes included indices of rhabdomyolysis from biochemical blood tests 24 h after the application of NMES. Results: All patients successfully completed their NMES session, with no adverse events or complications. The majority of patients achieved type 4 and 5 qualities of muscle contraction. Conclusions: NMES is a safe and feasible exercise methodology for patients supported with ECMO. Full article
(This article belongs to the Section Clinical Rehabilitation)
Show Figures

Figure 1

16 pages, 3583 KiB  
Article
Assessing the Impact of Neuromuscular Electrical Stimulation-Based Fingerboard Training versus Conventional Fingerboard Training on Finger Flexor Endurance in Intermediate to Advanced Sports Climbers: A Randomized Controlled Study
by Carlo Dindorf, Jonas Dully, Joshua Berger, Stephan Becker, Emanuel Wolf, Steven Simon, Eva Bartaguiz, Wolfgang Kemmler and Michael Fröhlich
Sensors 2024, 24(13), 4100; https://doi.org/10.3390/s24134100 - 24 Jun 2024
Viewed by 724
Abstract
Competitive climbers engage in highly structured training regimens to achieve peak performance levels, with efficient time management as a critical aspect. Neuromuscular electrical stimulation (NMES) training can close the gap between time-efficient conditioning training and achieving optimal prerequisites for peak climbing-specific performances. Therefore, [...] Read more.
Competitive climbers engage in highly structured training regimens to achieve peak performance levels, with efficient time management as a critical aspect. Neuromuscular electrical stimulation (NMES) training can close the gap between time-efficient conditioning training and achieving optimal prerequisites for peak climbing-specific performances. Therefore, we examined potential neuromuscular adaptations resulting from the NMFES intervention by analyzing the efficacy of twice-weekly NMES-supported fingerboard (hang board) training compared with thrice-weekly conventional fingerboard training over 7 training weeks in enhancing climbing-specific endurance among intermediate to advanced climbers. Participants were randomly divided into the NMES and control groups. Eighteen participants completed the study (14 male, 4 female; mean age: 25.7 ± 5.3 years; mean climbing experience: 6.4 ± 3.4 years). Endurance was assessed by measuring the maximal time athletes could support their body weight (hanging to exhaustion) on a 20 mm-deep ledge at three intervals: pre-, in-between- (after 4 weeks of training), and post-training (after 7 weeks of training). The findings revealed that despite the lower training volume in the NMES group, no significant differences were observed between the NMES and control groups in climbing-specific endurance. Both groups exhibited notable improvements in endurance, particularly after the in-between test. Consequently, a twice-weekly NMES-supported fingerboard training regimen demonstrated non-inferiority to a thrice-weekly conventional training routine. Incorporating NMES into fingerboard workouts could offer time-saving benefits. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

11 pages, 1926 KiB  
Article
Using Physiological Markers to Assess Comfort during Neuromuscular Electrical Stimulation Induced Muscle Contraction in a Virtually Guided Environment: Pilot Study for a Path toward Combating ICU-Acquired Weakness
by Ahmad Abou-Hamde, Lauren Philippi, Eric Jones, Christian Martin, Kingsley Wu, Michael Kundell, Sunita Mathur, Alireza Sadeghian, Maryam Davoudpour, Jane Batt, Adriana Ieraci and Sharon Gabison
Sensors 2024, 24(11), 3599; https://doi.org/10.3390/s24113599 - 3 Jun 2024
Viewed by 925
Abstract
We assessed the feasibility of implementing a virtually guided Neuromuscular Electrical Stimulation (NMES) protocol over the tibialis anterior (TA) muscle while collecting heart rate (HR), Numeric Pain Rating Scale (NPRS), and quality of contraction (QoC) data. We investigated if HR, NPRS, and QoC [...] Read more.
We assessed the feasibility of implementing a virtually guided Neuromuscular Electrical Stimulation (NMES) protocol over the tibialis anterior (TA) muscle while collecting heart rate (HR), Numeric Pain Rating Scale (NPRS), and quality of contraction (QoC) data. We investigated if HR, NPRS, and QoC differ ON and OFF the TA motor point and explored potential relationships between heart rate variability (HRV) and the NPRS. Twelve healthy adults participated in this cross-sectional study. Three NMES trials were delivered ON and OFF the TA motor point. HR, QoC, and NPRS data were collected. There was no significant difference in HRV ON and OFF the motor point (p > 0.05). The NPRS was significantly greater OFF the motor point (p < 0.05). The QoC was significantly different between motor point configurations (p < 0.05). There was no correlation between the NPRS and HRV (p > 0.05, r = −0.129). We recommend non-electrical methods of measuring muscle activity for future studies. The NPRS and QoC can be administered virtually. Time-domain HRV measures could increase the validity of the protocol. The variables should be explored further virtually to enhance the protocol before eventual ICU studies. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

14 pages, 1242 KiB  
Review
The Clinical Management of Electrical Stimulation Therapies in the Rehabilitation of Individuals with Spinal Cord Injuries
by David R. Dolbow, Ines Bersch, Ashraf S. Gorgey and Glen M. Davis
J. Clin. Med. 2024, 13(10), 2995; https://doi.org/10.3390/jcm13102995 - 20 May 2024
Viewed by 2801
Abstract
Background: People with spinal cord injuries (SCIs) often have trouble remaining active because of paralysis. In the past, exercise recommendations focused on the non-paralyzed muscles in the arms, which provides limited benefits. However, recent studies show that electrical stimulation can help engage the [...] Read more.
Background: People with spinal cord injuries (SCIs) often have trouble remaining active because of paralysis. In the past, exercise recommendations focused on the non-paralyzed muscles in the arms, which provides limited benefits. However, recent studies show that electrical stimulation can help engage the paralyzed extremities, expanding the available muscle mass for exercise. Methods: The authors provide an evidence-based approach using expertise from diverse fields, supplemented by evidence from key studies toward the management of electrical stimulation therapies in individuals with SCIs. Literature searches were performed separately using the PubMed, Medline, and Google Scholar search engines. The keywords used for the searches included functional electrical stimulation cycling, hybrid cycling, neuromuscular electrical stimulation exercise, spinal cord injury, cardiovascular health, metabolic health, muscle strength, muscle mass, bone mass, upper limb treatment, diagnostic and prognostic use of functional electrical stimulation, tetraplegic hands, and hand deformities after SCI. The authors recently presented this information in a workshop at a major rehabilitation conference. Additional information beyond what was presented at the workshop was added for the writing of this paper. Results: Functional electrical stimulation (FES) cycling can improve aerobic fitness and reduce the risk of cardiovascular and metabolic diseases. The evidence indicates that while both FES leg cycling and neuromuscular electrical stimulation (NMES) resistance training can increase muscle strength and mass, NMES resistance training has been shown to be more effective for producing muscle hypertrophy in individual muscle groups. The response to the electrical stimulation of muscles can also help in the diagnosis and prognosis of hand dysfunction after tetraplegia. Conclusions: Electrical stimulation activities are safe and effective methods for exercise and testing for motor neuron lesions in individuals with SCIs and other paralytic or paretic conditions. They should be considered part of a comprehensive rehabilitation program in diagnosing, prognosing, and treating individuals with SCIs to improve function, physical activity, and overall health. Full article
(This article belongs to the Special Issue Clinical Management and Rehabilitation of Spinal Cord Injury)
Show Figures

Figure 1

13 pages, 1807 KiB  
Article
Effects of Neuromuscular Electrical Stimulation with Gastrocnemius Strengthening on Foot Morphology in Stroke Patients: A Randomized Controlled Trial
by Yusik Choi, Sooyong Lee, Minhyuk Kim and Woonam Chang
Healthcare 2024, 12(7), 777; https://doi.org/10.3390/healthcare12070777 - 3 Apr 2024
Cited by 1 | Viewed by 1345
Abstract
This study aimed to investigate the effects of neuromuscular electrical stimulation (NMES) with gastrocnemius (GCM) strength exercise on foot morphology in patients with stroke. Herein, 31 patients with chronic stroke meeting the study criteria were enrolled and divided into two groups; 16 patients [...] Read more.
This study aimed to investigate the effects of neuromuscular electrical stimulation (NMES) with gastrocnemius (GCM) strength exercise on foot morphology in patients with stroke. Herein, 31 patients with chronic stroke meeting the study criteria were enrolled and divided into two groups; 16 patients were randomized to the gastrocnemius neuromuscular electrical stimulation (GCMNMES) group, and 15 patients to the conventional neuromuscular electrical stimulation (CNMES) group. The GCMNMES group conducted GCM-strengthening exercise with NMES. CNMES group conducted NMES at paretic tibialis anterior muscle with ankle dorsiflexion movement. These patients underwent therapeutic interventions lasting 30 min/session, five times a week for 4 weeks. To analyze changes in foot morphology, 3D foot scanning was used, while a foot-pressure measurement device was used to evaluate foot pressure and weight-bearing area. In an intra-group comparison of 3D-foot-scanning results, the experimental group showed significant changes in longitudinal arch angle (p < 0.05), medial longitudinal arch angle (MLAA) (p < 0.01), transverse arch angle (TAA) (p < 0.01), rearfoot angle (RA) (p < 0.05), foot length (FL) (p < 0.05), foot width (FW) (p < 0.05), and arch height index (AHI) (p < 0.01) of the paretic side and in TAA (p < 0.05) and AHI (p < 0.05) of the non-paretic side. The CNMES group showed significant changes in TAA (p < 0.05) and FW (p < 0.05) of the paretic side and TAA (p < 0.05) and AHI (p < 0.05) of the non-paretic side. An inter-group comparison showed significant differences in MLAA (p < 0.05) and RA (p < 0.05) of the paretic side. In an intra-group comparison of foot pressure assessment, the experimental group showed significant differences in footprint area (FPA) (p < 0.05) of the paretic side and FPA symmetry (p < 0.05). The CNMES group showed a significant difference in only FPA symmetry (p < 0.05). An inter-group comparison showed no significant difference between the two groups (p < 0.05). Thus, NMES with GCM-strengthening exercises yielded positive effects on foot morphology in patients with stroke. Full article
(This article belongs to the Topic New Advances in Physical Therapy and Occupational Therapy)
Show Figures

Figure 1

27 pages, 5388 KiB  
Article
Comparison of Immediate Neuromodulatory Effects between Focal Vibratory and Electrical Sensory Stimulations after Stroke
by Legeng Lin, Wanyi Qing, Yanhuan Huang, Fuqiang Ye, Wei Rong, Waiming Li, Jiao Jiao and Xiaoling Hu
Bioengineering 2024, 11(3), 286; https://doi.org/10.3390/bioengineering11030286 - 17 Mar 2024
Viewed by 1756
Abstract
Focal vibratory stimulation (FVS) and neuromuscular electrical stimulation (NMES) are promising technologies for sensory rehabilitation after stroke. However, the differences between these techniques in immediate neuromodulatory effects on the poststroke cortex are not yet fully understood. In this research, cortical responses in persons [...] Read more.
Focal vibratory stimulation (FVS) and neuromuscular electrical stimulation (NMES) are promising technologies for sensory rehabilitation after stroke. However, the differences between these techniques in immediate neuromodulatory effects on the poststroke cortex are not yet fully understood. In this research, cortical responses in persons with chronic stroke (n = 15) and unimpaired controls (n = 15) were measured by whole-brain electroencephalography (EEG) when FVS and NMES at different intensities were applied transcutaneously to the forearm muscles. Both FVS and sensory-level NMES induced alpha and beta oscillations in the sensorimotor cortex after stroke, significantly exceeding baseline levels (p < 0.05). These oscillations exhibited bilateral sensory deficiency, early adaptation, and contralesional compensation compared to the control group. FVS resulted in a significantly faster P300 response (p < 0.05) and higher theta oscillation (p < 0.05) compared to NMES. The beta desynchronization over the contralesional frontal–parietal area remained during NMES (p > 0.05), but it was significantly weakened during FVS (p < 0.05) after stroke. The results indicated that both FVS and NMES effectively activated the sensorimotor cortex after stroke. However, FVS was particularly effective in eliciting transient involuntary attention, while NMES primarily fostered the cortical responses of the targeted muscles in the contralesional motor cortex. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

18 pages, 1899 KiB  
Article
Neuromuscular Electrical Stimulation Does Not Influence Spinal Excitability in Multiple Sclerosis Patients
by Martina Scalia, Riccardo Borzuola, Martina Parrella, Giovanna Borriello, Francesco Sica, Fabrizia Monteleone, Elisabetta Maida and Andrea Macaluso
J. Clin. Med. 2024, 13(3), 704; https://doi.org/10.3390/jcm13030704 - 25 Jan 2024
Viewed by 1737
Abstract
(1) Background: Neuromuscular electrical stimulation (NMES) has beneficial effects on physical functions in Multiple sclerosis (MS) patients. However, the neurophysiological mechanisms underlying these functional improvements are still unclear. This study aims at comparing acute responses in spinal excitability, as measured by soleus [...] Read more.
(1) Background: Neuromuscular electrical stimulation (NMES) has beneficial effects on physical functions in Multiple sclerosis (MS) patients. However, the neurophysiological mechanisms underlying these functional improvements are still unclear. This study aims at comparing acute responses in spinal excitability, as measured by soleus Hoffmann reflex (H-reflex), between MS patients and healthy individuals, under three experimental conditions involving the ankle planta flexor muscles: (1) passive NMES (pNMES); (2) NMES superimposed onto isometric voluntary contraction (NMES+); and (3) isometric voluntary contraction (ISO). (2) Methods: In total, 20 MS patients (MS) and 20 healthy individuals as the control group (CG) took part in a single experimental session. Under each condition, participants performed 15 repetitions of 6 s at 20% of maximal voluntary isometric contraction, with 6 s of recovery between repetitions. Before and after each condition, H-reflex amplitudes were recorded. (3) Results: In MS, H-reflex amplitude did not change under any experimental condition (ISO: p = 0.506; pNMES: p = 0.068; NMES+: p = 0.126). In CG, H-reflex amplitude significantly increased under NMES+ (p = 0.01), decreased under pNMES (p < 0.000) and was unaltered under ISO (p = 0.829). (4) Conclusions: The different H-reflex responses between MS and CG might reflect a reduced ability of MS patients in modulating spinal excitability. Full article
Show Figures

Figure 1

10 pages, 545 KiB  
Article
Effects of Neuromuscular Electrical Stimulation on Spasticity and Walking Performance among Individuals with Chronic Stroke: A Pilot Randomized Clinical Trial
by Sattam M. Almutairi, Mohamed E. Khalil, Nadiah Almutairi, Saud M. Alsaadoon, Dalal S. Alharbi, Sultan D. Al Assadi, Salem F. Alghamdi, Sahar N. Albattah and Aqeel M. Alenazi
Healthcare 2023, 11(24), 3137; https://doi.org/10.3390/healthcare11243137 - 11 Dec 2023
Viewed by 3580
Abstract
Background: Stroke and its associated complications are a major cause of long-term disability worldwide, with spasticity being a common and severe issue. Physical therapy, involving stretching exercises and electrical stimulation, is crucial for managing spasticity. Therefore, this study aimed to evaluate the effects [...] Read more.
Background: Stroke and its associated complications are a major cause of long-term disability worldwide, with spasticity being a common and severe issue. Physical therapy, involving stretching exercises and electrical stimulation, is crucial for managing spasticity. Therefore, this study aimed to evaluate the effects of neuromuscular electrical stimulation (NMES) combined with a conventional rehabilitation program (CRP) on plantarflexor muscle spasticity and walking performance among individuals with chronic stroke. Methods: A pilot randomized clinical trial (RCT) with two groups (active NMES and placebo) was conducted at the physical therapy departments of King Fahad Specialist Hospital, Buraydah, and Sultan Bin Abdulaziz Humanitarian City, Riyadh, Saudi Arabia (November 2020). The assessor and participants were blinded for the group assignment. The active NMES group received exercise and stimulation at the dorsiflexor muscles on the paretic leg for 30 min for 12 sessions. The placebo group received exercise and sham stimulation at the same position and duration as the active group. Of interest were the outcomes for plantarflexor muscle spasticity measured by the modified Ashworth scale (MAS), gait speed measured by 10 m walk test (10-MWT), and functional mobility measured by functional ambulatory category (FAC). Results: Nineteen participants were randomized into active NMES (n = 10) and sham NMES (n = 9) groups, with no significant baseline differences. Within the active NMES group, significant improvements were observed in MAS (p = 0.008), 10-MWT (p = 0.028), and FAC (p = 0.046), while only 10-MWT time improved significantly in the sham NMES group (p = 0.011). Between-group analysis showed that only MAS was significantly lower in the active NMES group (p = 0.006). Percent change analysis indicated a significantly higher increase in percent change for MAS in the active NMES group compared to the sham NMES group (p = 0.035), with no significant differences in other outcome measures. Conclusions: This study showed that NMES in the active group led to significant improvements in spasticity, walking performance, and functional ambulation. Further research is needed to determine the ideal parameters, protocols, and patient selection criteria for NMES interventions in stroke rehabilitation. Full article
Show Figures

Figure 1

12 pages, 1121 KiB  
Article
Immediate Effects of Blood Flow Restriction Combined with Neuromuscular Electrical Stimulation in Female Amateur Football Players: A Pilot Trial
by Irene Afán-Argüín, Carlos Fernández-Morales, Luis Espejo-Antúnez, Manuel Albornoz-Cabello, Felipe León-Morillas and María de los Ángeles Cardero-Durán
Appl. Sci. 2023, 13(24), 13131; https://doi.org/10.3390/app132413131 - 9 Dec 2023
Viewed by 1970
Abstract
We aimed to investigate the acute effects of blood flow restriction (BFR) combined with neuromuscular electrical stimulation (NMES) on muscle strength, thigh circumference, and knee joint reposition sense in female amateur football players, as well as to determine whether this procedure is safe. [...] Read more.
We aimed to investigate the acute effects of blood flow restriction (BFR) combined with neuromuscular electrical stimulation (NMES) on muscle strength, thigh circumference, and knee joint reposition sense in female amateur football players, as well as to determine whether this procedure is safe. Methods: This was a pilot trial. Twenty female amateur football players were randomized into two groups: group 1 (n = 10) received a single NMES session; group 2 (n = 10) received NMES + BFR. The measured variables included maximal voluntary eccentric contraction (MVEC) and maximal voluntary concentric contraction (MVCC), thigh circumference, and knee joint reposition sense test. The type of electrical current used was TENS (symmetrical biphasic rectangular pulse, 350 μs, and 50 Hz), combined simultaneously with active knee extension (75 repetitions in 4 sets, 20% MVCC, 30 s rest between sets), for both groups. Group 2 had BFR added (80% of arterial occlusion pressure). Results: Statistically significant differences (p ≤ 0.05) were obtained for thigh circumference in both groups. The comparison between groups did not show statistically significant differences (p ≤ 0.05) in MVEC, MVCC, thigh circumference, or the knee joint reposition sense test. Conclusions: Both the isolated NMES intervention and its combination with BFR induced immediate changes in thigh circumference without impairing the muscle strength or proprioceptive ability of the football players. However, these results should be interpreted with caution, and future studies including a control group and isolated BFR application are needed. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

17 pages, 4108 KiB  
Article
The Effect of Lower Limb Combined Neuromuscular Electrical Stimulation on Skeletal Muscle Signaling for Glucose Utilization, Myofiber Distribution, and Metabolic Function after Spinal Cord Injury
by Amal Alharbi, Jia Li, Erika Womack, Matthew Farrow and Ceren Yarar-Fisher
Int. J. Environ. Res. Public Health 2023, 20(20), 6958; https://doi.org/10.3390/ijerph20206958 - 21 Oct 2023
Cited by 3 | Viewed by 3097
Abstract
Maintaining healthy myofiber type and metabolic function early after spinal cord injury (SCI) may prevent chronic metabolic disorders. This study compares the effects of a 2–5 week combined (aerobic + resistance) neuromuscular electrical stimulation (Comb-NMES) regimen versus a sham control treatment on muscle [...] Read more.
Maintaining healthy myofiber type and metabolic function early after spinal cord injury (SCI) may prevent chronic metabolic disorders. This study compares the effects of a 2–5 week combined (aerobic + resistance) neuromuscular electrical stimulation (Comb-NMES) regimen versus a sham control treatment on muscle protein signaling for glucose uptake, myofiber type distribution, and metabolic function. Twenty participants (31 ± 9 years of age) with an SCI (C4-L1, AIS level A–C) within 14 days of the SCI were randomly assigned to control (N = 8) or Comb-NMES (N = 12). Sessions were given three times per week. Fasting blood samples and vastus lateralis muscle biopsies were collected 24–48 h before or after the last session. Western blots were performed to quantify proteins, immunohistochemical analyses determined muscle myofiber distribution, and enzymatic assays were performed to measure serum glucose, insulin, and lipids. Our main findings include a decrease in fasting glucose (p < 0.05) and LDL-C (p < 0.05) levels, an upregulation of CamKII and Hexokinase (p < 0.05), and an increase in type I (+9%) and a decrease in type IIx (−36%) myofiber distribution in response to Comb-NMES. Our findings suggest that maintaining healthy myofiber type and metabolic function may be achieved via early utilization of Comb-NMES. Full article
Show Figures

Figure 1

17 pages, 3172 KiB  
Article
Effect of Forearm Postures and Elbow Joint Angles on Elbow Flexion Torque and Mechanomyography in Neuromuscular Electrical Stimulation of the Biceps Brachii
by Raphael Uwamahoro, Kenneth Sundaraj and Farah Shahnaz Feroz
Sensors 2023, 23(19), 8165; https://doi.org/10.3390/s23198165 - 29 Sep 2023
Viewed by 1858
Abstract
Neuromuscular electrical stimulation plays a pivotal role in rehabilitating muscle function among individuals with neurological impairment. However, there remains uncertainty regarding whether the muscle’s response to electrical excitation is affected by forearm posture, joint angle, or a combination of both factors. This study [...] Read more.
Neuromuscular electrical stimulation plays a pivotal role in rehabilitating muscle function among individuals with neurological impairment. However, there remains uncertainty regarding whether the muscle’s response to electrical excitation is affected by forearm posture, joint angle, or a combination of both factors. This study aimed to investigate the effects of forearm postures and elbow joint angles on the muscle torque and MMG signals. Measurements of the torque around the elbow and MMG of the biceps brachii (BB) muscle were conducted in 36 healthy subjects (age, 22.24 ± 2.94 years; height, 172 ± 0.5 cm; and weight, 67.01 ± 7.22 kg) using an in-house elbow flexion testbed and neuromuscular electrical stimulation (NMES) of the BB muscle. The BB muscle was stimulated while the forearm was positioned in the neutral, pronation, or supination positions. The elbow was flexed at angles of 10°, 30°, 60°, and 90°. The study analyzed the impact of the forearm posture(s) and elbow joint angle(s) on the root-mean-square value of the torque (TQRMS). Subsequently, various MMG parameters, such as the root-mean-square value (MMGRMS), the mean power frequency (MMGMPF), and the median frequency (MMGMDF), were analyzed along the longitudinal, lateral, and transverse axes of the BB muscle fibers. The test–retest interclass correlation coefficient (ICC21) for the torque and MMG ranged from 0.522 to 0.828. Repeated-measure ANOVAs showed that the forearm posture and elbow flexion angle significantly influenced the TQRMS (p < 0.05). Similarly, the MMGRMS, MMGMPF, and MMGMDF showed significant differences among all the postures and angles (p < 0.05). However, the combined main effect of the forearm posture and elbow joint angle was insignificant along the longitudinal axis (p > 0.05). The study also found that the MMGRMS and TQRMS increased with increases in the joint angle from 10° to 60° and decreased at greater angles. However, during this investigation, the MMGMPF and MMGMDF exhibited a consistent decrease in response to increases in the joint angle for the lateral and transverse axes of the BB muscle. These findings suggest that the muscle contraction evoked by NMES may be influenced by the interplay between actin and myosin filaments, which are responsible for muscle contraction and are, in turn, influenced by the muscle length. Because restoring the function of limbs is a common goal in rehabilitation services, the use of MMG in the development of methods that may enable the real-time tracking of exact muscle dimensional changes and activation levels is imperative. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

23 pages, 915 KiB  
Review
The Pathophysiology, Identification and Management of Fracture Risk, Sublesional Osteoporosis and Fracture among Adults with Spinal Cord Injury
by Beverley Catharine Craven, Christopher M. Cirnigliaro, Laura D. Carbone, Philemon Tsang and Leslie R. Morse
J. Pers. Med. 2023, 13(6), 966; https://doi.org/10.3390/jpm13060966 - 8 Jun 2023
Cited by 10 | Viewed by 4058
Abstract
Background: The prevention of lower extremity fractures and fracture-related morbidity and mortality is a critical component of health services for adults living with chronic spinal cord injury (SCI). Methods: Established best practices and guideline recommendations are articulated in recent international consensus documents from [...] Read more.
Background: The prevention of lower extremity fractures and fracture-related morbidity and mortality is a critical component of health services for adults living with chronic spinal cord injury (SCI). Methods: Established best practices and guideline recommendations are articulated in recent international consensus documents from the International Society of Clinical Densitometry, the Paralyzed Veterans of America Consortium for Spinal Cord Medicine and the Orthopedic Trauma Association. Results: This review is a synthesis of the aforementioned consensus documents, which highlight the pathophysiology of lower extremity bone mineral density (BMD) decline after acute SCI. The role and actions treating clinicians should take to screen, diagnose and initiate the appropriate treatment of established low bone mass/osteoporosis of the hip, distal femur or proximal tibia regions associated with moderate or high fracture risk or diagnose and manage a lower extremity fracture among adults with chronic SCI are articulated. Guidance regarding the prescription of dietary calcium, vitamin D supplements, rehabilitation interventions (passive standing, functional electrical stimulation (FES) or neuromuscular electrical stimulation (NMES)) to modify bone mass and/or anti-resorptive drug therapy (Alendronate, Denosumab, or Zoledronic Acid) is provided. In the event of lower extremity fracture, the need for timely orthopedic consultation for fracture diagnosis and interprofessional care following definitive fracture management to prevent health complications (venous thromboembolism, pressure injury, and autonomic dysreflexia) and rehabilitation interventions to return the individual to his/her pre-fracture functional abilities is emphasized. Conclusions: Interprofessional care teams should use recent consensus publications to drive sustained practice change to mitigate fracture incidence and fracture-related morbidity and mortality among adults with chronic SCI. Full article
Show Figures

Figure 1

16 pages, 710 KiB  
Review
Protocols Targeting Afferent Pathways via Neuromuscular Electrical Stimulation for the Plantar Flexors: A Systematic Review
by Anastasia Papavasileiou, Anthi Xenofondos, Stéphane Baudry, Thomas Lapole, Ioannis G. Amiridis, Dimitrios Metaxiotis, Themistoklis Tsatalas and Dimitrios A. Patikas
Sensors 2023, 23(4), 2347; https://doi.org/10.3390/s23042347 - 20 Feb 2023
Cited by 1 | Viewed by 2169
Abstract
This systematic review documents the protocol characteristics of studies that used neuromuscular electrical stimulation protocols (NMES) on the plantar flexors [through triceps surae (TS) or tibial nerve (TN) stimulation] to stimulate afferent pathways. The review was conducted according to the Preferred Reporting Items [...] Read more.
This systematic review documents the protocol characteristics of studies that used neuromuscular electrical stimulation protocols (NMES) on the plantar flexors [through triceps surae (TS) or tibial nerve (TN) stimulation] to stimulate afferent pathways. The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement, was registered to PROSPERO (ID: CRD42022345194) and was funded by the Greek General Secretariat for Research and Technology (ERA-NET NEURON JTC 2020). Included were original research articles on healthy adults, with NMES interventions applied on TN or TS or both. Four databases (Cochrane Library, PubMed, Scopus, and Web of Science) were systematically searched, in addition to a manual search using the citations of included studies. Quality assessment was conducted on 32 eligible studies by estimating the risk of bias with the checklist of the Effective Public Health Practice Project Quality Assessment Tool. Eighty-seven protocols were analyzed, with descriptive statistics. Compared to TS, TN stimulation has been reported in a wider range of frequencies (5–100, vs. 20–200 Hz) and normalization methods for the contraction intensity. The pulse duration ranged from 0.2 to 1 ms for both TS and TN protocols. It is concluded that with increasing popularity of NMES protocols in intervention and rehabilitation, future studies may use a wider range of stimulation attributes, to stimulate motor neurons via afferent pathways, but, on the other hand, additional studies may explore new protocols, targeting for more optimal effectiveness. Furthermore, future studies should consider methodological issues, such as stimulation efficacy (e.g., positioning over the motor point) and reporting of level of discomfort during the application of NMES protocols to reduce the inherent variability of the results. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

Back to TopTop